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Introduction

A polynomial p ∈ R[x] in n variables x = (x1, . . . , xn) with p(0) = 1 is called
a real-zero polynomial if p has only real zeros along every line through the ori-
gin. The typical example is a polynomial given by a definite (linear symmetric)
determinantal representation

p = det(I + A1x1 + · · · + Anxn),

where A1, . . . ,An are real symmetric matrices and I is the identity. A representa-
tion of this form is a certificate for being a real-zero polynomial. In other words,
that p is a real-zero polynomial is apparent from the representation. A definite de-
terminantal representation also provides a description of the rigidly convex region
of p, or the closure of the connected component containing the origin in the com-
plement of the zero set of p in real space. This region is always convex and, given
a definite determinantal representation of p, it coincides with the set of points for
which the matrix polynomial I + A1x1 + · · · + Anxn is positive semidefinite.

The notions of hyperbolic and stable polynomials are closely related to that of a
real-zero polynomial. A hyperbolic polynomial is a real homogeneous polynomial
that has only real zeros on all lines parallel to a fixed direction, and a homogeneous
real polynomial is stable if it has no roots in the n-fold product of the complex
upper half-plane. From a real-zero polynomial one obtains a hyperbolic polyno-
mial via homogenization, and vice versa. Furthermore, a real polynomial is stable
if and only if it is hyperbolic with respect to each direction in the positive orthant.
Our results can easily be transferred to these different setups; however, in this pa-
per we shall restrict our attention to real-zero polynomials.

In recent years, real-zero polynomials and their determinantal representations
have been studied mostly with a view toward convex optimization—specifically,
semidefinite and hyperbolic programming. In general, we should like to answer
the following questions.
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(1) Under what conditions does a real-zero polynomial have a definite determi-
nantal representation?

(2) If such a representation exists, what is the minimal matrix dimension and how
can the representation be computed (more efficiently than by solving a large
system of polynomial equations)?

(3) If no such representation exists, then are there other certificates for being a
real-zero polynomial?

Question (1) is the most immediate and so has received the most attention. It ties
in with the theory of determinantal hypersurfaces in complex algebraic geometry,
whose roots go back to the nineteenth century. Arguably the most important mod-
ern results are the Helton–Vinnikov theorem in [9], which gives a positive answer
for n = 2, and Brändén’s negative results for higher dimensions in [4]. Because
there are various subtle variations of this question, it is not straightforward to iden-
tify what is known and what is not; we give a brief overview before Section 1.

Question (2), which should be of interest for practical purposes, has yet to be
studied systematically. Even in the case n = 2, the classical approach of Dixon
for constructing determinantal representations is—despite its algorithmic nature—
difficult to carry out in practice (see [5]; for a modern presentation, see [17]).

One way of addressing Question (3) is to study the determinantal representabil-
ity of a suitable power or multiple of p if no representation for p exists. This
approach is motivated by the generalized Lax conjecture, as described in what
follows. On the other hand, the real-zero property need not be expressed by a de-
terminantal representation. That a polynomial p in one variable has only real roots
is equivalent to its Hermite matrix being positive semidefinite. This is a symmetric
real matrix, associated with p, that provides one of the classical methods for root
counting. To treat the multivariate case, we use a parameterized version of the Her-
mite matrix with polynomial entries. In a sum-of-squares relaxation approach that
is common in polynomial optimization, we then ask for the parameterized Her-
mite matrix H(p) to be a sum of squares, which means that there exists a matrix Q
such that H(p) = QTQ. (This is called a sum of squares, rather than simply a
square, because Q is allowed to be rectangular of any dimensions.) This approach
was used by Henrion [10] and P. Parrilo (unpublished work) as a way to relax the
real-zero property, which is exact in the 2-dimensional case.

Although the Hermite matrix provides a practical way of certifying the real-zero
property, it is clearly preferable to use a definite determinantal representation of p
because it also yields a description of the rigidly convex region by a linear matrix
inequality. Even if one is interested only in the real-zero property, the multivariate
Hermite matrix is a quite unwieldy object compared to the original polynomial; a
sum-of-squares decomposition is still more unwieldy.

Our main goal is therefore to use a sum-of-squares decomposition of the param-
eterized Hermite matrix of a polynomial p to construct, as explicitly as possible,
a definite determinantal representation of p or at least of some multiple of p. The
extra factor should best not change the rigidly convex set of p (i.e., should have
no zeros in its interior). We first show in Section 1 that a definite determinantal
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representation of some power of p of the correct size always yields a sum-of-
squares decomposition of H(p); this is Theorem 1.6. In Section 2 we attempt
to prove the converse. This aim is partly motivated by our experimental finding
that the Hermite matrix of the Vámos polynomial, which is the counterexample of
Brändén, is not a sum of squares (Example 1.9). Note also that for n = 2, a case in
which every real-zero polynomial possesses a definite determinantal representa-
tion (by the Helton–Vinnikov theorem), the parameterized Hermite matrix can be
reduced to the univariate case. That matrix is, by a result of Jakubovič [11], a sum
of squares if and only if it is positive semidefinite. Given a decomposition H(p) =
QTQ, we show that a definite determinantal representation of a multiple of p can
be found if a certain extension problem for linear maps on free graded modules de-
rived from Q has a solution (Theorem 2.5). Given Q, the search for such a solution
requires only that we solve a system of linear equations. This method can, in prin-
ciple, be applied also if the sum-of-squares decomposition uses denominators. We
unfortunately cannot control the extra factor that appears in a determinantal rep-
resentation constructed via this method; in particular, it could change the rigidly
convex set. Yet such a representation is still a certificate for the real-zero property
of the inital polynomial.

Finally, we show that allowing a sum-of-squares decomposition with denomi-
nators, which exists whenever H(p) is positive semidefinite, enables one to obtain
a determinantal representation with denominators. This notion can be expressed
as follows.

Theorem. Let p be a square-free real-zero polynomial with p(0) = 1. Then
there exists a symmetric matrix M whose entries are real homogeneous rational
functions of degree 1 such that p = det(I + M).

The precise statement is given in Theorem 3.1.

Acknowledgments. We would like to thank Didier Henrion, Pablo Parrilo,
Rainer Sinn, and Cynthia Vinzant as well as the referee for helpful comments and
discussions.

Known Results

• For n = 2, every real-zero polynomial of degree d has a real definite determi-
nantal representation of matrix size d by the Helton–Vinnikov theorem [9].

• For n ≥ 3 and d sufficiently large, a simple count of parameters shows that only
an exceptional set of polynomials can have a real determinantal representation
of size d. The question of whether every real-zero polynomial has a definite de-
terminantal representation of any size became known as an initial version of the
generalized Lax conjecture.

• This generalized Lax conjecture was disproved by Brändén, who showed in ad-
dition that the existence of real-zero polynomials p for which no power pr has a
determinantal representation of any size [4]. His smallest counterexample, the
Vámos polynomial, is of degree 4 in eight variables (see Example 1.9).
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• Netzer and Thom [13] prove that only an exceptional set of polynomials can
have a determinantal representation—even if one allows for matrices of arbi-
trary size. This statements holds for n ≥ 3 and d sufficiently large and for d ≥ 4
and n sufficiently large. They also show that if p is a real-zero polynomial of
degree 2 then there exists an r ≥ 1 such that pr has a determinantal representa-
tion. On the other hand, there exists such a p where r = 1 is not possible.

• A result of Helton, McCullough, and Vinnikov [8] (see also Quarez [16]) states
that every real polynomial has a real symmetric determinantal representation
but not necessarily a definite one. This means that the constant term in the ma-
trix polynomial cannot be chosen to be the identity matrix in their result. An
improvement on this result in terms of matrix size was obtained by Grenet,
Kaltofen, Koiran, and Portier [7].

• The most general form of the Lax conjecture states that every rigidly convex
set of a polynomial p is a spectrahedron. In terms of determinantal represen-
tations, this amounts to the conjecture that, for every real-zero polynomial p,
there exists another real-zero polynomial q such that pq has a real definite de-
terminantal representation and q is positive on the interior of the rigidly convex
set of p. This conjecture remains open even without the additional positivity
condition on q. Note that if pq has a definite determinantal representation then
q is necessarily a real-zero polynomial.

1. The Hermite Matrix

In this section we introduce the parameterized Hermite matrix H(p) of a poly-
nomial p. It is positive semidefinite at each point if and only if p is a real-zero
polynomial. If some power of p admits a determinantal representation of the cor-
rect size, then it turns out that H(p) is a sum of squares of polynomial matrices.

Let p = t d + p1t
d−1 + · · · + pd−1t + pd ∈ R[t] be a monic univariate polyno-

mial of degree d, and let λ1, . . . , λd be the complex zeros of p. Then

Nk(p) =
d∑
i=1

λki

is called the kth Newton sum of p. The Newton sums are symmetric functions in
the roots and can thus be expressed as polynomials in the elementary symmetric
functions—that is, the coefficients pi of p. These results can be found in many
books on algebra or combinatorics, or see [12]. The Hermite matrix of p is the
symmetric d × d matrix

H(p) := (Ni+j−2(p))i,j=1,...,d;
it is a Hankel matrix whose entries are polynomial expressions in the coefficients
of p. We remark that H(p) = V TV, where V is the Vandermonde matrix with
coefficients λ1, . . . , λd.

The following well-known fact goes back to Hermite. For a proof, see for ex-
ample Theorem 4.59 in Basu, Pollack, and Roy [1].
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Theorem 1.1. Let p ∈ R[t] be a monic polynomial. The rank of H(p) is equal to
the number of distinct zeros of p in C. The signature of the Hermite matrix H(p)
is equal to the number of distinct real zeros of p.

In particular, H(p) is positive definite if and only if all zeros of p are real and
distinct, and H(p) is positive semidefinite if and only if all zeros are real.

Now let p ∈ R[x] be a polynomial of degree d in n variables x = (x1, . . . , xn).
The polynomial p is called a real-zero polynomial (with respect to the origin) if
p(0) = 1 and if, for every a ∈ R

n, the univariate polynomial p(ta) ∈ R[t] has
only real zeros. We want to express this condition in terms of a Hermite matrix.
Write p = ∑d

i=0 pi, where pi is homogeneous of degree i, and let P(x, t) =∑d
i=0 pit

d−i be the homogenization of p with respect to an additional variable t.
We consider P as a monic univariate polynomial in t and call the Hermite matrix
H(P ) the parameterized Hermite matrix of p, denoted H(p). Its entries are poly-
nomials in the homogeneous parts pi of p. The (i, j)th entry is a homogeneous
polynomial in x of degree i + j − 2.

Corollary 1.2. A polynomial p ∈ R[x] with p(0) = 1 is a real-zero polynomial
if and only if the matrix H(p)(a) is positive semidefinite for all a ∈ R

n.

Proof. By Theorem 1.1, H(p)(a) is positive semidefinite for a ∈ R
n if and only if

the univariate polynomial t dp(a1t
−1, . . . , ant−1) has only real zeros. Substituting

t−1 for t, we see that this is equivalent to p(ta) having only real zeros.

The following is Proposition 2.1 in Netzer and Thom [13].

Proposition 1.3. Let M = x1M1 + · · · + xnMn be a real symmetric linear ma-
trix polynomial, and let p = det(I − M). Then, for each a ∈ R

n, the nonzero
eigenvalues of M(a) are in one-to-one correspondence with the zeros of the uni-
variate polynomial p(ta), counting multiplicities. The correspondence is given
by the rule λ 	→ 1/λ.

Lemma 1.4. Let p ∈ R[x] be a real-zero polynomial of degree d, and assume
that pr = det(I − M) is a symmetric determinantal representation of size k for
some r > 0. Then

H(p)i,j = 1

r
· (tr(Mi+j−2))

except possibly for (i, j) = (1, 1), where H(p)1,1 = d and tr(M0) = k.

Proof. For each a ∈ R
n, the trace of M(a)s is the s-power sum of the nonzero

eigenvalues of M(a). These eigenvalues are the inverses of the zeros of p(ta),
by Proposition 1.3, but each such zero gives rise to r many eigenvalues. Since the
zeros of p(ta) correspond to the inverses of the zeros of t dp(t−1a), it follows that
the trace of M(a)s is equal to the s-power sum of the zeros of t dp(t−1a)multiplied
by r. Hence these power sums are precisely the Newton sums of that polynomial,
and this proves the claim.
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Definition 1.5. Let H ∈ Symd(R[x]) be a symmetric matrix with polynomial
entries. We say that H is a sum of squares if there is a d ′ × d matrix Q with poly-
nomial entries such that H = QTQ. This condition is equivalent to the existence
of d ′ many d-vectors Q i with polynomial entries such that H = ∑k

i=1 Q iQT
i .

Theorem 1.6. Let p ∈ R[x] be a real-zero polynomial of degree d. If a power pr

admits a definite determinantal representation of size r · d for some r > 0, then
the parameterized Hermite matrix H(p) is a sum of squares.

Proof. Let pr = det(I − M) for M of size k = rd, and denote by q(s)�m the (�,m)
entry of Ms. Put Q�m = (q

(0)
�m , . . . , q(d−1)

�m )T ∈ R[x]d. Then, by Lemma 1.4,

k∑
�,m=1

Q�mQT
�m =

( k∑
�,m=1

q
(i−1)
�m q

(j−1)
�m

)
i,j=1,...,d

= (tr(Mi−1Mj−1))i,j=1,...,d = rH(p).
Remarks 1.7. (1) If the determinantal representation of pr is of size k > rd,
then H(p) becomes a sum of squares after increasing the (1, 1) entry from d to
k/r. This is clear from the preceding proof.

(2) It was shown by Netzer and Thom [13] that if a polynomial p admits a defi-
nite determinantal representation then it also admits one of size dn, where d is the
degree of p and n is the number of variables. So if any power pr admits a determi-
nantal representation of any size, then H(p) is a sum of squares once we increase
the (1, 1) entry from d to dn. Note that this claim is independent of r.

(3) The determinant of H(p) is the discriminant of t dp(t−1x) in t. If H(p) =
QTQ then, by the Cauchy–Binet formula, the determinant of H(p) is a sum of
squares in R[x]. So by Theorem 1.6, the discriminant of det(tI +M) in t is a sum
of squares—a fact known at least since Borchardt’s work in 1846 [3].

(4) The sum-of-squares decomposition of H(p) obtained by Theorem 1.6 from
a determinantal representation pr = det(I − M) is extremely special. It is pos-
sible in principle to characterize the decompositions of H(p) coming from a de-
terminantal representation by a recurrence relation that they must satisfy. How-
ever, this does not seem to be a promising approach for finding determinantal
representations.

Example 1.8. It was shown in Netzer and Thom [13] that if p is quadratic then
a high enough power admits a definite determinantal representation of the correct
size. Thus H(p) is a sum of squares in that case. This can also be shown directly.
Write

p = xTAx + bTx + 1

with A ∈ Symn(R) and b ∈ R
n. Then p is a real-zero polynomial if and only if

bbT −4A � 0, as is easily checked. We find that t 2p(t−1x) = xTAx+bTx · t+ t 2,
so we can compute

H(p) =
(

2 −bTx
−bTx xT(bbT − 2A)x

)
.

Write bbT − 4A = ∑n
i=1 viv

T
i as a sum of squares of column vectors vi ∈ R

n. Set
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Q =




1 − 1
2b

Tx

0 1
2v

T
1x

...
...

0 1
2v

T
nx


.

Then H(p) = 2 · QTQ.
Example 1.9. We consider Brändén’s example from [4]. It is constructed from
the Vámos cube as shown in Figure 1. Its set of bases B consists of all four-element
subsets of {1, . . . , 8} that do not lie in one of the five affine hyperplanes. Define

q :=
∑
B∈B

∏
i∈B

xi,

a degree-4 polynomial in R[x1, . . . , x8]; it contains as its terms the product of any
choice of four pairwisely different variables except for the following five:

x1x4x5x6, x2x3x5x6, x2x3x7x8, x1x4x7x8, x1x2x3x4.

Now p = q(x1 + 1, . . . , x8 + 1) turns out to be a real-zero polynomial, of which
Brändén has shown that no power has a determinantal representation.

1

7

2

5

6

4

3

8

Figure 1 The Vámos cube

We can apply the sum-of-squares test to the Hermite matrix H(p) here. Unfortu-
nately, the matrix is too complicated for the computations to be performed by hand.
Yet when we use a numerical sum-of-squares plugin for Matlab (e.g., Yalmip), the
result indicates that H(p) is not a sum of squares. In view of Theorem 1.6, this re-
sult shows again that no power of p admits a determinantal representation. Note
that if some power pr has a determinantal representation then it has one of size 4r.
This was proved by Brändén and follows more generally from [13, Thm. 2.7].

Finally, we can apply the sum-of-squares test also to small perturbations of
Brändén’s polynomial. For example, p can be approximated as closely as desired
by real-zero polynomials that have only simple roots on each line through the ori-
gin (in other words, the Hermite matrix is positive definite at each point a �= 0).
Such a smoothening procedure is described in Nuij [14], for example. Still,Yalmip
reports that the Hermite matrix is not a sum of squares if the approximation is close
enough. That is exactly what one expects, since the cone of sums of squares of
polynomial matrices is closed and the Hermite matrix depends continuously on
the polynomial.
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2. A General Construction Method

In this section we are interested in the converse of the preceding result. Namely,
can a sum-of-squares decomposition of H(p) be used to produce a definite deter-
minantal representation of p (or some multiple thereof )? We describe a method
for doing this that amounts to solving a system of linear equations.

Let p = 1+p1 + · · · +pd ∈ R[x] be a real-zero polynomial of degree d. Since
the matrix H(p) is everywhere positive semidefinite, it can be expressed as a sum
of squares if one allows denominators in R[x]. This generalization of Artin’s solu-
tion to Hilbert’s 17th problem was first proved by Gondard and Ribenboim in [6].
We must make a slight adjustment for our situation because we will need a homo-
geneous denominator in the construction.

Lemma 2.1. There exist a matrix polynomial Q ∈ Matk×d(R[x]) for some k > 0
as well as a homogeneous nonzero polynomial q ∈ R[x] such that

q2 H(p) = QTQ.
Proof. By the original result of Gondard and Ribenboim [6] there is some nonzero
polynomial q ∈ R[x] such that q2 H(p) = QTQ for some Q ∈ Matk×d(R[x]). We
want to make q homogeneous.

Write q = qr + qr+1 + · · · + qR , where each qi is homogeneous of degree i and
where qr �= 0 and qR �= 0. Since the ith diagonal entry in H(p) is homogeneous
of degree 2(i − 1), each entry in the ith column of Q has homogeneous parts of
degree between r + i − 1 and R + i − 1. Let Qmin be the matrix obtained from
Q by choosing only the homogeneous part of degree r + i − 1 of each entry in
each ith column. Put Q̃ = Q − Qmin and note that all entries in the ith column of
Q̃ have nonzero homogeneous parts only in degrees at least r + i. We now com-
pute q2 H(p) = QT

minQmin + QT
minQ̃+ Q̃TQmin + Q̃TQ̃, compare degrees on both

sides, and find q2
r H(p) = QT

minQmin as desired.

We will now describe the setup to be used in the rest of this section. It can be seen
as a parameterized version of the classical approach to the Hermite matrix as a
trace form (for an exposition, see e.g. [15]). We fix a representation of q2 H(p) =
QTQ as in Lemma 2.1. As before, let P = t d ·p(t−1x) = t d +p1t

d−1 +· · ·+pd ∈
R[x, t], and consider the free R[x]-module

A = R[x, t]/(P ) ∼=
d−1⊕
i=0

R[x] · t i ∼= R[x]d.

Since P is homogeneous, the standard grading induces a grading on A. We shift
this grading by r, the degree of q, and obtain a grading with deg(t i) = r+ i for i =
0, . . . , d−1. This turnsA into a graded R[x]-module, where R[x] is equipped with
the standard grading. Furthermore, we equip A with a symmetric R[x]-bilinear
and R[x]-valued map 〈·, ·〉p defined by

〈f , g〉p := f T(q2 H(p))g
for f = (f1, . . . , fd)T and g = (g1, . . . , gd)T in A.
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Next consider the map L t : A → A given by multiplication with t. This is an
R[x]-linear map that we can compute with respect to our chosen basis:

L t : (f1, . . . , fd)
T 	→ (−pdfd , f1 − pd−1fd , . . . , fd−1 − p1fd)

T.

Note that L t is of degree 1 with respect to the grading; that is, deg(L t(f )) =
deg(f )+ 1. We identify L t with the matrix representing it, so that

L t =




0 0 0 −pd
1 0 0 −pd−1

0
. . . 0

...

0 · · · 1 −p1


;

this is exactly the companion matrix of P viewed as a univariate polynomial in t.
It is well known and easy to see that P is the characteristic polynomial of L t , so

det(I − L t ) = p.

Lemma 2.2. The linear map L t is self-adjoint with respect to 〈·, ·〉p. In other
words,

〈L tf , g〉p = 〈f , L t g〉p
holds for all f , g ∈A.
Proof. We may divide by q2 on both sides and hence assume that q = 1. It is
enough to show 〈L t ei, ej〉p = 〈ei, L t ej〉p for all i, j, where ei is the ith unit vec-
tor. For i, j < d, this follows because H(p) is a Hankel matrix; for i = j = d, it
is clear from symmetry. So assume j < i = d. We find that

〈L t ed , ej〉p = −
d∑
i=1

pd−i+1eiH(p)ej = −
d∑
i=1

pd−i+1Ni+j−2,

whereNk is the kth Newton sum ofP. On the other hand, we compute 〈ed , L t ej〉p =
〈ed , ej+1〉p = Nd+j−1. In conclusion, we must show that

d∑
i=0

pd−iNi+j−1 = 0,

where we have set p0 = 1. This statement is equivalent to
∑d

i=0 piNk−i = 0 for
k = d + j − 1 ≥ d. This last equation, however, follows immediately from the
Newton identity kpk + ∑k−1

i=0piNk−i = 0, where we let pk = 0 for k > d.

Let B = R[x]k. The (k × d)-matrix Q in the decomposition of H(p) describes
an R[x]-linear map A = R[x]d → B, f 	→ Qf. From the degree structure of
H(p), we see that each entry in the ith column of Q is homogeneous of degree
r + i − 1. Hence Q is of degree 0 with respect to the canonical grading on B.
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Lemma 2.3.

(1) If p is square-free, then Q : A → B is injective.
(2) We have

〈f , g〉p = 〈Qf , Qg〉
for all f , g ∈ A. In other words, Q is orthogonal with respect to 〈·, ·〉p and
〈·, ·〉.

Proof. Part (2) is immediate from the equality q2 H(p) = QTQ. For part (1), if
Qf = 0 then

0 = 〈Qf , Qf 〉 = 〈f , f 〉p = q2 · f TH(p)f.
For each a ∈ R

n for which p(ta) has only distinct roots, the matrix H(p)(a) is
positive definite. So f(a) = 0 for generic a and thus f = 0.

Next we briefly summarize our results so far.

Setup 2.4.

• Let p ∈ R[x] be a real-zero polynomial of degree d with p(0) = 1, and let
H(p) be its parameterized Hermite matrix. Fix a decomposition q2 H(p) =
QTQ, where q is homogeneous of degree r and Q is a matrix of size k× d with
entries in R[x].

• We have equipped the free module A = R[x]d with a particular grading and
with a bilinear form 〈·, ·〉p : A× A → A.

• Let B = R[x]k be equipped with the canonical bilinear form and the canonical
grading; then the map Q : A → B is orthogonal and of degree 0.

• Let L t be the companion matrix of t dp(t−1x) with respect to t, so that

det(I − L t ) = p.

Then the map L t : A → A is self-adjoint with respect to 〈·, ·〉p and of degree 1.

Our main result in this paper is as follows.

Theorem 2.5. Let p ∈ R[x] be a square-free real-zero polynomial of degree d
with p(0) = 1. Assume that there exists a homogeneous symmetric linear matrix
polynomial M of size k × k such that the following diagram commutes:

R[x]d = A
Q

��

L t

��

B = R[x]k

M
��

R[x]d = A
Q

�� B = R[x]k .

Then p divides det(I − M).

Remarks 2.6. (i) Observe that the setup just described means that we can hope
such a linear symmetric M exists. Indeed, the “strange” symmetry of L t is trans-
formed into the standard symmetry by Q, and the “strange” grading is translated
to the standard grading.

(ii) Recall that we do not have control over the extra factor for p that might
appear in a determinantal representation constructed with this method.
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Proof of Theorem 2.5. For generic a ∈ R
n, the map Q(a) is injective by Lem-

ma 2.3. Therefore, all eigenvalues of L t(a) are also eigenvalues of M(a). The
eigenvalues of L t(a) are precisely the zeros of P(t, a)—namely, the inverses of
the zeros of p(ta). So by Proposition 1.3, q = det(I − M) vanishes on the zero
set of p. Since p is a square-free real-zero polynomial, the ideal (p) generated by
p in R[x] is real-radical (cf. [2, Thm. 4.5.1(v)]). It follows that q is contained in
(p); in other words, p divides q.

Remark 2.7. Whether there exists such an M can be determined by solving a
system of linear equations. Indeed, set M = x1M1 + · · · + xnMn, where the Mi

are symmetric matrices with indeterminate entries. The equation MQ = QL t of
matrix polynomials can be considered entrywise, and comparison with the coeffi-
cients in x gives rise to a system of linear equations in the entries of the Mi.

Example 2.8. Let p ∈ R[x] be quadratic. Write p = xTAx + bTx + 1 with A∈
Symn(R) and b ∈ R

n. We have seen in Example 1.8 that H(p) admits a sum-of-
squares decomposition if p is a real-zero polynomial; this decomposition is given
by the matrix

Q = √
2 ·




1 − 1
2b

Tx

0 1
2v

T
1x

...
...

0 1
2v

T
nx




if bbT − 4A = ∑n
i=1 viv

T
i . It is now easy to find a homogeneous linear matrix

polynomial M that makes the diagram in Theorem 2.5 commute. In particular,
we can take

M = 1

2
·




−bTx vT1x · · · vTnx

vT1x −bTx 0 0
... 0

. . . 0

vTnx 0 0 −bTx


.

The resulting determinantal representation is

det(I − M) =
(

1 + 1

2
· bTx

)n−1

· p.

To give an explicit example, consider p = (
x1 + √

2
)2 − x 2

2 − x 2
3 − x 2

4 − x 2
5 ,

which (by [13]) does not admit a determinantal representation. The procedure just
described now gives rise to the linear matrix polynomial

M =




−√
2x1 x1 x2 x3 x4 x5

x1 −√
2x1 0 0 0 0

x2 0 −√
2x1 0 0 0

x3 0 0 −√
2x1 0 0

x4 0 0 0 −√
2x1 0

x5 0 0 0 0 −√
2x1




,
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from which it follows that

det(I − M) = (
1 + √

2x1
)4 · p.

Example 2.9. There are also examples where no suitable M exists. We are grate-
ful to R. Sinn and C. Vinzant for helping us find this example. Consider the plane
cubic p = (x1 − 1)2(x1 + 1)− x 2

2 , and compute

H(p) =

 3 x1 3x 2

1 + 2x 2
2

x1 3x 2
1 + 2x 2

2 x3
1 + 3x1x

2
2

3x 2
1 + 2x 2

2 x3
1 + 3x1x

2
2 3x4

1 + 8x 2
1 x

2
2 + 2x4

2


 = QTQ

for

Q =




0 x2 ax1x2

0 −x2 bx1x2√
2

√
2x1

√
2(x 2

1 + x 2
2 )

1 −x1 x 2
1


;

here a = 1
2

(√
7 + 1

)
and b = 1

2

(√
7 − 1

)
. The equation MQ = QL t has twelve

entries, each of which gives rise to several linear equations by comparing coeffi-
cients in x. One can check that the equations obtained from even the first two rows
of MQ = QL t are unsolvable.

3. Rational Representations of Degree 1

There is always a way to make the diagram from Section 2 commute if one allows
for rational linear matrix polynomials. This will lead to rational determinantal
representations, as we now describe.

Let p be a square-free real-zero polynomial. Since the parameterized Hermite
matrix H(p) evaluated at a point a ∈ R

n is positive definite for generic a, the matrix
polynomial H(p) is invertible over the function field R(x). Recall that the degree
of a rational function f/g ∈ R(x) is defined as deg(f )− deg(g). Furthermore, we
say that f/g is homogeneous if both f and g are homogeneous (though they need
not be of the same degree). Equivalently, f/g is homogeneous of degree d if and
only if (f/g)(λa) = λd(f/g)(a) holds for all a ∈ R

n with g(a) �= 0.

Theorem 3.1. Let p be a square-free real-zero polynomial. Write q2 H(p) =
QTQ with q homogeneous as in Lemma 2.1, and let

M := q−2QL tH(p)−1QT.

The matrix M is symmetric with entries in R(x) homogeneous of degree 1, and it
satisfies

det(I − M) = p.

Proof. Abbreviate H(p) by H and L t by L. By Sylvester’s determinant theorem,
det(Ik − AB) = det(Id − BA) for any matrix polynomials A of size k × d and
B of size d × k. In our situation, this yields
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det(Ik − M) = det(Ik − q−2QLH−1QT )

= det(Id − q−2LH−1QTQ) = det(Id − L) = p.

Then
MT = q−2Q(H−1)TLTQT = q−2QLH−1QT = M,

where we have used LTH = HTL (Lemma 2.2). Thus M is symmetric. Let r be
the degree of q. Examining the degree structure of q2 H reveals that

Q(λa) = Q(a) · diag(λr, λr+1, . . . , λr+d−1),

H(λa) = diag(λ0, . . . , λd−1) · H(a) · diag(λ0, . . . , λd−1), and

L(λa) = diag(λd, . . . , λ1) · L(a) · diag(λ−d+1, λ−d+2, . . . , λ0)

for all a ∈ R
n and λ �= 0. Hence for all a ∈ R

n for which H(a) is invertible and
all q(a) �= 0 and λ �= 0, we have

M(λa) = λ−2rq(a)−2Q(a) · diag(λr, . . . , λr+d−1) · diag(λd, . . . , λ)L(a)
· diag(λ−d+1, . . . , λ0) · diag(λ0, . . . , λ−d+1) · H−1(a)

· diag(λ0, . . . , λ−d+1) · diag(λr, . . . , λr+d−1) · QT(a)

= λ−2rq(a)−2Q(a)λr+dL(a)λ−d+1H−1(a)λrQT(a)

= λ · M(a).

Remark 3.2. A representation p = det(I −M) as in Theorem 3.1 gives an alge-
braic certificate forp being a real-zero polynomial. Sincep(ta)= det(I− tM(a)),
by homogeneity the zeros ofp(ta) are just the inverses of the eigenvalues of M(a).

Since M is symmetric, all of these zeros are real. Theorem 3.1 now states that
such an algebraic certificate exists for each real-zero polynomial p.

Example 3.3. Consider the quadratic polynomial p = (x1+1)2 −x 2
2 −x 2

3 −x 2
4.

We have

H =
(

2 −2x1

−2x1 2(x 2
1 + x 2

2 + x 2
3 + x 2

4 )

)
= QTQ

for QT =
( √

2 0 0 0
−√

2x1

√
2x2

√
2x3

√
2x4

)
,

which results in

M =




−x1 x2 x3 x4

x2 − x1x
2
2

x 2
2 + x 2

3 + x 2
4

− x1x2x3

x 2
2 + x 2

3 + x 2
4

− x1x2x4

x 2
2 + x 2

3 + x 2
4

x3 − x1x2x3

x 2
2 + x 2

3 + x 2
4

− x1x
2
3

x 2
2 + x 2

3 + x 2
4

− x1x3x4

x 2
2 + x 2

3 + x 2
4

x4 − x1x2x4

x 2
2 + x 2

3 + x 2
4

− x1x3x4

x 2
2 + x 2

3 + x 2
4

− x1x
2
4

x 2
2 + x 2

3 + x 2
4



.
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