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Boundary Complexes and Weight Filtrations

Sam Payne

1. Introduction

Let D be a divisor with simple normal crossings on an algebraic variety. The
dual complex �(D) is a triangulated topological space, or �-complex, whose k-
dimensional simplices correspond to the irreducible components of intersections
of k+1 distinct components ofD and where inclusions of faces correspond to in-
clusions of subvarieties; see Section 2 for further details. This paper studies the
geometry and topology of dual complexes for boundary divisors of suitable com-
pactifications as well as relations to Deligne’s weight filtrations.

Let X be an algebraic variety of dimension n over the complex numbers. By
theorems of Nagata [Na] and Hironaka [Hi], there is a compact variety X̄ con-
taining X as a dense open subvariety—and also a resolution

ϕ : X ′ → X̄,

which is a proper birational morphism from a smooth variety that is an isomor-
phism over the smooth locus in X—such that the boundary

∂X ′ = X ′ \ ϕ−1(X)

and the union ϕ−1(Xsing)∪ ∂X ′ are divisors with simple normal crossings. We de-
fine the boundary complex of a resolution of a compactification, as just described,
to be the dual complex �(∂X ′) of the boundary divisor.

The intersections of irreducible components of boundary and exceptional divi-
sors, along with the inclusions among them, encode a simplicial resolution of the
pair (X̄, X̄ \ X) by smooth complete varieties; these data determine the weight
filtration—and even the full mixed Hodge structure—on the cohomology of X.
The combinatorial data in the boundary complex capture one piece of the weight
filtration. Namely, there is a natural isomorphism from the reduced homology of
the boundary complex to the (2n)th graded piece of the weight filtration on the
cohomology of X:

H̃i−1(�(∂X
′); Q) ∼= GrW2n H

2n−i(X). (1)

This isomorphism is well known to experts in mixed Hodge theory, and it was
highlighted by Hacking for the case of X smooth [Hac, Thm. 3.1]. See Theo-
rem 4.4 for the general case. The existence of such an isomorphism suggests that
the topology of the boundary complex may be of particular interest.
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Any resolution of a compactification as described here may be viewed as a com-
pactification of a resolution. However, not every compactification of a resolution
occurs in this way. We consider more generally the boundary complexes for com-
pactifications of weak resolutions that may or may not be isomorphisms over the
smooth locus of X. Let

π : X̃ → X

be a proper birational morphism from a smooth variety, and let X+ be a smooth
compactification of X̃ such that the boundary

∂X+ = X+ \ X̃
is a divisor with simple normal crossings.

Theorem 1.1. The simple homotopy type of the boundary complex �(∂X+) is
independent of the choices of resolution and compactification.

In the special case where X is smooth, the invariance of the ordinary homotopy
type of�(∂X+) is due to Thuillier, who gave a proof over perfect fields (when such
compactifications exist) using non-Archimedean analytic geometry [T]. Simple
homotopy type is a finer invariant than ordinary homotopy type, in general; two
simplicial complexes have the same simple homotopy type if and only if they are
connected by a finite sequence of stellar subdivisions, elementary contractions,
and their inverses. For instance, the 3-dimensional lens spaces L7,1 and L7,2 are
homotopy equivalent but not simple homotopy equivalent [C, Chap. V]. The dis-
tinction for boundary complexes is not vacuous, because the simple homotopy
type of any regular CW complex is realized by a boundary complex. See Exam-
ple 2.6.

It follows from these homotopy invariance results that invariants of the bound-
ary complex—such as homotopy groups and generalized cohomology rings—are
also invariants of X. Some of these have been known and studied in other con-
texts. For instance, the integral homology groups of the boundary complex can
be computed from the motivic weight complexes of Gillet and Soulé [GSo] and
Guillén and Navarro Aznar [GuN]. Others, such as the fundamental group of the
boundary complex and simple homotopy type, appear to be new and interesting.

Remark1.2. As already mentioned, the reduced homology of the boundary com-
plex is identified with the (2n)th graded piece of the weight filtration on the co-
homology of X. For the other end of the weight filtration, Berkovich showed that
the rational cohomology of the non-Archimedean analytification Xan of X with
respect to the trivial valuation on the complex numbers is naturally identified with
W0H

∗(X, Q) [Be], and Hrushovski and Loeser have announced a proof that this
non-Archimedean analytification has the homotopy type of a finite simplicial com-
plex [HrL]. Hence there are canonical homotopy types of finite simplicial com-
plexes associated to the first and last graded pieces of the weight filtration.

Remark 1.3. The boundary complex can be embedded inXan or, more precisely,
in the “punctured tubular neighborhood at infinity” (written Xan \ X� in the no-
tation of [T]), by first mapping each vertex to a scalar multiple of the valuation
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on the function field C(X) given by order of vanishing along the corresponding
divisor and then mapping each k-dimensional face to the space of suitably normal-
ized monomial valuations in the k+1 local coordinates that cut out the irreducible
components of the boundary that meet along the corresponding subvariety. The
closure in Xan of the union of the images of all such embeddings over all suitable
resolutions of compactifications of X may then be seen as an intrinsic boundary
complex for X. Favre and Jonsson have studied two examples of these intrinsic
boundary complexes in detail, and their findings have important applications to
complex dynamics. For the complement of a point in the projective plane, the in-
trinsic boundary complex is their valuative tree [FJ1], and for the complement of
a line it is their tree of valuations at infinity [FJ2; FJ3]. The analogue of the valu-
ative tree in higher dimensions is studied in [BoFJ].

These boundary complexes can also be applied to study invariants of singularities
and, more generally, invariants of pairs. Suppose Y is a closed subset of X, and
consider a proper birational morphism from a smooth variety such that the pre-
image E of Y is a divisor with simple normal crossings. If X is proper, then the
resolution complex�(E) is a boundary complex forX \Y and so, by Theorem 1.1,
its simple homotopy type is independent of the choice of resolution. When one
studies such resolution complexes forX not compact, filtered complexes naturally
appear as boundary complexes of descending chains of open subsets of varieties.
For instance, one could study a boundary complex for X as a subcomplex of a
boundary complex for X \ Y. In this context, it is natural to consider chains of
closed subsets as well.

Let Y1 ⊂ · · · ⊂ Ys be a chain of closed algebraic subsets of X, and let π be
a weak log resolution of X with respect to Y1, . . . ,Ys. By this, we mean that π
is a proper birational morphism from a smooth variety X̃ to X such that the pre-
imageEi of each Yi is a divisor with simple normal crossings. LetX+ be a smooth
compactification of X̃ such that the boundary

∂X+ = X+ \ X̃
and the union ∂X+∪Es are divisors with simple normal crossings. Then ∂X+∪Ei
is a divisor with simple normal crossings for each i because it is a union of com-
ponents of ∂X+ ∪ Es.
Theorem 1.4. Fix an integer r with 0 ≤ r ≤ s. Then the simple homotopy type
of the filtered complex

�(E1) ⊂ · · · ⊂ �(Er) ⊂ �(Er+1 ∪ ∂X+) ⊂ · · · ⊂ �(Es ∪ ∂X+)

is independent of the choices of compactification and resolution.

Each of the complexes appearing in the theorem is a boundary complex. For in-
stance, �(Ei) is a boundary complex for X+ \ Ēi . The proof of the theorem uses
toroidal weak factorization of birational maps [AKMW; W] and extends argu-
ments of Stepanov [S3]. Similar methods were used earlier by Shokurov in his
study of dual complexes of log canonical centers [Sh].



296 Sam Payne

Theorem 1.1 is the special case of Theorem 1.4 in which r = 0, s = 1, and Y1

is empty. For the special case where r = s = 1, we recover the following simple
homotopy invariance result for resolution complexes.

Corollary1.5. Let π be a weak log resolution ofX with respect to a closed sub-
set Y. Then the simple homotopy type of�(π−1(Y )) is independent of all choices.

This corollary, due to Thuillier [T], applies to ordinary homotopy type under the
additional assumption that π is an isomorphism over X \ Y ; in this he general-
izes an earlier result of Stepanov for isolated singularities [S3]. Two improvements
here are thatX need not be smooth away from Y and that resolutions with arbitrary
discriminant are allowed. This additional flexibility in choosing the resolution is
helpful for examples and applications, such as computing resolution complexes for
singularities that are generic with respect to Newton polyhedra. See Theorem 8.2.

In Section 6, we study boundary complexes of affine varieties; some of the ex-
amples given there are what motivated this project through the relation between
boundary complexes and tropicalizations for subvarieties of tori [Hac; Te]. IfX is
affine then, by theorems of Andreotti and Frankel in the smooth case [AnFr] and
by Karčjauskas in general [Kar1; Kar2], X has the homotopy type of a regular
CW complex of dimension n. Since GrW2n H

k(X) vanishes for k < n, the isomor-
phism (1) implies that the boundary complex of an affine variety has the rational
homology of a wedge sum of spheres of dimension n−1. For some special classes
of affine varieties—including surfaces, complements of hyperplane arrangements,
and general complete intersections of ample hypersurfaces in the dense torus of a
projective toric variety (as well as products of these)—we show that the boundary
complex even has the homotopy type of a wedge sum of spheres; see Section 6.
However, other homotopy types are also possible. See Example 2.5 for an affine
variety whose boundary complex has the homotopy type of a real projective space.

In Section 8 we apply similar methods to study resolution complexes. Consider
now, for simplicity, the special case whereX is smooth away from an isolated sin-
gular point x. Let π : X̃ → X be a weak log resolution with respect to x, with
E = π−1(x). In Section 8 we give a natural isomorphism identifying the reduced
cohomology of the resolution complex �(E) with the weight-0 part of the coho-
mology of X,

H̃ k−1(�(E); Q) ∼= W0H̃
k(X),

for k ≥ 1. If the singularity at x is Cohen–Macaulay then each connected compo-
nent of �(E) has the rational homology of a wedge sum of spheres of dimension
n−1; if the singularity is rational then the resolution complex is connected and its
top homology also vanishes, so the resolution complex has the rational homology
of a point. These facts follow directly from well-known results related to the the-
ory of Du Bois singularities [I, Prop. 3.2; Kov, Lemma 3.3] and are highlighted
in the work of Arapura, Bakhtary, and Włodarczyk [ArBW1], who also proved a
generalization for nonisolated rational singularities.

For special classes of singularities—which include rational surface singularities,
toric singularities [S3, Thm. 2], and isolated rational hypersurface singularities of
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dimension 3 [S4, Cor. 3.3]—the resolution complex has the homotopy type of a
wedge sum of spheres. In Theorem 8.2 we show that this is also the case for normal
hypersurface singularities that are general with respect to their Newton polyhedra.
By work of Takayama on fundamental groups of exceptional divisors [Ta], reso-
lution complexes of log terminal singularities are simply connected; however, it is
not known whether they are contractible. Here we give an example of an isolated
rational singularity whose resolution complex has the homotopy type of RP2. This
singularity is obtained by partially smoothing a cone over a degenerate Enriques
surface (see Example 8.1). This gives a negative answer to Stepanov’s question
about whether resolution complexes of rational singularities are contractible.

It should be interesting to investigate further which simple homotopy types can
appear as resolution complexes of rational and isolated Cohen–Macaulay singular-
ities or as boundary complexes of affine varieties and also to establish what addi-
tional conditions are needed to guarantee that these complexes are contractible,
simply connected, or have the homotopy type of a wedge sum of spheres.

Remark 1.6. Much of this paper was inspired by developments in tropical and
non-Archimedean analytic geometry—especially the work of Hacking [Hac],
Helm and Katz [HeKa], and Thuillier [T]. The connections between tropical
geometry and Hodge theory have now been further developed by Katz and Sta-
pledon [KaSta]. The non-Archimedean methods are natural and powerful but be-
yond the scope of this paper. Our main results (and their proofs) can be presented
without any tropical or non-Archimedean analytic language, and that is the style
adopted here.

Since a preprint version of the present paper appeared, Arapura, Bakhtary, and
Włodarczyk have used Stepanov’s lemma and weak factorization to prove addi-
tional homotopy invariance results, with relations to weight filtrations and res-
olutions of singularities, in characteristic 0 [ArBW2]. We understand that these
homotopy invariance results can also be proved over arbitrary perfect fields via a
natural extension of Thuillier’s method. Kapovich and Kollár have classified the
groups that occur as fundamental groups of resolution complexes of possibly non-
isolated rational singularities [KapKo, Thm. 42], and Kerz and Saito have shown
that the integral cohomology groups of resolution complexes of finite quotient sin-
gularities vanish in positive degree [KeSa]. Because finite quotient singularities
are log terminal, their resolution complexes are also simply connected and hence
contractible.

Notation. Throughout the paper, X is an irreducible algebraic variety of di-
mension n over the complex numbers. All homology and cohomology groups of
X are taken with rational coefficients. In Sections 6 and 8 we consider singu-
lar homology and cohomology of boundary complexes and resolution complexes
with integer coefficients; this is clearly indicated when it occurs.

Acknowledgments. This project has its origins in discussions following a No-
vember 2005 talk by P. Hacking on the homology of tropical varieties at the Univer-
sity of Michigan’s tropical geometry seminar organized by S. Fomin and D. Speyer.
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It came to fruition during the special Spring 2009 semester on algebraic geome-
try at MSRI, where most of this paper was written and its main results presented
[P1]. This work has benefited, in the intervening years, from many conversations
with friends and colleagues regarding the topology of algebraic varieties and their
tropicalizations. I thank, in particular, D. Abramovich, V. Alexeev, A. Björner,
T. de Fernex, W. Fulton, S. Galatius, P. Griffiths, C. Haase, P. Hacking, R. Hain,
D. Helm, P. Hersh, M. Kahle, M. Kapranov, E. Katz, J. Kollár, J. Lewis, C. Mc-
Crory, M. Mustaţǎ, B. Nill, D. Speyer, A. Stapledon, B. Sturmfels, B. Totaro,
Z. Treisman, K. Tucker, R. Vakil, and J.Yu. I am also grateful to the referees for
helpful comments and corrections.

2. Dual Complexes of Divisors with
Simple Normal Crossings

Let X be an algebraic variety, and let D be a divisor in X with simple normal
crossings. The dual complex �(D) is a topological space constructed by gluing
simplices along faces, and it is a �-complex in the sense of [Hat, Sec. 2.1]. This
complex has r distinct vertices v1, . . . , vr corresponding to the irreducible compo-
nents of D. For each nonempty subset I ⊂ {1, . . . , r}, we write DI for the inter-
section of the corresponding collection of components

DI =
⋂
i∈I
Di,

which is a smooth closed algebraic subset of pure codimension #I in X. For each
irreducible component Y of DI , the dual complex �(D) contains an embedded
simplex σY whose vertices are exactly the vi for i ∈ I. So �(D) has one vertex
vi corresponding to each irreducible boundary divisor Di; an edge joining vi and
vj for each irreducible component ofDi ∩Dj ; a 2-dimensional face with vertices
vi, vj , and vk for each irreducible component of Di ∩ Dj ∩ Dk; and so on. The
relative interiors of these simplices are disjoint, and �(D) is the quotient space

�(D) =
∐

σV/∼
obtained by identifying σY with the face of σZ spanned by its vertices whenever
Y is contained in Z. Since the vertices of each simplex are distinct, it follows
that �(D) is a simplicial complex if and only if every collection of vertices spans
at most one face—which is the case iff each intersection DI is either empty or
irreducible.

Remark 2.1. We can sequentially blow up the irreducible components of all of
the DI , from smallest to largest, and so obtain a projective birational morphism
π : X ′ → X that is an isomorphism over X \ D such that (a) D ′ = π−1(D) is
a divisor with simple normal crossings, (b) the intersection of any collection of
components of D ′ is either empty or irreducible, and (c) the dual complex �(D ′)
is the barycentric subdivision of �(D). Using this construction, we could choose
resolutions such that all of the dual complexes we consider are simplicial, but the
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resulting complexes would have many more faces. For computing examples, the
option of working with �-complexes with fewer faces is often preferred.

Remark 2.2. The dual complexes of divisors with simple normal crossings, al-
though not simplicial complexes, are regular CW complexes; this means that the
attaching maps are homeomorphisms. It follows that these complexes are homeo-
morphic to the geometric realizations of their face posets [Koz, Sec. 10.3.5]. It is
sometimes convenient to work directly with these face posets; for instance, one
can then apply the techniques of discrete Morse theory.

Example 2.3. Suppose T is the complement of the three coordinate lines in the
projective plane P2, which is a 2-dimensional algebraic torus. The boundary di-
visor P2 \ T is the union of the three coordinate lines, and it has simple normal
crossings. The boundary complex�(P2 \T ) has three vertices, one for each coor-
dinate line; because each pair of coordinate lines intersects in a single point, each
pair of vertices is joined by a single edge to form the boundary of a triangle.

Of course, there are many other compactifications of T with simple normal
crossing boundaries. One way to construct other compactifications is by blowing
up points in P2 \ T. For instance, if we blow up the point [0 : 0 : 1], which is
the intersection of the first two coordinate lines, then the strict transforms of those
lines no longer meet yet both meet the exceptional divisor E. On the other hand,
if we blow up the point [1 : 1 : 0], which is contained in only one of the coordi-
nate lines, then the strict transforms of the coordinate lines still meet pairwise and
the new exceptional divisor F meets only the third coordinate line. These three
different boundary complexes for T are shown in the following diagram.

�(P2 \ T ) �(Bl[0:0:1] P2 \ T ) �(Bl[1:1:0] P2 \ T )
•

••

✔
✔
✔✔

❚
❚

❚❚

•

••

•vE

✔
✔
✔✔

❚
❚

❚❚

•

••

•
vF

✔
✔
✔✔

❚
❚

❚❚
✧

✧✧

Now, let t be a point inside the torus T and let U be the quasi-affine variety
T \ t. Then Blt P2 is a smooth compactification of U whose boundary is a divisor
with simple normal crossings. In this case, the boundary complex�((Blt P2)\U)
consists of a copy of �(P2 \ T ), which corresponds to the three coordinate lines
and their intersections, plus a single disjoint vertex corresponding to the excep-
tional fiber of the blowup. This shows that boundary complexes are in general
neither connected nor pure dimensional.

Example 2.4. Suppose X is the complement of two conics C1 and C2 in P2 that
meet transversely. Then P2 is a smooth compactification with boundary divisor
C1 ∪ C2, and the boundary complex has two vertices corresponding to the two
conics as well as four edges joining them and corresponding to the four points of
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intersection. In this case, the boundary complex �(C1 ∪ C2) is not a simplicial
complex because two vertices are joined by multiple edges.

However, we could take instead the blowup BlC1∩C2 P2 of P2 at the four
points of intersection, which is another smooth compactification whose bound-
ary is a divisor with simple normal crossings. In this case, the boundary complex
�(BlC1∩C2 P2 \X) is simplicial.

�(C1 ∪ C2) �(BlC1∩C2 P2 \X)

• • • •
•
•

•
•

Example 2.5. Let T ∼= (C∗)n be an algebraic torus. Then the boundary divisor
of any smooth toric compactification has simple normal crossings and the bound-
ary complex is naturally identified with the link of the vertex in the corresponding
fan, which is a triangulation of a sphere of dimension n− 1.

One smooth toric compactification of T is the product of n projective lines
(P1)n. The involution t �→ t−1 on T extends to an involution on (P1)n and in-
duces the antipodal map on the sphere �((P1)n \ T ). Then the quotient X of T
by this involution is affine, and the quotient of (P1)n by the extended involution
is a compactification of X whose boundary is a divisor with simple normal cross-
ings. It follows that the boundary complex of X has the homotopy type of the
real projective space RP n−1. This example, suggested by J. Kollár, shows that the
boundary complex of an affine variety does not in general have the homotopy type
of a wedge sum of spheres.

The following example shows that the simple homotopy type of every finite sim-
plicial complex is realized by a boundary complex.

Example 2.6. Let� be a subcomplex of the boundary complex of the n-simplex,
which we may view as a set of proper subsets of {0, . . . , n}. Fix homogeneous co-
ordinates [x0 : · · · : xn] on P n and, for each proper subset I ⊂ {0, . . . , n}, letLI be
the linear subspace where xi is nonzero iff i is in I. So LI has dimension #I − 1.
Let

X = P n
∖(⋃

I∈�
LI

)
.

We claim that the barycentric subdivison of� is a boundary complex forX. To see
this, note that P n is a smooth compactification of X. Hence the space X ′ obtained
by blowing up first the 0-dimensional spaces LI for I ∈ �, then the strict trans-
forms of the lines, and so on is a smooth compactification of X whose boundary
∂X ′ is a divisor with simple normal crossings. The components of ∂X ′ correspond
to the sets I ∈�, any nonempty intersection of components is irreducible, and an
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intersection is nonempty iff the corresponding subsets of {0, . . . , n} form a totally
ordered chain. Therefore, �(∂X ′) is the barycentric subdivision of �.

Similarly, the simple homotopy type of any finite filtered simplicial complex can
be realized as one of the filtered complexes �(E1) ⊂ · · · ⊂ �(Es) or �(∂X+) ⊂
�(Y2 ∪ ∂X+) ⊂ · · · ⊂ �(Yr ∪ ∂X+) appearing in Theorem 1.4. In particular, for
pairs (�(E ∪ ∂X+),�(∂X+)) such that the inclusion of the boundary complex is
a homotopy equivalence, arbitrary Whitehead torsion is possible.

3. Basics of Weight Filtrations

Let X be an algebraic variety of dimension n over the complex numbers. All
homology and cohomology groups that we consider in this section have rational
coefficients.

By work of Deligne [De], the rational cohomology groups of X carry a canon-
ical filtration

W0H
k(X) ⊂ · · · ⊂ W2kH

k(X) = H k(X; Q)

that is strictly compatible with cup products, pullbacks under arbitrary morphisms,
and long exact sequences of pairs. This filtration is part of a mixed Hodge struc-
ture, and the j th graded piece

GrWj H
k(X) = WjH

k(X)/Wj−1H
k(X)

carries a natural pure Hodge structure of weight j. See [D] for a gentle and illumi-
nating introduction to mixed Hodge theory, [KulKu] for a survey of basic results,
and [PeSt] for a more comprehensive treatment with complete proofs and further
references. The proofs of many of the following basic properties of weight filtra-
tions use Hodge-theoretic arguments. However, we will accept these properties as
given and make no further reference to Hodge theory.

Combinatorial Restrictions on Weights. We say that H k(X) has weights
in a subset I ⊂ {0, . . . , 2k} if the j th graded piece GrWj H

k(X) vanishes for j /∈ I.
The weights that can appear in H k(X) depend on the compactness, smoothness,
and dimension of X. More precisely:

(i) if X is compact, then H k(X) has weights in {0, . . . , k};
(ii) if X is smooth, then H k(X) has weights in {k, . . . , 2k};

(iii) if k is greater than n, then H k(X) has weights in {0, . . . , 2n}.
In other words, if X is compact then WkH

k(X) is H k(X), if X is smooth then
Wk−1H

k(X) is zero, and if n < k then W2nH
k(X) is H k(X). If X is smooth

and compact then (i) and (ii) together imply that k is the only weight appearing
in H k(X).

Remark 3.1. Although topological properties of X (e.g., compactness and di-
mension) place combinatorial restrictions on the weights appearing inH k(X), the
weight filtration is not a topological invariant ofX; see [StSte]. Nevertheless, some
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pieces of the weight filtration are topological invariants, and pieces near the ex-
treme ends of the weights allowed by these combinatorial restrictions tend to have
especially nice interpretations. For instance, if X is compact thenWk−1H

k(X) is
the kernel of the natural map from H k(X) to the intersection cohomology group
IH k(X; Q) [HaSa, We].

The singular homology, Borel–Moore homology, and compactly supported coho-
mology groups of X carry weight filtrations with similar restrictions. For sim-
plicity, we consider only cohomology and compactly supported cohomology. The
weight filtration on compactly supported cohomology,

W0H
k
c (X) ⊂ · · · ⊂ W2kH

k
c (X) = H k

c (X; Q),

agrees with the weight filtration on H k(X) when X is compact.

Duality and Exact Sequences. When X is smooth, the weight filtration on
compactly supported cohomology satisfies the following duality with the weight
filtration on cohomology.

Poincaré Duality [PeSt, Thm. 6.23]. If X is smooth, then the natural perfect
pairing

H k
c (X)×H 2n−k(X) → Q

induces perfect pairings on graded pieces

GrWj H
k
c (X)× GrW2n−j H

2n−k(X) → Q

for 0 ≤ j ≤ 2k.

Similarly, long exact sequences of cohomology that arise naturally in geometry
often descend to long exact sequences on graded pieces of the weight filtration.
The two sequences that we will use are the long exact sequence of a simple normal
crossing pair and the Mayer–Vietoris sequence of the mapping cylinder for a reso-
lution of singularities. We follow the usual convention thatWjH k(X) isH k(X; Q)

for j > 2k.

Exact Sequence of a Pair [PeSt, Prop. 5.54]. If X is compact and D is a
divisor with simple normal crossings, then the long exact sequence of the pair
(X,D),

· · · → H k(X) → H k(D) → H k+1
c (X \D) → H k+1(X) → · · · ,

induces long exact sequences of graded pieces

· · · → GrWj H
k(X) → GrWj H

k(D)

→ GrWj H
k+1
c (X \D) → GrWj H

k+1(X) → · · ·
for 0 ≤ j ≤ 2n.

Mayer–Vietoris Sequence [PeSt, Cor. 5.37]. Let π : X ′ → X be a proper
birational morphism with discriminant V and exceptional locus E. Then the long
exact sequence of the mapping cylinder,
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· · · → H k(X) → H k(X ′)⊕H k(V ) → H k(E) → H k+1(X) → · · · .
induces long exact sequences of graded pieces

· · · → GrWj H
k(X) → GrWj H

k(X ′)⊕ GrWj H
k(V )

→ GrWj H
k(E) → GrWj H

k+1(X) → · · ·
for 0 ≤ j ≤ 2n.

Using the basic tools just described, we can express the cohomology ofX in terms
of the cohomology groups of a compactification of a resolution, the boundary and
exceptional divisors, and the discriminant. When the discriminant is reasonably
well understood, this procedure reduces many questions about the weight filtration
on the cohomology ofX to questions about the weight filtrations on the cohomol-
ogy of the boundary and exceptional divisors, which can be understood combina-
torially as follows.

Divisors with Simple Normal Crossings. Let D be a divisor with simple
normal crossings in X, and assume that D is complete. Let D1, . . . ,Dr be the
irreducible components of D. Then there is a combinatorial complex of Q-vector
spaces,

0 →
r⊕
i=1

Hj(Di)
d0−→

⊕
i0<i1

Hj(Di0 ∩Di1)
d1−→

⊕
i0<i1<i2

Hj(Di0 ∩Di1∩Di2 )
d2−→ · · · ,

with differentials given by signed sums of restriction maps. The cohomology of
this complex gives the j th graded pieces of the weight filtrations on the coho-
mology groups of D [KulKu, Chap. 4, Sec. 2]. More precisely, there are natural
isomorphisms

GrWj H
i+j(D) ∼= ker di

im di−1

for all i. In the special case of j = 0, the preceding complex computes the cellular
cohomology of the dual complex �(D); thus we obtain natural isomorphisms

W0H
j(D) ∼= Hj(�(D))

for all j.
In many cases, these tools allow one to express the graded pieces of the weight fil-

tration on the cohomology ofX combinatorially in terms of natural maps between
cohomology groups of smooth strata in a suitable resolution of a compactification
together with the cohomology groups of the discriminant. See Sections 4 and 7
for details. If the weight filtration on the cohomology groups of the discriminant
is particularly simple—as when X has isolated singularities or, more generally,
when the discriminant locus of some resolution is smooth and compact—then the
resulting expressions are especially satisfying. See Theorem 7.2 and Remark 7.3.

Example 3.2. We illustrate these basic results by describing the weight filtration
on the first cohomology group of a singular punctured curve. Let X be a curve
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of geometric genus 1 with one node and three punctures. We begin by describing
the first homology group. Consider a loop passing through the node, two standard
loops around the genus, and loops around two of the three punctures (as shown in
the figure).

These loops form a basis forH1(X). In the dual basis for cohomology, the loop
through the node corresponds to a generator for W0H

1(X), the loops around the
genus correspond to generators for GrW1 H

1(X), and the loops around the punctures
correspond to generators for GrW2 H

1(X). These correspondences can be deduced
from the exact sequences discussed previously. For instance, the Mayer–Vietoris
sequence for the normalization map X̃ → X, whose exceptional divisor E con-
sists of two points in the preimage of the node, gives an exact sequence

0 → H̃ 0(E) → H1(X) → H1(X̃) → 0.

Since H̃ 0(E) and H1(X̃) have pure weights 0 and 1, respectively, it follows that
W0H

1(X) is the kernel of the pullback map to H1(X̃). In particular, W0H
1(X)

is the subspace orthogonal to the image of H1(X̃), which is spanned by the loops
around the genus and the loops around the punctures. This shows that W0H

1(X)

has rank 1 and is spanned by the dual basis vector corresponding to the loop
through the node. That the basis vectors dual to the loops around the genus span
GrW1 H

1(X) can be seen similarly by using Poincaré duality and the exact sequence
for the pair (X+,D), whereX+ is the smooth compactification of X̃ and whereD
is the boundary divisor consisting of three points filling the punctures (see figure).

Altogether, these elementary arguments yield the natural isomorphisms

GrWj H
1(X) ∼=



H̃ 0(E) for j = 0,

H1(X+) for j = 1,

H̃0(D) for j = 2,
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which are special cases of the complete characterization (given in Theorem 7.2)
of the graded pieces of the weight filtration for varieties whose singular locus
is smooth and proper. (For weight 1, Theorem 7.2 identifies GrW1 H

1(X) with
W1H

1(X̃); since X is a curve, the additional isomorphism W1H
1(X̃) ∼= H1(X+)

follows from Poincaré duality and the pair sequence for (X+,D).)

4. Weights from the Boundary

In this section we continue to assume that X is a variety of dimension n over the
complex numbers and that all cohomology groups have rational coefficients.

Here we use the basic tools from Section 3 to express the j th graded piece of
the weight filtration for large j combinatorially in terms of cohomology groups of
smooth complete boundary strata on a suitable compactification of a resolution.
Our approach, which uses standard exact sequences from topology combined with
knowledge of the cohomology of complete divisors with simple normal crossings,
is similar in spirit to that followed by El Zein [E]; however, it is substantially less
technical because we are concerned only with the weight filtration and not the full
mixed Hodge structure.

Remark 4.1. The observation that the weight filtration can be understood sepa-
rately from the mixed Hodge structure is not new. For instance, Totaro has used
the work of Guillén and Navarro Aznar [GuN] to introduce a weight filtration on
the cohomology of real algebraic varieties [To], which is also the subject of work
by McCrory and Parusiński [McPa].

We begin by considering the case where X is smooth, expressing pieces of the
weight filtration onH ∗

c (X) in terms of the cohomology groups of a suitable smooth
compactification and its boundary divisor. The following result is known to ex-
perts but, lacking a suitable reference, we include a proof.

Proposition 4.2. Let X be a smooth variety, with X+ a smooth compactifica-
tion such that the boundary ∂X+ is a divisor with simple normal crossings. Then
the associated graded pieces of the weight filtration GrWj H

k
c (X) vanish for nega-

tive j and for j > k, and there are natural isomorphisms

WjH
k
c (X)

∼= WjH
k−1(∂X+) for 0 ≤ j ≤ k − 2.

The remaining two pieces of the weight filtration on H k
c (X) are given by

Wk−1H
k
c (X)

∼= coker[H k−1(X+) → H k−1(∂X+)]
and

GrWk H
k
c (X)

∼= ker[H k(X+) → H k(∂X+)].

Proof. The proposition follows directly from the long exact pair sequence

· · · → H k−1(X+) → H k−1(∂X+)

→ H k
c (X) → H k(X+) → H k(∂X+) → · · · ,

since H k(X+) has weight k and H k(∂X+) has weights between 0 and k.
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Next, we consider how the weight filtration on the ordinary cohomology of a sin-
gular variety relates to that of a resolution.

Proposition 4.3. Let X be a variety of dimension n over the complex numbers,
and let π : X̃ → X be a proper birational morphism from a smooth variety. Sup-
pose that either

• the weight j is greater than 2n− 2 or
• the discriminant of π is proper and the weight j is greater than k.

Then there is a natural isomorphism GrWj H
k(X) ∼= GrWj H

k(X̃).

Proof. LetV be the discriminant of π, and let E = π−1(V ) be the exceptional di-
visor. The Mayer–Vietoris sequence of mixed Hodge structures associated to π
has the form

· · · → H k−1(E) → H k(X) → H k(X̃)⊕H k(V ) → H k(E) → · · · .
The proposition follows, since GrWj H

k(V ) and GrWj H
k(E) vanish for j greater

than 2n− 2 and for j > k if V is proper.

We can now use the foregoing propositions and Poincaré duality to show that the
homology of the boundary complex gives the (2n)th graded piece of the weight
filtration.

Theorem 4.4. Let π : X̃ → X be a proper birational morphism from a smooth
variety, and let X+ be a compactification of X̃ whose boundary ∂X+ is a divi-
sor with simple normal crossings. Then, for all nonnegative integers k, there is a
natural isomorphism

H̃k−1(�(∂X
+)) ∼= GrW2n H

2n−k(X).

Proof. We know that GrW2n H
2n−k(X) is naturally isomorphic to GrW2n H

2n−k(X̃)
by Proposition 4.3. Since X̃ is smooth, the latter is Poincaré dual to W0H

k
c (X̃).

Now, by Proposition 4.2, there is a natural isomorphism

W0H
k
c (X)

∼= W0H̃
k−1(∂X+; Q);

since ∂X+ is a divisor with simple normal crossings, the weight-0 cohomology
group W0H̃

k−1(∂X+) is isomorphic to the cohomology group of the dual com-
plex H̃ k−1(�(∂X+); Q). The theorem follows because the cohomology group
H̃ k−1(�(∂X+); Q) is dual to the homology group H̃k−1(�(∂X

+); Q).

5. Simple Homotopy Equivalences
from Weak Factorizations

Having proved that the reduced homology of the boundary complex of X is natu-
rally isomorphic to the (2n)th graded piece of the weight filtration on the singular
cohomology of X, we now show—using toroidal weak factorization of birational
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maps and a lemma of Stepanov—that the homotopy type of the boundary complex
is independent of all choices.

Roughly speaking, the toroidal weak factorization theorem of Abramovich,
Karu, Matsuki, and Włodarczyk states that any birational map that is an isomor-
phism away from divisors with simple normal crossings can be factored as a series
of blowups and blowdowns along admissible centers, which are smooth subvari-
eties that have simple normal crossings with the given divisors (for details, see
[AKMW; M, Thm. 5-4-1; W]). The preimage of the given divisor under such
a blowup again has simple normal crossings, and by Stepanov’s lemma the dual
complex of the new divisor is either unchanged or is obtained from the old dual
complex by a combinatorial operation that preserves homotopy type—for instance,
stellar subdivision or gluing on a cone over a contractible subcomplex (as in Ex-
amples 2.3 and 2.4)..

Let X be an algebraic variety and let D be a divisor on X with simple normal
crossings. Recall that a subvariety Z ⊂ X has simple normal crossings with D if
every point z in Z has a neighborhood with local coordinates in which each com-
ponent of D that contains z is the vanishing locus of a single coordinate and Z is
the vanishing locus of some subset of the coordinates [Ko, p. 137].

Stepanov’s Lemma [S3]. Let Z ⊂ X be a closed subvariety that has simple
normal crossings withD, and let π be the blowup along Z. ThenD ′ = π−1(D) is
a divisor with simple normal crossings, and�(D ′) is simple homotopy equivalent
to �(D). More precisely, the following statements hold.

(i) If Z is not contained in D, then �(D ′) and �(D) are naturally isomorphic.
(ii) If Z is an irreducible component of DI , then �(D ′) is naturally isomorphic

to the barycentric subdivision of �(D) along the face corresponding to Z.
(iii) If Z is properly contained in a component V of the intersection DI of all

components ofD that contain Z, then�(D ′) is obtained from�(D) by glu-
ing on the cone over σV and then attaching copies of cones over faces that
contain σV .

Remark 5.1. In part (iii), a strong deformation retraction from �(D ′) to �(D)
can be given by flowing the cone point to a vertex of σV and extending linearly.
Such discrete Morse flows preserve simple homotopy type [Fo]. For details on
the theory of simple homotopy types and related invariants, such as Whitehead
torsion, see [C].

Using Stepanov’s lemma, we can give simple homotopy equivalences between
dual complexes of divisors with simple normal crossings whenever the complexes
can be obtained by blowups and blowdowns along smooth admissible centers.
Furthermore, we can often choose these homotopy equivalences to be compatible
with suitable subcomplexes. Here a subcomplex of a �-complex is a closed sub-
set that is a union of simplices, and a filtered �-complex is a complex � with a
chain of subcomplexes

�1 ⊂ · · · ⊂ �t = �.
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Simple homotopy equivalence is an equivalence relation on regular CW com-
plexes that is generated by stellar subdivisions, elementary collapses, and their in-
verses. A simple homotopy equivalence between filtered �-complexes (�, {�i})
and (�′, {�′

j}) is a simple homotopy equivalence � � �′ that respects the filtra-
tions and induces simultaneous simple homotopy equivalences �i � �′

i for all i,
and two filtered complexes have the same simple homotopy type if there exists a
simple homotopy equivalence between them.

The complexes that we consider are dual complexes of simple normal cross-
ings divisors in compactifications of weak log resolutions whose boundaries are
divisors with simple normal crossings.

Definition 5.2. LetX be an algebraic variety and let Y1, . . . ,Ys be a collection of
its closed algebraic subsets. A weak log resolution of X with respect to Y1, . . . ,Ys
is a proper birational morphism from a smooth variety toX such that the preimage
of each Yi is a divisor with simple normal crossings.

We do not require a log resolution to be an isomorphism over every smooth point
in the complement of Y. In particular, even when Y is contained in the singular
locus, we allow weak resolutions of X that are not necessarily isomorphisms over
the smooth locus.

The main tools in the proof are Stepanov’s lemma and toroidal weak factoriza-
tion of birational maps. In order to apply toroidal weak factorization, we reduce
to the case of comparing two log resolutions with the same discriminants in X.
The key step in this reduction is the following lemma, whereby we can increase
the discriminant without changing the homotopy types of the filtered complexes.
Recall that the discriminant discr(π) of a projective birational morphism π to X
is the smallest closed subset V in X such that π is an isomorphism over X \V.
Lemma 5.3. LetX be an algebraic variety, let Y1 ⊂ · · · ⊂ Ys be a chain of closed
algebraic subsets, and let π1: X1 → X be a weak log resolution with respect to
Y1, . . . ,Ys. Then, for any closed subset V of X that contains discr(π1), there is a
log resolution π2 : X2 → X with respect to Y1, . . . ,Ys such that:

(a) the log resolution π2 is an isomorphism over X \V ;
(b) the preimage of V in X2 is a divisor with simple normal crossings; and
(c) the filtered complex

�(π−1
2 (Y1)) ⊂ · · · ⊂ �(π−1

2 (Ys))

is simple homotopy equivalent to �(π−1
1 (Y1)) ⊂ · · · ⊂ �(π−1

2 (Ys)).

Proof. By Hironaka’s strong principalization theorem [Ko, Thm. 3.26], there is a
proper birational morphism π2 constructed as the composition of π1 with a series
of blowups along smooth centers in the preimage of V that have simple normal
crossings with the preimage of Ys such that π2 satisfies (a) and (b). We now use
Stepanov’s lemma to prove that (c) is satisfied. It will suffice to consider how the
filtered complex changes under the blowup ofX1 along a smooth subvarietyZ that
has normal crossings with the preimage of Ys.
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Let D(i) = π−1
1 (Yi), and let D ′(i) be the preimage of D(i) under the blowup

along Z. We must show that the filtered complex

�(D ′(1)) ⊂ · · · ⊂ �(D ′(s)) = �′

is homotopy equivalent to �(D(1)) ⊂ · · · ⊂ �(D(s)) = �. If D(s) does not
contain Z then, by part (i) of Stepanov’s lemma, the two filtered complexes are
naturally isomorphic. Otherwise, we consider two cases according to how Z sits
inside D(s).

First, supposeZ is a component of some intersectionDI of components ofD(s).
By Stepanov’s lemma, �′ is the barycentric subdivision of � along the face σZ.
However, the induced homeomorphism�′ � � does not necessarily map�′

i into
�i for all i; if D(i) contains some but not all of the components of D(s) that
contain Z, then �′

i is obtained from �i by gluing on the cone over the face σV
corresponding to the smallest stratum of D(i) that contains Z and then attaching
cones over faces that contain σV . In particular, �′

i may not be homeomorphic to
�i. Nevertheless, we give a compatible homotopy equivalences�′

i � �i for all i,
as follows.

Choose i as small as possible so thatD(i) containsZ, and letDj be a component
of D(i) that contains Z. Then there is a piecewise linear homotopy equivalence
from �′ to � that takes the vertex vE corresponding to the exceptional divisor to
the vertex vj corresponding to Dj and preserves the vertices corresponding to all
other Dk. The homotopy equivalence corresponds to the following map p from
the face poset of �′ to the face poset of �. For any face σ in �′ that contains E,
p(σ) is the unique face of � spanned by the vertices of σ other than vE together
with vj ; if σ does not contain vE , then p(σ) = σ. This homotopy equivalence is
induced by the discrete Morse flow, in the sense of [Fo], that pairs each face σ con-
taining vE but not vj into the unique face spanned by σ and vj (see figure). This
discrete Morse flow gives compatible homotopy equivalences between�′

i and�i

for all i.

� �′

Otherwise, Z is properly contained in a component V of the intersection of all
components of D that contain it. By part (iii) of Stepanov’s lemma, �′ is con-
structed from� by gluing on the cone over σV and then attaching copies of cones
over faces that contain σV . Again we choose i as small as possible so that D(i)
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contains Z, withDj a component ofD(i) that contains Z, and there are compati-
ble homotopy equivalences from �′

i to �i taking vE to vj as required.

Proof of Theorem1.4. SupposeX+
1 andX+

2 are two such compactifications of weak
log resolutions. By Lemma 5.3, we may assume there is a closed algebraic sub-
setV ⊂ X such that π1 : X̃ → X and π2 : X̃2 → X are isomorphisms over X \V ;
we may also assume that π−1

1 (V ), π
−1
2 (V ), π

−1
1 (V )∪ ∂X+

1 , and π−1
2 (V )∪ ∂X+

2 are
divisors with simple normal crossings. We now use weak factorization to compare
the filtered complexes corresponding to these compactifications of resolutions.

By toroidal weak factorization of birational maps, there exist smooth compact-
ifications Z0, . . . ,Zt of X \V in which the complement of X \V is a divisor with
simple normal crossings as well as a sequence of birational maps

X+
1 = Z0

φ1��� Z1
φ2��� · · · φt��� Zt = X+

2

such that:

• each φj is the identity on X \V ;
• either φj or φ−1

j is the blowup along a smooth variety that has simple normal
crossings with the complement of X \V ; and

• there is an index j0 such that the birational map Zj ��� X+
1 is a projective mor-

phism for j ≤ j0 and Zj ��� X+
2 is a projective morphism for j ≥ j0.

In particular, each Zj contains an open subset Uj that maps properly onto X; it is
the maximal open set on which the birational map Zj ��� X is regular. By con-
struction, the projective morphisms from Uj0 to X factor through both X̃1 and X̃2.

Hence Uj0 is equal to both p−1
1 (X̃1) and p−1

2 (X̃2).

Now letEi(j) be the preimage of Yi inUj and let Fi(j) beEi(j)∪(Zj \Uj). For
each j we apply Stepanov’s lemma to either φj or φ−1

j , whichever is a blowup. As
in the proof of Lemma 5.3, there is a discrete Morse flow connecting�(Fs(j−1))
to �(Fs(j)) that takes the vertex corresponding to the exceptional divisor to a
carefully chosen vertex corresponding to an irreducible divisor that contains the
center of the blowup; this flow induces a simple homotopy equivalence of filtered
complexes between

�(E1(j − 1)) ⊂ · · · ⊂ �(Er(j − 1)) ⊂ �(Fr+1(j − 1)) ⊂ · · · ⊂ �(Fs(j − 1))

and

�(E1(j)) ⊂ · · · ⊂ �(Er(j)) ⊂ �(Fr+1(j)) ⊂ · · · ⊂ �(Fs(j)).

The theorem follows from composing these simple homotopy equivalences.

6. Boundary Complexes of Affine Varieties

Suppose X is affine, π : X̃ → X is a log resolution, and X+ is a log compacti-
fication of X̃ with respect to the exceptional divisor E of π. As noted in the In-
troduction, it follows from Theorem 4.4 together with theorems of Andreotti and
Frankel and of Karčjauskas that the boundary complex �(∂X+) has the rational
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homology of a wedge sum of spheres of dimension n−1. If n = 1 then the bound-
ary complex is just a finite set of points, but if n = 2 then the boundary complex
is a connected graph and so has the homotopy type of a wedge sum of circles. In
this section, we consider the homotopy types of boundary complexes of affine va-
rieties of dimension ≥ 3.

Remark 6.1. Suppose n ≥ 3. By theorems of Whitehead and Hurewicz, a regu-
lar CW complex has the homotopy type of a wedge sum of spheres of dimension
n−1 if and only if it is simply connected and has the integral homology of a wedge
sum of spheres of dimension n−1. Therefore,�(∂X+) has the homotopy type of
a wedge sum of (n− 1)-dimensional spheres if and only if it is simply connected
and its homology is torsion free.

The following lemma is helpful for studying the boundary complexes of products.
For topological spaces �1 and �2, we write �1 ∗�2 for the join

�1 ∗�2 = (�1 ×�2 × [0,1])/∼,

where ∼ is the equivalence relation generated by (x, y, 0) ∼ (x, y ′, 0) and
(x, y, 1) ∼ (x ′, y, 1). See [Hat, p. 18] for further details on joins.

Lemma 6.2. Let X1 and X2 be smooth varieties with log compactifications X+
1

and X+
2 , respectively. Then the product X+

1 × X+
2 is a log compactification of

X1 ×X2, and there is a natural homeomorphism

�(∂(X+
1 ×X+

2 ))
∼= �(∂X+

1 ) ∗�(∂X+
2 ).

Proof. The product X+
1 ×X+

2 is smooth, and its boundary is the divisor

∂(X+
1 ×X+

2 ) = (∂X+
1 ×X+

2 ) ∪ (X+
1 × ∂X+

2 );
by a suitable choice of coordinates on each factor, this divisor has simple normal
crossings. Suppose D11, . . . ,Dr1 and D12, . . . ,Ds2 are the irreducible components
of ∂X+

1 and ∂X+
2 , respectively. For any subsets of indices I ⊂ {1, . . . , r} and J ⊂

{1, . . . , s}, let DIJ be the corresponding intersection

DIJ =
(⋂
i∈I
Di1

)
∩

(⋂
j∈J

Dj2

)
.

The irreducible components of DIJ are exactly the subvarieties Y × Z, where Y
and Z are the respective irreducible components of DI ×X+

2 and X+
1 ×DJ . The

corresponding simplex σY×Z is naturally identified with the join

σY×Z ∼= σY ∗ σZ.
Since the join of two�-complexes is the union of the joins of their respective sim-
plices with the natural identifications, the lemma follows.

Proposition 6.3. If �(∂X+
1 ) and �(∂X+

2 ) are homotopy equivalent to wedge
sums ofm1 spheres of dimension n1 andm2 spheres of dimension n2, respectively,
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then the boundary complex of the product�(∂X+
1 ×X+

2 )) is homotopy equivalent
to a wedge sum of m1 ·m2 spheres of dimension n1 + n2 + 1.

Proof. By Lemma 6.2, �(∂(X+
1 × X+

2 )) is naturally homeomorphic to the join
�(∂X+

1 ) ∗ �(∂X+
2 ). Since joins commute with homotopy equivalences, it will

suffice to give a homotopy equivalence

∨m1S n1 ∗ ∨m2S n2 � ∨(m1·m2 )S n1+n2+1,

where S n denotes the sphere of dimension n.Wedge sums commute with pushouts
and so, for any topological spaces�1,�2, and�3, the join (�1 ∨�2) ∗�3 is nat-
urally homeomorphic to the union of �1 ∗ �3 and �2 ∗ �3 glued along the join
of a point with �3. Since the join of a point with a complex is a cone over that
complex and hence contractible, it follows that there is a homotopy equivalence

(�1 ∨�2) ∗�3 � (�1 ∗�3) ∨ (�2 ∗�3).

The result then follows by induction on m1 and m2, since the join of spheres
S n1 ∗ S n2 is homeomorphic to the sphere S n1+n2+1.

We have seen that boundary complexes of products of curves and surfaces are
homotopy equivalent to wedge sums of spheres. Now we prove the same for com-
plements of hyperplane arrangements and general complete intersections in the
dense torus of a projective toric variety. We begin with two combinatorial lemmas
that are helpful for identifying CW complexes homotopy equivalent to a wedge
sum of spheres.

Lemma 6.4. Let � be the n-skeleton of a contractible CW complex. Then � is
homotopy equivalent to a wedge sum of spheres of dimension n.

Proof. If n = 0 or 1 then the lemma is clear. So assume n ≥ 2 and suppose �′
is a contractible CW complex with n-skeleton �. Then, since � and �′ have the
same 2-skeleta, they must have isomorphic fundamental groups and so � is sim-
ply connected. Similarly, the integral homology Hk(�, Z) vanishes for k < n,
and Hn(�, Z) is free because � is n-dimensional. Therefore, � is simply con-
nected and has the integral homology of a wedge sum of spheres of dimension n.
The lemma is now a consequence of the Whitehead and Hurewicz theorems.

If � is a CW complex and σ is a maximal cell in �, then we say that the d-fold
puckering of � along σ is the CW complex obtained from � by attaching d − 1
new cells of dimension dim σ along the attaching map for σ. In other words, if �
is a simplicial complex then we glue on d − 1 new copies of σ by identifying all
of their boundaries with the boundary of σ. See [P2, Sec. 2] for further details on
puckering operations and their significance in toric geometry.

Lemma 6.5. Let � be a regular CW complex that is homotopy equivalent to a
wedge sum of spheres of dimension n, and let P be the d-fold puckering of a max-
imal n-dimensional cell in �. Then P is homotopy equivalent to a wedge sum of
spheres of dimension n.
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Proof. If n = 0 then the lemma is trivial. Otherwise, the attaching map for each
of the new n-cells is null homotopic because it can be contracted to a point in σ.
Hence P is homotopy equivalent to the wedge sum of � with d − 1 copies of the
n-sphere.

Let Y be a projective toric variety and let V1, . . . ,Vk be ample locally principal
hypersurfaces in Y, where Vi is cut out by a section si of an ample line bundle Li.
Then the system {V1, . . . ,Vk} is nondegenerate with respect to Newton polytopes
in the sense of Hovanskiı̆ [Ho] if, for every torus orbit Oσ in Y, the restricted sec-
tions {si |Oσ} cut out a smooth subvariety of codimension k in Oσ .

Theorem 6.6. Let Y be a projective toric variety with dense torus T, and let
{V1, . . . ,Vk} be a system of ample hypersurfaces in Y that is nondegenerate with
respect to Newton polytopes. Let X be the intersection in the dense torus

X = (V1 ∩ · · · ∩Vk) ∩ T.
Then the boundary complex of any log compactification of X is homotopy equiv-
alent to a wedge sum of spheres of dimension dimX − 1.

Proof. Let n be the dimension of X. The theorem is clear if n ≤ 2, so assume
n ≥ 3. By Theorem 1.1, the homotopy type of the boundary complex does not de-
pend on the choice of log compactification. Let Y ′ → Y be a toric resolution of
singularities. The closure X+ of X in Y ′ is smooth and transverse to Y ′ \ T (by
[Ho, Thm. 2]), so it will suffice to show that the boundary complex �(∂X+) is
homotopy equivalent to a wedge sum of spheres of dimension dimX−1. We will
prove this by comparing �(∂X+) to the fans corresponding to Y and Y ′.

Let - and -′ be the fans corresponding to Y and Y ′, respectively. Let -(n) be
the link of the vertex in the n-skeleton of -, which by Lemma 6.4 is homotopy
equivalent to a wedge sum of (n−1)-dimensional spheres. For eachn-dimensional
cone σ ∈-, let d(σ) be the intersection number

d(σ) = (V1 · · ·Vk ·V(σ)),
which is a positive integer because theVi are ample and locally principal. Let P be
the regular CW complex obtained by a d(σ)-fold puckering of the maximal face
corresponding to σ in -(n). Then, by Lemma 6.5, P is homotopy equivalent to a
wedge sum of spheres of dimension n − 1. We claim that the boundary complex
�(∂X+) is naturally homeomorphic to the subdivision

P ′ ∼= P ×-n -
′
n

of P induced by the subdivision-′ of - and hence also homeomorphic to a wedge
sum of spheres of dimension n− 1, as required.

Let τ be a cone in -′. Then the intersection of X+ with the corresponding T -
invariant subvariety V(τ) is:

• a smooth irreducible subvariety of codimension dim τ if τ is contained in the
(n− 1)-skeleton of -; or
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• a disjoint union of d(σ) smooth irreducible subvarieties of codimension dim τ,
corresponding to the d(σ) distinct intersection points of X+ with V(σ), if the
relative interior of τ is contained in the relative interior of an n-dimensional
cone σ ∈-; or

• empty if τ is not contained in the n-skeleton of -.

The inclusions of these subvarieties are the natural ones, which respect the label-
ings by points inX+ ∩V(σ); it then follows that�(∂X+) is naturally isomorphic
to the subdivision P ′ of P induced by -′, as required.

Remark 6.7. In this proof, we used the topological fact that the link-(n) of the
vertex in the n-skeleton of the fan corresponding to a projective toric variety is ho-
motopy equivalent to a wedge sum of spheres because it is the (n− 1)-skeleton of
a contractible CW complex (Lemma 6.4). There are other combinatorial proofs
that this link is homotopy equivalent to a wedge sum of spheres, and those proofs
could be more useful in other situations. For instance, one could argue that -(n)
is the (n − 1)-skeleton of the boundary complex of a polytope. The boundary
complex of a polytope is shellable [BrMa] and rank truncation preserves shella-
bility [Bj, Thm. 4.1], so-(n) is shellable. Note that the puckering operation, too,
preserves shellability, so the complex P appearing in the proof above is shellable.
It is also worth noting that any shellable pure complex has a discrete Morse flow
with one critical vertex and all other critical cells in the top dimension [BaHer],
so -(n) and P also have such a flow.

7. Weights from Singularities

Here we consider j th graded pieces of the weight filtration for small j. The groups
GrWj H

k(X) have a nice description when the singular locus of X is smooth or,
more generally, whenX has a resolution of singularities with smooth discriminant.
We will be especially interested in the case where X has isolated singularities.

Proposition 7.1. Let π : X̃ → X be a proper birational morphism from a smooth
variety such that the discriminant V is smooth, and let E = π−1(V ) be the excep-
tional locus. Then there are natural isomorphisms

WjH
k(X) ∼= WjH

k−1(E) for j < k − 1,

and

GrWk−1H
k(X) ∼= coker[H k−1(X̃)⊕H k−1(V ) → GrWk−1H

k−1(E)].

Proof. The proposition follows from the Mayer–Vietoris sequence

· · · →H k−1(X̃)⊕H k−1(V ) →H k−1(E) →H k(X) →H k(X̃)⊕H k(V ) → · · ·
because H k(X̃) and H k(V ) have weights in {k, . . . , 2k}.
Combining Propositions 4.2, 4.3, and 7.1 yields a fairly complete description of
the weight filtration onH ∗(X)when the singular locus is smooth and proper—or,
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more generally, when X has a resolution of singularities with smooth and proper
discriminant in which the low-weight pieces come from the singularities and the
high-weight pieces come from the boundary.

Theorem 7.2. Let π : X̃ → X be a proper birational morphism from a smooth
variety such that the discriminant V is smooth and proper, and let E be the ex-
ceptional locus. Let X+ be a smooth compactification of X̃ with boundary ∂X+.
Then the graded pieces of the weight filtration on H ∗(X) are given by

GrWj H
k(X)

∼=




GrWj H
k−1(E) for j ≤ k − 2,

coker[Wk−1H
k−1(X̃)⊕H k−1(V ) → GrWk−1H

k−1(E)] for j = k − 1,

ker[WkH
k(X̃)⊕H k(V ) → GrWk H

k(E)] for j = k,

(coker[H 2n−k−1(X+) → GrW2n−k−1H
2n−k−1(∂X+)])∨ for j = k + 1,

(GrW2n−j H 2n−k−1(∂X+))∨ for j ≥ k + 2.

Proof. The first two isomorphisms follow from Proposition 7.1, and the last two
follow from Propositions 4.2 and 4.3. The remaining isomorphism (i.e., when
j = k) follows from the Mayer–Vietoris sequence

· · · → H k−1(E) → H k(X) → H k(X̃)⊕H k(V ) → H k(E) → · · ·
because GrWk H

k−1(E) vanishes, H k(X̃) has weights greater than or equal to k,
and H k(V ) has pure weight k.

Note that if the resolution and compactification are chosen such that the excep-
tional locus E and the boundary ∂X+ are divisors with simple normal crossings,
then each of the homology and cohomology groups appearing in the corollary is
either a pure Hodge structure of the form H k(X+) (or WkH

k(X̃)) or can be ex-
pressed combinatorially as subquotients of homology and cohomology groups of
intersections of components of the boundary and exceptional divisors.

Remark 7.3. Suppose that X is compact and that its singular locus is contained
in a smooth closed subset V ⊂ X. Let π : X̃ → X be a log resolution with re-
spect to V, and let E = π−1(V ) be the exceptional divisor. Then WjH k(X) and
WjH

k
c (X \V ) are both isomorphic to WjH k−1(E) for j < k − 1, and it follows

that the Poincaré pairing on X \V induces a perfect pairing

GrWj H
k(X)× GrW2n−j H

2n−k(X \V ) → Q.

For many special cases, including varieties with isolated singularities, this pairing
supports the rough idea that the low-weight pieces of the cohomology of a singu-
lar variety are dual to the high-weight pieces of the cohomology of a smooth open
variety. The Mayer–Vietoris argument in the proof of Proposition 7.1 also shows
how the situation is more complicated when the discriminant is singular, since the
long exact sequence for the low-weight pieces of the cohomology of X also in-
volve the low-weight pieces of the cohomology of the discriminant.



316 Sam Payne

We conclude by relating the weight filtration on the cohomology of a compact va-
riety that has an isolated singularity to the the cohomology of resolution complex.

Theorem 7.4. Let X be a normal variety that is smooth away from an isolated
singular point x, and let π : X̃ → X be a log resolution with exceptional divisorE
that is an isomorphism overX\x. The reduced cohomology of the resolution com-
plex �(E) is naturally isomorphic, with degree shifted by 1, to the weight-0 part
of the reduced cohomology of X,

H̃ k−1(�(E); Q) ∼=W0H̃
k(X).

Proof. The theorem is clear when k = 0 because both sides vanish. Since X is
normal, the resolution complex �(E) is connected; therefore, if k = 1 then we
must show that W0H

1(X) vanishes. From the Mayer–Vietoris sequence for the
resolution, we have an exact sequence of mixed Hodge structures

· · · → H 0(X̃)⊕H 0(pt) → H 0(E) → H1(X) → H1(X̃) → · · · .
SinceX is normal, the exceptional divisorE is connected and so the map toH 0(E)

is surjective. It follows that W0H
1(X) injects intoW0H

1(X̃), which vanishes be-
cause H1(X̃) has pure weight 1. HenceW0H

1(X) vanishes, too, as required.
When k ≥ 2, we have W0H

k−1(E) ∼= W0H
k(X) by Proposition 7.1. Then

W0H
k−1(E) is isomorphic to H k−1(�(E); Q), since E has simple normal cross-

ings, and the theorem follows.

8. Examples of Resolution Complexes of Singularities

As noted in the Introduction, the resolution complex of an isolated normal Cohen–
Macaulay singularity has the rational homology of a wedge of spheres, and the
resolution complex of a rational singularity has the rational homology of a point.
Stepanov [S1] asked whether the resolution complex of an isolated rational singu-
larity has the homotopy type of a point. Here we give a negative answer.

The following is an example of a rational threefold singularity whose resolu-
tion complex has the homotopy type of RP2. The singularity is a deformation of a
cone over a degenerate Enriques surface and is inspired by a suggestion of J. Kol-
lár. Note that the higher cohomology groups of the structure sheaf of an Enriques
surface vanish; therefore, the cone over an Enriques surface is a rational singular-
ity and the dual complex of a semistable, totally degenerate Enriques surface is a
triangulation of RP2 [Mo].

Example 8.1. Consider the affine cone over P1×P1×P1 embedded by O(2, 2, 2).
This is a 4-dimensional variety in C27 with an isolated singularity at the origin,
and the coordinates on C27 are naturally labeled xijk with i, j, k in {0,1, 2}. If one
considers O(2, 2, 2) as a toric line bundle corresponding to twice the unit cube
in R3, then xijk is the torus isotypical section corresponding to the lattice point
(i, j, k). In particular, x111 is the unique lattice point in the interior of this cube,
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and its vanishing locus is the toric boundary: the complement D of the cone over
C∗ × C∗ × C∗. A general section of O(2, 2, 2) cuts out a K3 surface.

Let X be the threefold cut out in this cone by

x111 + x 2
000 + x 2

002 + x 2
020 + x 2

022 + x 2
200 + x 2

202 + x 2
220 + x 2

222.

To first order at the cone point, X looks like the cone over the toric boundary of
P1 × P1 × P1, which is six copies of P1 × P1 glued together like the faces of a
cube. So the exceptional fiber in the blowup ofX at the origin is a copy of this de-
generate K3 surface D whose dual complex is the boundary of an octahedron. In
local coordinates, one can check (e.g., using Jacobian matrices and computer al-
gebra software) thatX is smooth away from the cone point and is resolved by this
single blowup.

Now X is invariant under the involution that takes xijk to x(2−i)(2−j)(2−k) and
does not contain any of the lines that are fixed by the involution, which are exactly
the cones over the 2-torsion points in C∗ × C∗ × C∗. So the image y of the origin
is an isolated singularity of the quotient Y of X by this involution. The involu-
tion lifts to the blowup of X at the origin and acts freely on the exceptional fiber,
inducing the antipodal map on �(D). It follows that the quotient of this blowup
by the involution is a resolution of (Y, y), and the exceptional fiber consists of
three copies of P1 × P1 with an appropriate gluing such that the dual complex is
a triangulation of RP2. A Čech computation shows that the higher cohomology
groups of the structure sheaf of the exceptional fiber vanish, so (Y, y) is a rational
singularity.

We conclude with a computation of resolution complexes for normal hypersur-
face singularities that are nondegenerate with respect to Newton polyhedra. Let
X be a hypersurface in Cn+1 defined by f = a1x

u1 + · · · + ar x
ur, where the ui

distinct exponents are in Nn+1 and ai ∈ C∗. The Newton polyhedron of f is the
Minkowski sum

2 = conv{u1, . . . , ur} + R
n+1
≥0 ,

and the inner normal fan-2 is a subdivision of the positive orthant in the dual real
vector space. The singularity (X, 0) is said to be general with respect to its Newton
polyhedron if the restriction of f to each face of 2 cuts out a smooth hypersurface
in (C∗)n+1. The following theorem generalizes partial results of Stepanov [S2,
Sec. 5].

Theorem 8.2. Let (X, 0) be a normal hypersurface singularity that is general
with respect to its Newton polyhedron. Then the resolution complex of (X, 0) is
homotopy equivalent to a wedge sum of spheres of dimension n− 1.

In particular, if W0H
n(X) vanishes then the resolution complex of (X, 0) is

contractible.
In the proof of Theorem 8.2 we will use the following lemma on subcomplexes

of subdivisions of polytopes.
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Lemma 8.3. Let S be a subdivision of a polytope P of dimension n, and let S0

be the union of the nonmaximal faces of S that are contained in the interior of P.
If S0 is connected, then it is homotopy equivalent to a wedge sum of spheres of
dimension n− 1.

Proof. The lemma is trivial if n < 3, so assume that n ≥ 3.
Let S (n−1) be the union of the nonmaximal cones of S. Then S (n−1) is the

(n−1)-skeleton of the contractible complex S and so has the homotopy type of a
wedge sum of (n−1)-dimensional spheres. Furthermore, if we label the maximal
faces of S as F1, . . . ,Fs , then it follows from the Mayer–Vietoris sequence for the
union of S (n−1) ∪ F1 ∪ · · · ∪ Fi with Fi+1 that the boundaries of F1, . . . ,Fr give a
basis for the integral homology group Hn−1(S (n−1), Z).

Note that S ′
0 = S (n−1) \(S (n−1)∩∂P ) deformation retracts onto S0. To see this,

choose a triangulation of S with no additional vertices—for example, by ordering
the vertices of S and performing a pulling triangulation. If F is a face of this tri-
angulation and F0 is the maximal subface of F contained in the interior of P, then
F \ (F ∩ ∂P ) canonically deformation retracts onto F0. Performing these defor-
mation retracts simultaneously on the faces of the induced triangulation of S (n−1)

proves the claim.
Let D be a small neighborhood of ∂P in S (n−1). Then S (n−1) is the union of D

and S ′
0. After renumbering, suppose the maximal faces F1, . . . ,Fr meet the bound-

ary of P and that Fr+1, . . . ,Fs do not. An argument similar to the preceding para-
graph shows thatD ∩ S ′

0 is homotopy equivalent to a wedge sum of r −1 spheres
of dimension n − 2, and its intersection with the boundaries of F1, . . . ,Fr−1 give
a basis for the integral homology group Hn−2(D ∩ S ′

0, Z).
Applying the Van Kampen and Mayer–Vietoris theorems to the open cover

S (n−1) = D ∪ S ′
0

now shows that the fundamental group of S ′
0 is trivial and that the integral reduced

homology of S ′
0 is free and concentrated in degree n−1. Therefore, by the White-

head and Hurewicz theorems, S ′
0 has the homotopy type of a wedge sum of n− 1

spheres; hence the lemma follows because S ′
0 deformation retracts onto S0.

Proof of Theorem 8.2. The inner normal fan-2 of the Newton polytope of (X, 0)
is a subdivision of the positive orthant in Rn+1 and thus corresponds to a proper
birational toric morphismX(-2) → Cn+1. Because (X, 0) is general with respect
to 2, the strict transform X̃ meets every torus-invariant subvariety V(σ) properly
and, furthermore, X̃ ∩ V(σ) is connected if it is positive dimensional and con-
sists of 4 points for σ the codimension-1 cone corresponding to a compact edge of
lattice length 4 in the Newton polyhedron [V]. If -2 is unimodular then this mor-
phism gives an embedded resolution of X, and if every component of π−1(0) is a
divisor then this is a weak log resolution. We consider first the resolution complex
in this special case.

Let S be the subdivision of the standard simplex conv{e∗
0 , . . . , e∗

n} induced by
-2 , and let S0 be the union of the nonmaximal faces of S that are contained in the
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interior of the simplex. By the foregoing discussion, the resolution complex�(E)
is obtained from S0 by taking the 4-fold puckering along each (n−1)-dimensional
face corresponding to a compact edge of lattice length 4 in 2. Since (X, 0) is as-
sumed to be normal, the resolution complex must be connected and so S0, too, is
connected. By Lemma 8.3, S0 is homotopy equivalent to a wedge sum of spheres
of dimension n− 1 and, by Lemma 6.5, the puckering �(E) is as well.

We now extend these arguments to the general case in which X̃ → X is not nec-
essarily a log resolution with respect to 0. Let -′ be a unimodular refinement of
the barycentric subdivision of -2. Then π ′ : X(-′) → Cn+1 is an embedded res-
olution ofX that factors throughX(-2). Since (X, 0) is general with respect to 2,
the strict transform X ′ of X meets all of the boundary components of the smooth
toric variety X(-′) in the preimage of 0 transversely, and the barycentric subdivi-
sion ensures that every component of the preimage E ′ of 0 is a divisor. Since the
toric boundary of X ′ is a divisor with simple normal crossings, it follows that E ′
is also a divisor with simple normal crossings. In particular, the restriction of π ′
to the strict transform of X is a weak log resolution of X with respect to 0.

Let S ′ be the union of the faces in the subdivision of the unit simplex induced
by -′ that are contained in nonmaximal faces of S, and let PS ′ be constructed by
taking the 4-fold puckering of each (n− 1)-dimensional face corresponding to a
compact edge of length 4 in the Newton polyhedron. As in the proof of Lemma 8.3,
the subcomplex PS ′

0 consisting of faces entirely contained in the interior of the
simplex is homotopy equivalent to PS ′ minus the boundary of the simplex; the
full complex PS ′ is homotopy equivalent to a wedge sum of spheres; and applica-
tions of the Van Kampen, Mayer–Vietoris, and Whitehead and Hurewicz theorems
show that S ′

0 is homotopy equivalent to a wedge sum of spheres.
Now E ′ has one vertex for each ray of -′ in the interior of the positive orthant

that is contained in a face of codimension ≥ 2 in -2 as well as 4 vertices for each
ray that is contained in a codimension-1 cone of -2 corresponding to a compact
of length 4 in the Newton polyhedron. By considering how the resolution factors
throughX(-2), one sees that the resolution complex�(E ′) is naturally identified
with PS ′

0, and the theorem follows.

Remark 8.4. The embedded resolutions of isolated hypersurface singularities
induced by subdivisions of the positive orthant are not, in general, isomorphisms
away from zero. Hence it is essential, in the proof of Theorem 8.2, that the reso-
lution complex not depend on the discriminant of the resolution.

Remark 8.5. The proof of Theorem 8.2 gives a combinatorial formula for the
number of spheres in the resolution complex of (X, 0), which is also the dimen-
sion of W0H

n(X). It is exactly the number of vertices of the Newton polyhedron
that are contained in no unbounded facets plus the sum over all compact edges of
the Newton polyhedron of the lattice length minus 1.

Remark 8.6. Similar methods can be used to compute resolution complexes for
some normal complete intersection singularities that are general with respect to
Newton polyhedra. Suppose {X1, . . . ,Xr} is a collection of hypersurfaces that is
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generic with respect to Newton polyhedra 21, . . . ,2r , and let X be the complete
intersectionX1∩· · ·∩Xr. If the singularity (X, 0) is normal and the Newton poly-
hedra all have the same normal fan, then an argument similar to our previous one
for hypersurfaces shows that the resolution complex of (X, 0) has the homotopy
type of a wedge sum of spheres of dimension dimX − 1.

Corollary 8.7. The resolution complex of an isolated rational singularity that
is general with respect to its Newton polyhedron is contractible.
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