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Restricted Carathéodory Measure and
Restricted Volume of the Canonical Bundle

Shin Kikuta

1. Introduction

This paper is concerned with relations between Carathéodory measure hyperbol-
icity and algebro-geometric positivity of the canonical bundle or the cotangent
bundle over a compact complex manifold. On the one hand, positivity of vec-
tor bundles over a compact complex manifold is an important notion in algebraic
geometry. On the other hand, Carathéodory measure hyperbolicity for a complex
manifold is one of the principal properties in geometric function theory or the
theory of hyperbolic complex spaces. It is therefore of fundamental interest to
investigate how these notions are related.

In the author’s previous paper [20] it is proved that the curvature function of the
Carathéodory pseudo-volume form over a complex manifold is not larger than −1.
As an easy application of the curvature property, we obtain the following explicit
comparison formula between the volume volX(KX) of the canonical bundle KX

over a compact complex manifold X and the total volume of X with respect to the
Carathéodory measure µC

X̃
(see Definition 2.1) of its universal cover X̃.

Theorem 1.1 [20, Cor. 1.2]. Let X be an n-dimensional compact complex space
with at most normal singularities, and let X̃ be its universal covering space. Then

volX(KX) := lim sup
m→∞

dim H0(X, O(mKX))

mn/n!
≥ n! (n+ 1)n

(4π)n
µC

X̃
(X),

where the Carathéodory measure µC

X̃
of X̃ is considered as a measure on X.

Note that differently from the original theorem in [20], the complex space in this
theorem is allowed to have at most normal singularities, but the point can be solved
easily by taking a resolution of the singularities of X.

This result tells us not only that the Carathéodory measure hyperbolicity of the
universal cover (i.e.,µC

X̃
(X) > 0) implies the bigness of the canonical bundle (i.e.,

volX(KX) > 0) but also how the bigness increases as the Carathéodory measure
hyperbolicity becomes stronger.

On the other hand, for a line bundle L over a compact complex manifold X,
a restricted version of the volume of L recently appears as an algebro-geometric
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quantity measuring positivity of L along a closed subvariety Z. It is called the re-
stricted volume of L along Z and denoted by volX|Z(L). The notion is a useful
tool for extending sections from the subvariety to the ambient space, and so vari-
ous properties and various applications of the notion have been developed [13; 18;
29]. The restricted volume volX|Z(L) of L along Z is indeed defined by replacing
global sections in the definition of the volume with extendable ones on Z to X.

Therefore, it seems a worthwhile goal to find a natural restricted version of
the Carathéodory pseudo-volume form along a subvariety of a complex manifold.
Furthermore, it is feasible to conjecture (after the comparison obtained in The-
orem 1.1) that, over a compact complex manifold, the restricted volume of the
canonical bundle can be estimated explicitly from below by the restricted version
of the Carathéodory measure for its universal cover.

This paper presents a natural restricted version of the Carathéodory pseudo-
volume form or the Carathéodory measure for a subvariety of a complex manifold.
In fact, it is called the restricted Carathéodory pseudo-volume form or the re-
stricted Carathéodory measure (respectively) and is defined as follows. For a gen-
eral complex manifoldX and its smooth subvarietyZ, the restricted Carathéodory
pseudo-volume form vCX|Z on Z is defined by setting

vCX|Z := sup{(f̃ |Z)∗v(d )1 ; f̃ : X → B
d : holomorphic}.

Here B
d and v

(d )
1 denote, respectively, the d-dimensional complex unit ball and

the Poincaré volume form there. For singular Z we define an invariant measure,
called the restricted Carathéodory measure, in a similar fashion and denote it by
µC
X|Z. As far as the author knows, this restricted version of Carathéodory measure

has already appeared essentially in Eisenman’s paper [14]. However, this defini-
tional formula is insufficient for our purpose, which is to compare this notion with
the restricted volume of the canonical bundle along irreducible closed subvari-
eties of a compact complex manifold. Namely, we need some properties of them.
Section 2 is devoted to introducing these properties, and a property on curvature
functions defined in [20] will be investigated in Section 4.1.

Following Theorem 1.1 (i.e., Corollary 1.2 in [20]), the author conjectures that
its restricted version would also hold for the two restricted objects just described
and attempts to verify this. But except for some very special cases, the author has
been unable to establish whether this conjecture holds or not. The main theorem
in this paper is that the conjecture is true if we substitute another, smaller restricted
version for the usual one defined previously. In other words, a weak version of
this conjecture is established. We denote the substitute by v̄CX|Z , which is defined
using Carathéodory extremal maps as follows. For a subvariety Z of a complex
manifold X and a point x of the smooth locus Zreg of Z,

(v̄CX|Z)x := sup

{
(gx |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v(n)1

)d)
x

; (g∗
xv1)x = (vCX)x

}
,

where vCX denotes the Carathéodory pseudo-volume form of X. The weak version
is stated as follows.
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Theorem1.2 (Theorem 3.1). LetX be an n-dimensional compact complex man-
ifold, and letZ be its d-dimensional irreducible closed subvariety. Take any Galois
covering space X̃

p−→ X and denote by Z̃ the pull-back of Z by p. Suppose that
Z̃ �⊂ Zero(vC

X̃
). Then

volX|Z(KX) ≥ d! (n+ 1)d

(4π)d

∫
Zreg

v̄C
X̃|Z̃ .

This weak version still generalizes the previous comparison in Theorem 1.1. More-
over, the corresponding theorem does not hold after the measure in the right-hand
side is replaced with the original restricted Carathéodory measure µC

X̃|Z̃ . As re-
gards the condition Z̃ �⊂ Zero(vC

X̃
) on subvarieties, it cannot be removed from

either the conjecture or the theorem. This condition can be checked by construct-
ing a counterexample with a blow-up.

Our procedure for proving Theorem 1.2 is similar to the one used in [20] to
prove Theorem 1.1 (given as Corollary 1.2 there). In that proof, a central role is
played by the Boucksom–Popovici formula [4; 30] on the volume of a line bun-
dle. In this paper we apply its restricted version, which is due to Hisamoto [18]
and Matsumura [29]. Before doing so, we must verify that the assumptions on Z
and curvature currents hold in our case. The following lemma is needed for that.

Lemma 1.1 (Lemma 3.4). If X is a projective manifold and X̃ denotes its uni-
versal cover, then

B+(KX) ⊂ Zero(vC
X̃
);

here B+(KX) is the nonample locus of KX (see Section 3.1 for the definition).

This lemma is of interest in its own right because it compares the Carathéodory
measure hyperbolicity and positivity of the canonical bundle in terms of the inclu-
sion relation. After proving the lemma we establish the following pluripotential
theoretic inequality, which corresponds to the curvature inequality used in the
proof of Theorem 1.1.

Theorem1.3 (Theorem 3.2). LetX be an n-dimensional complex manifold, and
let Z be a smooth d-dimensional subvariety of X not contained in Zero(vCX). If
the left-hand side is well-defined then〈((√−1∂∂̄ log vCX

)∣∣
Z

)d 〉 ≥ d! (n+ 1)d

2d
v̄CX|Z ,

where 〈·〉 denotes the non-pluripolar Monge–Ampère product (see Section 3.1 for
the definition).

The results just stated are all proved in Section 3.1.
As an immediate application of Theorem 1.2, we have some numerical compar-

isons between the ampleness of the canonical bundle and the strong Carathéodory
measure hyperbolicity over a compact complex manifold. A complex manifold is
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said to be strongly Carathéodory measure hyperbolic if its Carathéodory pseudo-
volume form is positive everywhere. As shown in [20] and also stated by Wu [33],
every compact complex manifold turns out to be a projective manifold with the
ample canonical bundle if it has the strongly Carathéodory measure hyperbolic
universal cover. However, their proofs do not yield any numerical relations.

Nonetheless, we can use Theorem 1.2 to estimate the intersection numbers
(KdimZ

X ·Z) of the canonical bundle with subvarieties Z from below by our substi-
tutes for the restricted Carathéodory measures over a compact complex manifold.
This result may be formally stated as follows.

Corollary 1.1 (Theorem 3.7). Let X be an n-dimensional compact complex
manifold. Take any Galois cover X̃

p−→ X, and let Z̃ denote the pull-back of a
subvariety Z of X by p. Suppose that X̃ is strongly Carathéodory measure hyper-
bolic. Then

(Kd
X · Z) ≥ d! (n+ 1)d

(4π)d

∫
Zreg

v̄C
X̃|Z̃reg

for every d-dimensional irreducible closed subvariety Z of X with d > 0.

The Nakai–Moishezon–Kleiman criterion implies that we can regard all intersec-
tion numbers with all positive-dimensional irreducible closed subvarieties as quan-
tities measuring the ampleness of the canonical bundle. Hence this result gives
a numerical comparison between the ampleness of the canonical bundle and the
strongly Carathéodory measure hyperbolicity. Further details about this corollary
are given in Section 3.2.

In Section 4.1, we prove the following result on the curvature function of the re-
stricted Carathéodory pseudo-volume form on a subvariety of a complex manifold.

Theorem 1.4 (Theorem 4.2). Let X be a complex manifold and Z its smooth
complex submanifold. Then the curvature KvC

X|Z
of the restricted Carathéodory

pseudo-volume form vCX|Z is bounded above by −1.

Here the curvature function KvC
X|Z

is defined in the same way as in [20]. Note that

Theorem 1.1 in [20] coincides with this theorem when Z = X.

Theorem 1.4 can be proved by the same procedure used to prove Theorem 1.1
in [20]. Yet we can also prove a pluripotential version of this curvature inequal-
ity by a simpler method: the so-called viscosity approach to complex Monge–
Ampère equations due to Eyssidieux, Guedj, and Zeriahi [15]. We shall describe
an approach for calculating the curvature function of the restricted Carathéodory
pseudo-volume form in the sense of pluripotential theory.

We can apply this curvature property to derive a numerical version of Kratz’s
result [24] on the nefness of the cotangent bundle over a compact complex man-
ifold whose universal cover is strongly Carathéodory measure hyperbolic. For a
compact complex manifold X, a positivity condition of the d-times wedge prod-
uct �d

X = ∧d
T ∗X of the cotangent bundle �1

X = T ∗X is defined by the corre-
sponding positivity condition of a certain line bundle denoted by O

P(
∧d

TX)(1).
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Here the line bundle O
P(

∧d
TX)(1) is the dual bundle of the tautological line bun-

dle O
P(

∧d
TX)(−1) over the projectivized bundle P

(∧d
TX

)
of

∧d
TX. Our result

on the nef property of �d
X is as follows.

Corollary 1.2 (Corollary 4.1). Let X be an n-dimensional compact complex
manifold. Take any Galois cover X̃

p−→ X, and denote by Z̃ the pull-back of Z
by p for a d-dimensional irreducible closed subvariety Z of X. Also assume that
Z ∩ Zero(vC

X̃
) = ∅. Then

(O
P(

∧d
TX)(1)

d · IZ(Z)) ≥ d! (d + 1)d

(4π)d
µC

X̃|Z̃(Z).

Here IZ : Z → P
(∧d

TX
)

is an embedding induced from the original embedding
Z → X (the precise definition is given in Section 4.2).

Acknowledgments. The author would like to express his deep gratitude to Pro-
fessor Shigetoshi Bando and Professor Hajime Tsuji for their kind and valuable
advice. He would also like to thank the referee for a careful reading of the manu-
script and helpful comments that improved the paper’s presentation.

2. Definition and Basic Properties of the Restricted
Carathéodory Pseudo-volume Form

Let X be a connected paracompact complex manifold of complex dimension n,
d ∈ {1, 2, . . . , n− 1}, and let Z be its d-dimensional subvariety throughout the pa-
per unless otherwise noted.

First we define the usual Carathéodory pseudo-volume form of X and the usual
Carathéodory measure of X.

Definition 2.1. The Carathéodory pseudo-volume form vCX on X is defined by

vCX := sup{g∗v1; g ∈ Hol(X, Bn)},
where v1 := 2n/(1 −|t |2)n+1 ×∧n

α=1

√−1dt α ∧ dt̄ α is the Poincaré volume form
on the n-dimensional complex unit ball B

n and Hol(X, Bn) is the space of all holo-
morphic mappings from X to B

n. The Carathéodory measure µC
X on X is defined

similarly as follows: for each Borel set B ⊂ X, we set

µC
X(B) := sup

{ ∞∑
i=1

µ1(gi(Bi)); gi ∈ Hol(X, Bn) (i ∈ N) and

(Bi)i∈N : mutually disjoint Borel sets of X s.t.
∞⋃
i=1

Bi = B

}
,

where µ1 denotes the standard measure on B
n with v1 as its density. It can be seen

that µC
X coincides with the measure on X with vCX as its density in this case when

X is smooth. Yet the Carathéodory measure µC
X clearly makes sense even if X is

singular.
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By a positivity condition for this Carathéodory measure of X, the definition of the
Carathéodory measure hyperbolicity of X is given as follows.

Definition 2.2. Let X be an n-dimensional complex analytic space. Then X

is said to be Carathéodory measure hyperbolic if the Carathéodory measure µC
X

has full support—that is, if µC
X(B) > 0 for each nonempty open subset B ⊂ X.

In addition, assume that X is smooth. If the Carathéodory pseudo-volume form
vCX is positive everywhere, then X is a strongly Carathéodory measure hyperbolic
manifold.

Note that the degenerate locus Zero(vCX) defined as {x ∈X; (vCX)x = o} is a closed
analytic subset of X (we use o to denote the origin). Hence a complex analytic
space X is Carathéodory measure hyperbolic if and only if its Carathéodor mea-
sure µC

X is not identically zero. We also remark that if X is compact then the
Carathéodory measure of X is identically zero. Thus hereafter we substitute for it
the Carathéodory measure vC

X̃
of the universal cover X̃ of X. The measure actu-

ally descends to X because of its invariance under the deck transformations, and
for simplicity we also use vC

X̃
to denote the obtained measure on X.

Since B
n is homogeneous, the Ascoli–Arzelà theorem tells us that, for any

x ∈X, there exists a gx ∈ Hol(X, Bn) with gx(x) = o such that

(vCX)x = sup{(g∗v1)x : g ∈ Hol(X, Bn), g(x) = o} = (g∗
xv1)x.

This gx is called a Carathéodory extremal map of X at x. From the existence of
such maps one can see easily that the pseudo-volume form is continuous on X.

We give several simple examples of Carathéodory pseudo-volume forms.

Example 2.1. (i) On the n-dimensional complex unit ball B
n, we have vC

Bn = v1.

This fact ensures that Carathéodory pseudo-volume forms generalize the Poincaré
volume form v1 on B

n.

(ii) On the n-dimensional unit polydisk�n, we have vC�n = (vC� )
n/nn [7]. More-

over, the corresponding Carathéodory extremal map go of �n at o is given by �n �
z �→ z/

√
n∈ B

n.

Next we define “restricted Carathéodory pseudo-volume form” and “restricted
Carathéodory measure”, which are restricted versions of the respective form and
measure along subvarieties. These restricted versions are among the main objects
in this paper. As far as the author knows, these notions first appeared in Eisen-
man’s paper [14].

Definition 2.3. The definition of the restricted Carathéodory pseudo-volume
form vCX|Z on the regular locus Zreg of Z is given by setting, for any z∈Zreg,

(vCX|Z)z = sup{((f̃ |Z)∗v(d )1 )z; f̃ ∈ Hol(X, Bd)};
here v(d )1 is the Poincaré volume form on B

d. A measure onZ, called the restricted
Carathéodory measure µC

X|Z , is defined as follows: for each Borel set B ⊂ Z,
we set
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µC
X|Z(B) := sup

{ ∞∑
i=1

µ
(d )
1 (f̃i(Bi)); f̃i ∈ Hol(X, Bd) (i ∈ N) and

(Bi)i∈N : mutually disjoint Borel sets of Z s.t.
∞⋃
i=1

Bi = B

}
,

where µ(d )
1 denotes the measure on B

d with v(d )1 as its density.

Observe that, since the restricted Carathéodory pseudo-volume form is com-
puted using holomorphic maps defined on the whole ambient space X, it fol-
lows immediately that vCX|Z = vCX|Zreg

on Zreg. Combining this with the equality
µC
X|Z(Z \ Zreg) = 0, we can derive the next result straightforwardly from the same

proposition in the smooth case.

Proposition 2.1 [14, Prop. 2.23]. We have∫
B

1Zregv
C
X|Z = µC

X|Z(B) for any Borel subset B of Z,

where 1Zreg is the characteristic function of Zreg.

Remark. There is a crucial point on the definition of the restricted Carathéodory
pseudo-volume form. It is easy to calculate its curvature function by direct use of
the formula in Definition 2.3, and that calculation will be applied (in Section 4.2)
to a study of some nef properties of exterior powers of the cotangent bundle over a
compact complex manifold. However, this formulation seems unsuitable for our
purpose of making a connection between the restricted volume of the canonical
bundle and the Carathéodory measure hyperbolicity along subvarieties. There-
fore, in order to show Theorem 1.2 (a.k.a. Theorem 3.1), we rewrite the formula
in Definition 2.3 as described next.

Proposition 2.2. On Zreg,

vCX|Z = sup

{
(f |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d); f ∈ Hol(X, Bn)

}
.

Proof. Let p be the standard projection from B
n to B

d. We identify B
d with the

subset {(t1, . . . , t d, 0, . . . , 0); (t1, . . . , t d)∈ B
d} of B

n and consider v(d )1 as a positive
(d, d)-form on B

n in the standard way.
For every f̃ ∈ Hol(X, Bd), we have

(f̃ |Z)∗
(

2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
= (f̃ |Z)∗

(
2d

d! (n+ 1)d

(
n+ 1

d + 1

√−1∂∂̄ log v(d )1

)d)
= (f̃ |Z)∗

(
2d

d! (d + 1)d
(√−1∂∂̄ log v(d )1

)d) = (f̃ |Z)∗v(d )1 ;
thus it follows that
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vCX|Z ≤ sup

{
(f |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d); f ∈ Hol(X, Bn)

}
.

Next we will prove the converse inequality at a fixed point x ∈Zreg. At first, it
should be remarked that the right-hand side at x is equal to

sup

{
(f |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
x

}
,

where f runs through all f ∈ Hol(X, Bn) satisfying f(x) = o and dxf(TxZ) ⊂
ToB

d. This fact can be easily seen by making a composition of f with an automor-
phism of B

n that transforms f(x) to the origin o and transforms dxf(TxZ) to a
subspace of ToB

d. Then, for such a map f , we can verify by direct calculations that

(f |Z)∗
(

2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
x

= ((p � f |Z)∗v(d )1 )x.

Therefore, we have the converse inequality at all x ∈Zreg:

(vCX|Z)x ≥ sup

{
(f |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
x

; f ∈ Hol(X, Bn)

}
.

We present a simple example of a restricted Carathéodory pseudo-volume form.

Example 2.2. If X = �2 and Z = �× o, then Schwarz’s lemma yields vCX|Z =
sup{(f̃ |�)∗v(1)1 ; f̃ ∈ Hol(�2,�)} = v

(1)
1 .

Next we introduce two basic properties of restricted Carathéodory pseudo-volume
forms; both correspond to known properties of the usual Carathéodory pseudo-
volume forms. The first property is that, for every x ∈ Zreg, we can take a map
fx ∈ Hol(X, Bn) with fx(x) = o that attains the supremum at x in the right-hand
side of the formula in Proposition 2.2:

(vCX|Z)x = sup
f(x)=o

{
(f |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
x

}
= (fx |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
x

.

As a consequence, we can immediately observe that the pseudo-volume form vCX|Z
is also continuous on Zreg.

The second basic property, formalized in our next proposition, is a distinguish-
ing characteristic of restricted Carathéodory measures corresponding to the vol-
ume decreasing property of usual Carathéodory measures.

Proposition 2.3. Let Y be an n-dimensional complex manifold and W its d-
dimensional complex subvariety. Then, for all ϕ ∈ Hol(X,Y ) such that ϕ(Z) ⊂W,

(ϕ|Z)∗µC
Y |W ≤ µC

X|Z.

In particular, µC
X|Z is invariant under holomorphic automorphisms of X preserv-

ing Z.
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For compact X, the restricted Carathéodory measure µC
X|Z and the restricted

Carathéodory pseudo-volume form vCX|Z vanish everywhere. In contrast, for a
Galois cover p : X̃ → X, the restricted Carathéodory measure µC

X̃|Z̃ on Z̃ :=
p−1(Z) and the restricted Carathéodory pseudo-volume form vC

X̃|Z̃ on Z̃reg can

descend to Z and Zreg (respectively) because µC

X̃|Z̃ and vC
X̃|Z̃ are both invariant un-

der the deck transformations from Proposition 2.3. Namely, there exist a measure
on Z and a pseudo-volume form on Zreg whose pull-backs by p are, respectively,
the restricted Carathéodory measure µC

X̃|Z̃ on Z̃ and the restricted Carathéodory
pseudo-volume form vC

X̃|Z̃ on Z̃reg. For simplicity, the obtained measure on Z

(resp. the obtained pseudo-volume form on Zreg) is also denoted by µC

X̃|Z̃ (resp.
vC
X̃|Z̃) and will be regarded as a substitute for µC

X|Z (resp. vCX|Z) from now on.

3. Positivity of the Canonical Bundle along Subvarieties

3.1. Restricted Carathéodory Measure and Restricted Volume
of the Canonical Bundle

In this section we prove Theorem 1.2, which is one restricted version of Theo-
rem 1.1. As stated in the Introduction, our main purpose is to establish a re-
stricted version of the inequality in Theorem 1.1 for two restricted objects:
restricted Carathéodory measure and the so-called restricted volume of the canon-
ical bundle. Next we define precisely the restricted volume of a line bundle.

Definition 3.1. LetL be a line bundle over a compact complex manifoldX, and
let Z be a d-dimensional irreducible closed complex subvariety of X. Denote by
iZ : Z ↪→ X the inclusion map. We consider the spaces

H0(X|Z, O(mL)) := Im[i∗Z : H0(X, O(mL)) → H0(Z, O(mL|Z))]
for all m∈ N. Such spaces consist of all global sections of L⊗m over Z that can be
extended to X. Then the restricted volume volX|Z(L) of L along Z is defined as

volX|Z(L) := lim sup
m→∞

dim H0(X|Z, O(mL))

md/d!
,

which measures the asymptotic growth of dim H0(X|Z, O(mL)) as m → ∞.

Our conjecture is that, over a compact complex manifold X, the restricted volume
volX|Z(KX) of the canonical bundle KX can be estimated explicitly from below by
the restricted Carathéodory measure for any generic subvariety Z.

Conjecture. Let X be an n-dimensional compact complex manifold and Z a
d-dimensional irreducible closed subvariety of X. Take a Galois cover X̃

p−→ X,
and denote by Z̃ the pull-back of Z by p. Suppose that Z̃ is not contained in
Zero(vC

X̃
). Then there exists a positive constant Cn,d , depending only on the di-

mensions d and n, such that
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volX|Z(KX) ≥ Cn,dµ
C

X̃|Z̃(Z).

Moreover, the constant Cn,d can be chosen explicitly so that Cn,n is exactly the
constant n! (n+ 1)n/(4π)n in Theorem 1.1.

Thanks to the condition on the constants, this conjecture will give a generalization
of Theorem 1.1 if it is true. Furthermore, we can construct a counterexample to the
inequality when the condition Z̃ �⊂ Zero(vC

X̃
) is removed. That will be explained

at the end of this section.
Unfortunately, so far the author can show this conjecture only for some special

cases. Yet we can prove a weak version of this conjecture by substituting another
restricted version of Carathéodory measure for the usual one. Thus, for general
noncompact X and general (possibly singular) Z, let v̄CX|Z denote the substitute
pseudo-volume form on Zreg. It is defined with the use of Carathéodory extremal
maps gx (in the same notation as in Section 2) as follows: for x ∈Zreg, set

(v̄CX|Z)x := sup

{
(gx |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
x

}
(this supremum is actually a maximum by the Ascoli–Arzelà theorem). Here we
have taken into account another description of restricted Carathéodory pseudo-
volume form in Proposition 2.2. Then it obviously holds that v̄CX|Z ≤ vCX|Z.

From the invariance of Carathéodory pseudo-volume forms it easily follows that
v̄CX|Z is invariant under holomorphic automorphisms ofX preservingZ. Therefore,
just as in the case of (restricted) Carathéodory pseudo-volume forms, for any Galois
cover p : X̃ → X and the pull-back Z̃ := p−1(Z), the invariant pseudo-volume
form v̄C

X̃|Z̃ on Z̃reg can be regarded as a pseudo-volume form onZreg (and we denote

the resultant pseudo-volume form on Zreg by the same symbol, v̄C
X̃|Z̃). However,

the author has not yet determined whether v̄CX|Z is continuous onZreg \ Zero(vCX)—
although v̄CX|Z is upper semicontinuous by the continuity of Carathéodory pseudo-
volume forms. For example, if we know that the Carathéodory extremal map is
unique at every x ∈ Zreg \ Zero(vCX) up to unitary linear transformations of B

n,
then v̄CX|Z will turn out to be continuous onZreg \Zero(vCX). But as far as the author
knows, little is known concerning uniqueness in such a general setting. For ex-
ample, Kubota [25] shows that there is uniqueness on X when X is a bounded
symmetric domain. Furthermore, the Riemann mapping theorem tells us that the
uniqueness on X holds also when X is a simply connected planar domain.

Our result—namely, a weak version of the conjecture—is stated as follows.

Theorem 3.1. Let X be an n-dimensional compact complex manifold, and let
Z be its d-dimensional irreducible closed subvariety. Take any Galois covering
space X̃

p−→ X and denote by Z̃ the pull-back of Z by p. Suppose that Z̃ �⊂
Zero(vC

X̃
). Then

volX|Z(KX) ≥ d! (n+ 1)d

(4π)d

∫
Zreg

v̄C
X̃|Z̃ .
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This theorem is also a generalization of Theorem1.1, although it is naturally weaker
than the conjecture.

We remark that the constant Cn,d of the conjecture cannot be the same as the
one d! (n + 1)d/(4π)d in Theorem 3.1. In fact, we need only consider the case
when X = C×C and Z is its first component C× [o], where C = �/$ for some
discrete subgroup $ of SL(2, R) and [o] is the point in C represented by the origin
o ∈ �. Then it is obvious that volX|Z(KX) = degC(KC) = −χ(C). At the same
time, Example 2.2 yields that

d! (n+ 1)d

(4π)d
µC

X̃|Z̃(Z) = 3

4π

∫
C×[o]

vC
�2|�×$o

= 3

2

∫
C

v
(1)
1

2π
= −3

2
χ(C),

which is indeed larger than volX|Z(KX) = −χ(C). Hence this example ensures
that the conjecture with the constant Cn,d = d! (n+ 1)d/(4π)d does not hold. As
regards Theorem 3.1 in this case, since at o ∈� we have

21

1! (2 + 1)1
(go×o|�×o)

∗√−1∂∂̄ log v(2)1 = 2

3

√−1∂∂̄ log

(
1 −

∣∣∣∣ z1√
2

∣∣∣∣2)−3

= 2

3
× 3 · 1

2
dz1 ∧ dz̄1 = 1

2
v
(1)
1

(by Example 2.1), it follows that

d! (n+ 1)d

(4π)d

∫
Z

v̄C
X̃|Z̃ = 3

4π

∫
C

1

2
v
(1)
1 = −3

4
χ(C).

Therefore Theorem 3.1 is surely true in this case.
Before proceeding with the proof of Theorem 3.1, we first explain that we can

reduce to the case when X is projective.

Lemma 3.1. It is sufficient to prove Theorem 3.1 whenX is a projective manifold.

Proof. First note that, since Z̃ �⊂ Zero(vC
X̃
) is assumed, we obviously have

Zero(vC
X̃
) �= X̃; that is, X̃ is Carathéodory measure hyperbolic. Therefore, Theo-

rem 1.1 leads to the bigness ofKX and so&|mKX | : X ��� &|mKX |(X), the canonical
meromorphic map associated with the complete linear system |mKX|, is bimero-
morphic for sufficiently large m∈ N.

Let U be any open subset of X satisfying Ū ∩ Zero(vC
X̃
) = ∅ and U ∩ Z �= ∅.

Then, thanks to standard L2 estimates for the ∂̄ operator [11], &|mKX | satisfies the
following property for sufficiently large m.

Claim. We can take m sufficiently large that &|mKX | is biholomorphic over U.

Proof. Consider the (m − 1)-times product (vC
X̃
)−(m−1) of the inverse of the

Carathéodory pseudo-volume form of X̃ as a singular Hermitian metric onK⊗(m−1)
X .

Note that the metric (vC
X̃
)−(m−1) is finite and continuous over X \ Zero(vC

X̃
). The

metric’s most useful property in this proof is that its curvature current,

((vC
X̃
)−(m−1) = −√−1∂∂̄(vC

X̃
)−(m−1) = (m− 1)

√−1∂∂̄ log vC
X̃

,
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is semi-positive on X and strictly positive outside of Zero(vC
X̃
) (see [20, Cor. 1.2]

or Theorem 3.5 to follow). It should be also mentioned that X \ (Zero(vC
X̃
) ∪ S)

has a complete Kähler metric for some analytic subset S of X with codimXS ≥ 2
(see [9] or [20, (4.3) and Lemma 4.3]). We can therefore apply the standard argu-
ment by the L2 estimates for the ∂̄ operator [11] over X \ (Zero(vC

X̃
) ∪ S) with

K
⊗(m−1)
X -valued (n, 0)-forms and the continuous Hermitian metric (vC

X̃
)−(m−1)

onK⊗(m−1)
X . It then follows that, for sufficiently largem, global sections ofK⊗m

X =
K

⊗(m−1)
X ⊗KX separate points in U and give local coordinates at any points in U.

Hence &|mKX | is biholomorphic over U.

Because KX is big, we can use Moishezon’s theorem to obtain a proper modifica-
tion σ : X̂ → X obtained by a finite number of blow-ups with smooth centers such
that X̂ is a projective manifold. Moreover, according to the proof of Moishezon’s
theorem due to Hironaka ([17]; see also [1; 28]), we can take such a proper mod-
ification σ : X̂ → X so that the centers of the blow-ups are disjoint from U. Then
the bimeromorphic map σ−1 can be restricted to Z, so we let iẐ : Ẑ ↪→ X̂ denote
the irreducible subvariety of X̂ obtained as an image of Z by σ−1.

Claim. volX|Z(KX) = volX̂|Ẑ(KX̂).

Proof. Since σ(Ẑ) = Z, we have the commutative diagram

H0(X, OX(mKX))

�

σ ∗
��

i∗
Z

��

H0(X̂, OX̂(mKX̂))

i∗̂
Z

��

H0(Z, OZ(mKX|Z)) σ ∗
�� H0(Ẑ, OẐ(mKX̂|Ẑ)).

Here the homomorphisms in the rows are the pull-backs as forms, and the homo-
morphisms in the columns are the restriction maps. The homomorphism in the
upper row is an isomorphism because the target manifold and the domain mani-
fold are smooth, and the homomorphism in the lower row is obviously injective.
We can therefore conclude that the equality volX|Z(KX) = volX̂|Ẑ(KX̂) holds.

On the other hand, consider the right-hand side of the inequality in Theorem 3.1.
An argument in [20, Sec. 4] (especially near the commutative diagram (4) there)
gives a Galois cover p̂ : ˜̂X → X̂ of X̂ and a lift σ̃ : ˜̂X → X̃ of σ such that σ̃ ∗vC

X̃
=

vC˜̂X
. Therefore, since the Carathéodory extremal maps satisfy the relation gx̂ =

gσ̃(x̂) � σ̃ for all x̂ ∈ ˜̂X, the following claim holds.

Claim. ∫
Zreg

v̄C
X̃|Z̃ =

∫
Ẑreg

v̄C˜̂X| ˜̂Z
,

where ˜̂Z = p̂−1(Ẑ).
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Thus we have proved Lemma 3.1, so it is sufficient to show Theorem 3.1 for X̂ and
Ẑ (and also ˜̂X and ˜̂Z), where X̂ is projective.

We prove Theorem 3.1 in the projective case by the same procedure as in the
proof of Theorem 1.1. To carry out the procedure, the most important point is
that ((vC

X̃
)−1 = √−1∂∂̄ log vC

X̃
is semi-positive on X (as mentioned in the proof of

Lemma 3.1) and so its coefficients are Radon measures.
The procedure requires that we first prove a curvature inequality correspond-

ing to the curvature inequality (see Theorem 4.1 below) used in the proof of
Theorem 1.1. After that, the obtained curvature inequality is applied to the re-
sult (Theorem 3.4 to follow), due to Hisamoto [18] and Matsumura [29], which is
a restricted version of the Boucksom–Popovici formula [4; 30] on the volume of
a line bundle. Their result will be stated later, but in order to use it we must ex-
press the curvature inequality in the terminology of pluripotential theory (and in
absolutely continuous parts) as follows.

Theorem 3.2. Let X be an n-dimensional complex manifold, and let Z be a
smooth d-dimensional subvariety of X not contained in Zero(vCX). Then, on Z,

(((vC
X
)−1|Z)dac = ((√−1∂∂̄ log vCX

)|Z)d
ac ≥ d! (n+ 1)d

2d
v̄CX|Z; (1)

here
((√−1∂∂̄ log vCX

)|Z)
ac represents the absolutely continuous part of the closed

semi-positive current
(√−1∂∂̄ log vCX

)|Z on Z with respect to the Lebesgue mea-
sure. Moreover,

〈(((vC
X
)−1|Z)d〉 = 〈((√−1∂∂̄ log vCX

)|Z)d 〉 ≥ d! (n+ 1)d

2d
v̄CX|Z (2)

follows if the left-hand side is well-defined, where 〈·〉 denotes the non-pluripolar
Monge–Ampère product.

Before commencing with a proof of this theorem, we briefly recall some necessary
facts about the non-pluripolar Monge–Ampère product for closed semi-positive
(1, 1)-currents on X. This notion first appeared in [5] and was systematically de-
veloped there by Boucksom, Eyssidieux, Guedj, and Zeriahi. We shall next sum-
marize several results introduced in that paper.

For a pseudo-volume form v on a general n-dimensional complex manifold X,
we regard v−1 as a singular Hermitian metric on the canonical bundle KX of X
as before. We always suppose that v−1 has the semi-positive curvature current√−1∂∂̄ log v.

The non-pluripolar Monge–Ampère product
〈(√−1∂∂̄ log v

)n〉
is uniquely char-

acterized by two properties: being local in the plurifine topology and putting no
mass on pluripolar subsets. On general X, however, the product is known not
to be well-defined for all such pseudo-volume forms v, where by well-defined
we mean that the product for v has locally finite mass. Surprisingly, we find
that the products for all such pseudo-volume forms v are well-defined over every
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compact Kähler manifold X. Furthermore, if such a pseudo-volume form v on
general X is continuous over X and is positive outside some proper analytic sub-
set S of X, then its non-pluripolar product can be rather concretely described.
Hence

〈(√−1∂∂̄ log v
)n〉

, if it is well-defined, is nothing but the zero extension

1X\S
(√−1∂∂̄ log v

)n
of the product (due to Bedford and Taylor [2]) on X \ S.

Here 1X\S is the characteristic function of X \ S. For instance, this description is
valid also for the Carathéodory pseudo-volume form vCX .

We should also mention that, even if absolutely continuous products are re-
placed with non-pluripolar products in the Boucksom–Popovici formula on the
volume of a line bundle, the formula is also true over a compact Kähler manifold.
This claim may be stated formally as follows.

Theorem 3.3 [5]. LetX be an n-dimensional compact Kähler manifold, and let
L be a holomorphic line bundle over X. Then

volX(L) = sup

{∫
X

〈T n〉; T ∈ c1(L) : semi-positive (1, 1)-current

}
.

The following proof of Theorem 3.2 was, in part, described to me by S. Bando.

Proof of Theorem 3.2. In order to show these inequalities, we need minor changes
to the proof of the first part of [20, Thm. 1] (see also Theorem 4.1 to follow). We
so often use Lemma 3.2 in [20] that we forgo citing it on each occasion.

We begin a proof of (1). First note that it is sufficient to prove that(√−1∂∂̄ log(vCX � iZ)
)d

ac ≥ (n+ 1)dd!

2d
v̄CX|Z

on a small compact subset K ⊂ Z \ Zero(vCX). Hence for all x ∈K we may con-
sider (gx |Z)∗

(
2d/d! (n + 1)d × (√−1∂∂̄ log v1

)d)
and g∗

xv1 � iZ as nonnegative
functions on K. Also, the Carathéodory extremal map gx is assumed to attain the
supremum of v̄CX|Z at x ∈Z:

(v̄CX|Z)x = (gx |Z)∗
(

2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
x

.

Then we can see that there exists some δ0 > 0 such that, for any x ∈K, this gx =
(g1

x , . . . , gnx ) maps an open neighborhood Ux of x biholomorphically onto the set
{t ∈ B

n; |t | < δ0}. In particular, gx = (g1
x , . . . , gnx ) itself gives holomorphic local

coordinates on Ux with center x. Hereafter let K be even smaller, so that K ⊂ Ux

for all x ∈K.

We approximate vCX by using the volume form (1 − |t |2)Nv1 on B
n and its pull-

back (1 − |gx |2)Ng∗
xv1 on X for two appropriate positive constants N. We have

(1 −|t |2)Nv1 = v1 at o ∈ B
n and (1 −|t |2)Nv1 < v1 on B

n \{o}. Then the approxi-
mation is denoted by vCε and is defined as follows. For an arbitrarily small positive
constant ε, we take such finite points (xi)i=1,2,...,k(ε) ⊂ K with k = k(ε) → ∞ (as
ε ↘ 0) so that {xi}i=1,2,. . . is dense in K, and we define a pseudo-volume form by
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vCε := sup
i=1,...,k(ε)

{(1 − |gxi |2)Ng∗
xi
v1|Uxi

}.
Then we have

vCε � iZ ↗ vCX � iZ (as ε ↘ 0) on K,

which follows from three properties: vCε � iZ = vCX � iZ at xi (i = 1, 2, . . . , k(ε));
vCε � iZ ≤ vCX � iZ on K; and {xi}i=1,2,. . . is dense in K. Moreover, if N and finite
points (xi)i=1,2,...,k(ε) in K are suitably chosen for ε, then we obtain something
more about the curvature current of vCε � iZ as follows.

Lemma 3.2. For an arbitrarily small positive constant ε, there exist a constant
N = N(ε) > 0 and finite points (xi)i=1,2,...,k(ε) in K such that the pseudo-volume
form vCε defined previously satisfies(√−1∂∂̄ log(vCε � iZ)

)d
ac ≥ d! (n+ 1)d

2d
(1 − ε)2v̄CX|Z on K. (3)

In the derivation of inequality (1) from this lemma, the following lemma of
Boucksom [4] plays a key role.

Lemma 3.3 [4]. Let (Tk)k∈N and T be semi-positive (1, 1)-currents on X. If
Tk

k→0 � T, then (Tac)
n ≥ lim infk→∞(Tk)

n
ac.

This lemma is applied with

Tk = √−1∂∂̄ log(vC1/k � iZ), T = √−1∂∂̄ log(vCX � iZ)
to obtain, via inequality (3) in Lemma 3.2,(√−1∂∂̄ log(vCX � iZ)

)d
ac ≥ d! (n+ 1)d

2d
v̄CX|Z on K.

Therefore, we now have only to show Lemma 3.2.

Proof of Lemma 3.2. Let (|gx | < r) denote the set {z∈X; |gx(z)| < r}.
Claim. There exist a positive number δ1 = δ1(ε) ∈ (0, δ0) and an N = N(δ)

such that

(gx |Z)∗
(

2d

d! (n+ 1)d
(√−1∂∂̄ log(1 − |t |2)Nv1

)d)
> (1 − ε)2v̄CX|Z (4)

on (|gx | < δ1) for all x ∈K.

Proof. By upper semicontinuity of v̄CX|Z , we can take a positive constant δ1 =
δ1(ε)∈ (0, δ0) such that

(gx |Z)∗
(

2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
> (1 − ε)v̄CX|Z

on (|gx | < δ1) for all x ∈K. So for all x ∈K, if N < δ1 < (n+ 1)ε then
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(gx |Z)∗
(

2d

d! (n+ 1)d
f
(√−1∂∂̄ log(1 − |t |2)Nv1

)d)
=

(
n+ 1 −N

n+ 1

)d
(gx |Z)∗

(
2d

d! (n+ 1)d
(√−1∂∂̄ log v1

)d)
>

(
1 − δ1

n+ 1

)d
(1 − ε)v̄CX|Z > (1 − ε)2v̄CX|Z

on |gx | < δ1.

Since vCX is Lipschitz continuous [23], there exists (after we make δ1 smaller, if
necessary) a positive constant L such that

|g∗
xv1 − vCX | < L|gx − gx(x)|vCX = L|gx |vCX (5)

on (|gx | < δ1) for all x ∈K.

Claim. There exist positive constants δ = δ(ε) ∈ (0, δ1) and N = N(ε) > 0
such that

(1 − |gx |2)Ng∗
xv1

∣∣
Ux

� iZ < (1 − |gy |2)Ng∗
yv1

∣∣
Uy

� iZ
over (|gx | ≥ δ1) ∩ (|gy | < δ) for all x ∈K.

Proof. We know that if N = N(ε) satisfies N · δ1 ≥ 4L then

(1 − |gx |2)Ng∗
xv1 ≤ (1 − (δ1)

2)Ng∗
xv1 ≤ (1 −N(δ1)

2)g∗
xv1

≤ (1 − 4Lδ1)v
C
X ≤ (1 − 4Lδ)vCX

on (|gx | ≥ δ1) for all x ∈ K. Meanwhile, we can check from (5) that, for suffi-
ciently small δ = δ(ε) > 0,

(1 − |gx |2)Ng∗
xv1 > (1 − |gx |2)N(1 − Lδ)vCX

> (1 − δ2)N(1 − Lδ)vCX > (1 − 2Lδ)vCX

on (|gx | < δ) for all x ∈K. Hence the assertion follows.

Fix ε for the time being. If we choose finite points (xi)i=1,2,...,k(ε) in K such that
K ⊂ ⋃k(ε)

i=1(|gxi | < δ) then this claim implies that, for each i ∈ {1, 2, . . . , k(ε)}, the
set in K defined by

log
(
g∗
xi
v1(δ)

∣∣
Uxi

� iZ
)
> max

j=1,2,..., î,...,k(ε)

log
(
g∗
xj
v1(δ)

∣∣
Uxj

� iZ
)

is contained in the open set (|gxi | < δ1) ∩K. Hence for any sequences (εj(l ))l∈N

(j = 1, 2, . . . , k(ε)) of positive numbers such that each (εj(l ))l∈N converges mono-
tonically to 0 as l → ∞, the open set defined by the inequality

log
(
g∗
xi
v1(δ)

∣∣
Uxi

� iZ
) + εi(l ) > max

j=1,2,..., î,...,k(ε)

(
log g∗

xj
v1(δ)

∣∣
Uxj

� iZ
) + εj(l )

is also contained in the open set (|gxi | < δ1)∩K for sufficiently large l. Therefore,
on the open set in K defined by
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log
(
g∗
xi
v1(δ)

∣∣
Uxi

� iZ
) + εi(l ) > max

j=1,2,..., î,...,k(ε)

(
log

(
g∗
xj
v1(δ)

∣∣
Uxj

� iZ
) + εj(l )

)
,

we obtain from inequality (4) that(√−1∂∂̄ max
j=1,2,...,k(ε)

(
log

(
g∗
xj
v1(δ)

∣∣
Uxj

� iZ
) + εj(l )

))d
= (√−1∂∂̄

(
log

(
g∗
xi
v1(δ)

∣∣
Uxi

� iZ
) + εi(l )

))d
= (√−1∂∂̄ log

(
g∗
xi
v1(δ)

∣∣
Uxi

� iZ
))d

≥ ((
gxi |Z∩Uxi

)∗√−1∂∂̄ log v1(δ)
)d ≥ d! (n+ 1)d

2d
× (1 − ε)2v̄CX|Z.

If we additionally require these sequences (εj(l ))l∈N (j = 1, 2, . . . , k(ε)) to satisfy
the property that, for any l ∈ N, the set defined by the equation

log
(
g∗
xi
v1(δ)

∣∣
Uxi

� iZ
) + εi(l ) = log

(
g∗
xj
v1(δ)

∣∣
Uxj

� iZ
) + εj(l )

is of Lebesgue measure 0 for each i, j ∈ {1, 2, . . . , k(ε)} with i < j, then(√−1∂∂̄ max
j=1,2,...,k(ε)

(
log

(
g∗
xj
v1(δ)

∣∣
Uxj

� iZ
)+ εj(l )

))d
ac

≥ d! (n+ 1)d

2d
(1 − ε)2v̄CX|Z

almost everywhere on K. Because the locally uniform convergence

max
j=1,2,...,k(ε)

(
log

(
g∗
xj
v1(δ)

∣∣
Uxj

� iZ
) + εj(l )

) l→∞−−−→ log(vCε � iZ)

holds on K (by definition of the approximation vCε ), we can apply Lemma 3.3
again with

Tl = √−1∂∂̄ max
j=1,2,...,k(ε)

(
log

(
g∗
xj
v1(δ)

∣∣
Uxj

� iZ
) + εj(l )

)
and

T = √−1∂∂̄ max
j=1,2,...,k(ε)

log
(
g∗
xj
v1(δ)

∣∣
Uxj

� iZ
) = √−1∂∂̄ log(vCε � iZ)

to obtain the desired inequality:(√−1∂∂̄ log(vCε � iZ)
)d

ac ≥ d! (n+ 1)d

2d
(1 − ε)2v̄CX|Z on K.

This concludes the proof of Lemma 3.2.

Next we prove the pluripotential theoretic inequality (2) in Theorem 3.2. First we
note that vCX is a continuous pseudo-volume form with the analytic subset Zero(vCX)
as a degenerate locus and that, by our hypothesis, Zero(vCX) does not contain Z.

So as we explained before the proof of Theorem 3.2, the non-pluripolar Monge–
Ampère product of the current((vC

X
)−1|Z = √−1∂∂̄ log(vCX � iZ) onZ, if it is well-

defined, coincides with the zero extension 1Z\Z∩Zero(vC
X
)

(√−1∂∂̄ log(vCX � iZ)
)d

of

the product on Z \ Z ∩ Zero(vCX) in the sense of Bedford and Taylor:〈(√−1∂∂̄ log(vCX � iZ)
)d 〉 = 1Z\Z∩Zero(vC

X
)

(√−1∂∂̄ log(vCX � iZ)
)d
.
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Hence the next claim follows easily.

Claim. 〈(√−1∂∂̄ log(vCX � iZ)
)d 〉 ≥ (√−1∂∂̄ log(vCX � iZ)

)d
ac

over Z.

Note. Given (1), this inequality immediately implies the desired inequality (2).

Proof of Claim. Since we must only prove this inequality locally on Z \ Z ∩
Zero(vCX), it follows from the preceding note that

〈(√−1∂∂̄ log(vCX � iZ)
)d 〉 =(√−1∂∂̄ log(vCX � iZ)

)d
there. For standard regularization kernels (ρε)ε>0, locally

we have the weak convergence(√−1∂∂̄ log(vCX � iZ) ∗ ρε
)d ε→0 �

(√−1∂∂̄ log(vCX � iZ)
)d

,

and the almost everywhere convergence(√−1∂∂̄ log(vCX � iZ) ∗ ρε
)d ε→0 ��

(√−1∂∂̄ log(vCX � iZ)
)d

ac

also holds (by Lebesgue’s theorem). Therefore, by Fatou’s lemma we have(√−1∂∂̄ log(vCX � iZ)
)d ≥ (√−1∂∂̄ log(vCX � iZ)

)d
ac.

The proof of Theorem 3.2 is now complete.

This proof could be simplified considerably if we used the method of viscosity so-
lutions for complex Monge–Ampère equations [15]. However, the author cannot
yet prove this theorem in that way. Instead, a proof of the pluripotential theoretic
inequality (7) of Theorem 4.2 by means of viscosity subsolutions will be given in
the last part of Section 4.1. We can also prove (7) using an argument similar to that
in the proof of Theorem 3.2.

We proceed with the proof of Theorem 3.1 in the case when X is projective. A
crucial tool for our proof is another expression formula of restricted volumes for
a line bundle L, which is obtained by Hisamoto [18] and Matsumura [29]. Their
formula is described in an analytic form with non-pluripolar products. In order
to state their result, we prepare several concepts. The algebraic subset of X de-
fined as

B+(L) =
{ there is no singular Hermitian metric h on L

x ∈X; such that h : smooth around x

(h : strictly positive on X

}
and is called the augmented base locus or the nonample locus ofL. Furthermore, a
semi-positive (1, 1)-currentT ∈ c1(L) is said to have a small unbounded locus if the
unbounded locus of a potential φ of T is contained in a certain complete pluripolar
closed proper subset of X. Here the unbounded locus of a quasi-plurisubharmonic
function φ is the set consisting of all points x ∈ X such that φ is unbounded in
every neighborhood of x.
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The Hisamoto–Matsumura formula is stated by using these concepts as follows.

Theorem 3.4 [18; 29]. Let X be an n-dimensional projective manifold, L a big
line bundle over X, and Z a d-dimensional irreducible closed complex subvariety
of X. Furthermore, suppose that Z �⊂ B+(L). Then

volX|Z(L) = sup
T

∫
Zreg

〈(T |Zreg)
d〉,

where T runs through all semi-positive (1, 1)-currents T ∈ c1(L) that have small
unbounded loci and whose unbounded loci do not contain Z.

To apply this formula with L = KX, T = 1/2π ×((vC
X̃
)−1 = 1/2π

√−1∂∂̄ log vC
X̃

,

and ourZ, we must verify that the assumptions of Theorem 3.4 for the currents and
the subvariety hold in our situation. In the situation of Theorem 3.1, the unbounded
locus of the curvature current

√−1∂∂̄ log vC
X̃

is Zero(vC
X̃
), which is certainly an

analytic subset—especially a complete pluripolar closed proper subset—of X. In
particular, the unbounded locus Zero(vC

X̃
) does not contain Z by the hypothesis

of Theorem 3.1. Moreover, by our hypothesis and the next lemma, we can check
that Z is not contained in the augmented base locus B+(KX) of the canonical bun-
dle KX, since Z is not contained in Zero(vC

X̃
).

Lemma 3.4.
B+(KX) ⊂ Zero(vC

X̃
).

This lemma also allows us to compare the Carathéodory measure hyperbolicity
with positivity of the canonical bundle in terms of relation of inclusion.

Proof of Lemma 3.4. Take any point x ∈X \ Zero(vC
X̃
) and let z = (z1, z2, . . . , zn)

be local holomorphic coordinates around x with center x. Since X is projective,
there exist a Kähler form ω and a sufficiently ample smooth divisor H on X not
containing x. In addition, let χx (resp. ρ) be a cutoff function that is identically
equal to 1 in a small neighborhood of x (resp. a small neighborhood of Zero(vC

X̃
))

and such that the support of χx does not touch H and Zero(vC
X̃
).

We consider the singular Hermitian metric

h = (vC
X̃
)−m × exp(−(1 − ρ) loghH (e, e)− 2nχx log|z − x|)

on K⊗m
X over a Stein manifold X \H, where e is the canonical section of the line

bundle [H ] associated with H and hH is any positively curved smooth Hermitian
metric on [H ] over X. If m is sufficiently large, then the curvature current (h =
−√−1∂∂̄ logh satisfies the following two positivity properties:

(h = m
√−1∂∂̄ log vC

X̃
+ √−1∂∂̄((1 − ρ) loghH (e, e)+ nχx log|z − x|2)

is semi-positive everywhere onX\H and is strictly positive on a neighborhood ofx.
These facts stem essentially from the strict positivity of the current

√−1∂∂̄ log vC
X̃
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on X \ Zero(vC
X̃
), which is obtained in [20, Thm. 1] (see also Theorem 3.5 to fol-

low). We can therefore apply the L2 estimates for the ∂̄ operator in the present sit-
uation. As a result, we obtain a smooth section α of K⊗(m+1)

X (i.e., a K⊗m
X -valued

(n, 0)-form) over X \H that is a solution of

∂̄α = ∂̄(χx(dz
1 ∧ dz2 ∧ · · · ∧ dzn)⊗(m+1))

with the estimate∫
X\H

|α|2h,ω
ωn

n!
≤ C

∫
X\H

|∂̄(χx(dz
1 ∧ dz2 ∧ · · · ∧ dzn)⊗(m+1))|2h,ω

ωn

n!
< ∞

for some constant C > 0 depending only on a lower bound of (h around x. Here
|·|h,ω denotes the standard norm with respect to the metrics h and ω. We thus find
a holomorphic section

σ := χx(dz
1 ∧ dz2 ∧ · · · ∧ dzn)⊗(m+1) − α

of (m+ 1)KX on X \H. By the L2 condition for α, this σ can be extended holo-
morphically to the whole X. Hence α can eventually be extended to the whole X.
Since the L2 integral of α with exp(−(1 − ρ) loghH (e, e) − 2nχx log|z − x|) as
a weight is finite, α must vanish at x and along ρ−1(0) ∩ H. Therefore, we find a
holomorphic section

σ := χx(dz
1 ∧ dz2 ∧ · · · ∧ dzn)⊗(m+1) − α ∈ H0(X, O((m+ 1)KX))

that is nonvanishing at x and vanishing along ρ−1(0) ∩ H. Furthermore, since
ρ−1(0) ∩ H contains a nonempty open set in H, it follows that σ vanishes on the
whole of H and so brings a section σ ∈ H0(X, O((m+ 1)KX −H )) nonvanishing
at x. Hence we let α0,α1, . . . ,αN be a basis of H0(X, O(H )). Then

H =
( N∑

i=0

|σ ⊗ αi |2
)−1/(m+1)

defines a singular Hermitian metric on KX with the globally strictly positive
curvature current, and H is smooth at x. Thus we have the required condition
x /∈ B+(KX).

Thanks to Lemma 3.4, 1/2π ×((vC
X̃
)−1 and Z satisfy (respectively) the hypotheses

on T and Z in Theorem 3.4. Finally, by (2) in Theorem 3.2 we conclude that

volX|Z(KX) ≥
∫
Zreg

〈(
1

2π
((vC

X̃
)−1|Zreg

)d 〉
≥ d! (n+ 1)d

(4π)d

∫
Zreg

v̄C
X̃|Z̃reg

.

The proof of Theorem 3.1 is now complete.

We finish this section by giving a counterexample to the inequality in the Conjec-
ture (and in Theorem 3.1) under the condition Z̃ ⊂ Zero(vC

X̃
).

LetC be a smooth projective curve whose genus is greater than1and letϕ : X →
C 3 be the blow-up of the smooth 3-foldC 3 = C×C×C alongC = C×[o]×[o].
Because the unit disk � is here the universal cover of C, we can write C = �/$
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for some discrete subgroup $ of SL(2, R) and denote by [o] the point in C repre-
sented by the origin o ∈�. We have already seen that the blow-up ψ : X̃ → �3 of
�3 along �× $o× $o induces the covering space π : X̃ → X over X satisfying
the commutative diagram

X̃

�

ψ
��

π

��

�3

��

X
ϕ

�� C 3 .

The exceptional divisor of ϕ is given by E = ϕ−1(C) = C × P
1 = Zero(vC

X̃
).

We define a 1-dimensional irreducible closed subvariety Z ⊂ X in E as Z =
C × (1 : 0) ⊂ C × P

1 and set Z̃ = π−1(Z) = �× $o × $o × (1 : 0) ⊂ X̃.

We can show that the volume comparison in Theorem 3.1 and/or the Conjec-
ture surely fails for this X and this Z. Indeed, we first identify �×y×z× (1 : 0)
with � for any (y, z)∈$o × $o. By Riemann’s extension theorem,

vC
X̃|Z̃ = sup{(f � ψ |Z̃)∗v1; f ∈ Hol(�3,�)}

= sup{ψ̃∗(f |�×$o×$o)
∗v1; f ∈ Hol(�3,�)}

for ψ̃ := ψ |Z̃ : Z̃ = � × $o × $o × (1 : 0) → � × $o × $o. Since ψ̃ is an
isomorphism by definition, it follows that for any (y, z)∈$o × $o we have

vC
X̃|Z̃|�×y×z×(1:0) = sup{(f |�×y×z)

∗v1; f ∈ Hol(�3,�)}
= sup{f ∗v1; f ∈ Hol(�× y × z,�)}
= v1.

Note that vC
X̃|Z̃ = v̄C

X̃|Z̃ since Z̃ ⊂ Zero(vC
X̃
) = E. Therefore,∫

Z

vC
X̃|Z̃ =

∫
Z

v̄C
X̃|Z̃ =

∫
C

v1 > 0.

On the other hand, we consider the restricted volume volX|Z(KX) of KX along Z.
Since the stable base locus B(KX) = ⋂

m∈N

⋂
σ∈H0(O(mKX))

σ−1(o) of KX is just
equal to E, it follows that Z ⊂ B(KX) and so clearly volX|Z(KX) = 0.

3.2. Ampleness of the Canonical Bundle via Strong
Carathéodory Measure Hyperbolicity

Next we deal mainly with the strong Carathéodory measure hyperbolicity. Our pur-
pose in this section is to give a numerical comparison between the Carathéodory
measure hyperbolicity and the ampleness of the canonical bundle over a com-
pact complex manifold when its universal cover is strongly Carathéodory measure
hyperbolic. In fact, this is a direct application of Theorem 3.1.

Yet if one merely wants to derive the ampleness of the canonical bundle from
the strong Carathéodory measure hyperbolicity, that can be done without much
difficulty. In particular, it follows from the strict positivity of the curvature current



280 Shin Kikuta

on the canonical bundle associated with the Carathéodory pseudo-volume form as
follows.

Theorem 3.5 [20, Thm. 1.1]. The curvature current ((vC
X
)−1 = √−1∂∂̄ log vCX

of the singular Hermitian metric (vCX)
−1 on the canonical bundle is strictly posi-

tive on the open set where vCX is nondegenerate.

This was also stated (without proof ) by Wu [33].
Theorem 3.5 can actually lead to the ampleness of the canonical bundle.

Corollary 3.1 [20, Cor. 1.2]. Let X be a compact complex manifold and X̃ its
universal covering space. If X̃ is strongly Carathéodory measure hyperbolic (i.e.,
if vC

X̃
is positive everywhere on X̃), then X is projective algebraic with the ample

canonical bundle.

In the proof of this corollary in [20], Richberg’s regularization technique [10] is ap-
plied to the continuous strictly plurisubharmonic function log vC

X̃
. The technique

enables us to regularize the singular Hermitian metric (vC
X̃
)−1 on the canonical bun-

dle KX of X while keeping the strict positivity of its curvature current. Hence we
obtain a smooth Hermitian metric on KX with the strictly positive curvature form
on X. By Kodaira’s embedding theorem, X turns out to be a projective algebraic
manifold with ample KX.

However, neither this corollary nor the proof can tell us how much more ample
the canonical bundle becomes as the Carathéodory pseudo-volume form becomes
larger. Hence our aim is to numericalize this corollary. To do that, we make use of
the Nakai–Moishezon–Kleiman numerical criterion for a line bundle being ample.

Theorem 3.6. Let L be a line bundle over a projective manifold X. Then L is
ample if and only if the intersection number

(LdimZ · Z) > 0

for every positive-dimensional irreducible closed subvariety Z of X.

In other words, the intersection numbers with all such subvarieties can be thought
of as quantities measuring the ampleness of the line bundle. Hence our next theo-
rem surely means that the ampleness of the canonical bundle is explicitly bounded
from below by the Carathéodory measure hyperbolicity.

Theorem 3.7. Let X be an n-dimensional compact complex manifold. Take any
Galois cover X̃

p−→ X and, for every subvarietyZ of X, denote by Z̃ the pull-back
of Z by p. Suppose that X̃ is strongly Carathéodory measure hyperbolic. Then
we have

(KdimZ
X · Z) ≥ (dimZ)! (n+ 1)dimZ

(4π)dimZ

∫
Zreg

v̄C
X̃|Z̃reg

for every positive-dimensional irreducible closed subvariety Z of X.
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This theorem is obtained as an easy application of Theorem 3.1 and Theorem 1.1
together. Hence the left-hand sides of the inequalities in Theorem 3.1 and Theo-
rem 1.1 become (KdimZ

X ·Z) andKn
X, respectively; the reasons are that volX|Z(L) =

(LdimZ · Z) follows for any nef and big line bundle L [13] and that KX is indeed
ample (by Corollary 3.1).

4. Curvature of Restricted Carathéodory Pseudo-volume Form
and Its Application to Positivity of a Cotangent Bundle

4.1. Curvature of Restricted Carathéodory Pseudo-volume Form

In this section we use several methods to investigate the curvature function of a
restricted Carathéodory pseudo-volume.

First we recall the curvature function for a pseudo-volume form v whose curva-
ture current (v−1 = √−1∂∂̄ log v is semi-positive; this function is defined in [20].
Here v−1 is regarded as a singular Hermitian metric on the canonical bundle KX

of X.

Definition 4.1 [20]. For a pseudo-volume form v on an n-dimensional com-
plex manifold X such that the curvature current (v−1 is semi-positive, we define
the curvature function Kv of v by setting

Kv := − 2n

(n+ 1)nn!

(√−1∂∂̄ log v
)n

ac

v
.

Here the coefficients of
√−1∂∂̄ log v are Radon measures owing to the semi-

positivity, so we denote by
(√−1∂∂̄ log v

)
ac the absolutely continuous part of√−1∂∂̄ log v with respect to the Lebesgue measure.

Under this definition, we calculate the curvature function of the Carathéodory
pseudo-volume form vCX in [20].

Theorem 4.1 [20, Thm. 1.1]. If a complex manifold X is Carathéodory measure
hyperbolic, then

KvC
X

≤ −1.

Our purpose here is to establish a restricted version of this theorem in various
ways. First we should point out that the curvature current ((vC

X|Z)−1 of the re-

stricted Carathéodory pseudo-volume form vCX|Z is semi-positive by the definition
of restricted Carathéodory pseudo-volume form. Therefore, the curvature function
makes sense for restricted Carathéodory pseudo-volume forms under the preced-
ing definition.

Theorem 4.2. Let X be a complex manifold of dimension n and let Z be its
smooth complex subvariety of dimension d. Then the curvature function KvC

X|Z
of

the restricted Carathéodory pseudo-volume form vCX|Z is bounded above by −1;
that is,
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(√−1∂∂̄ log vCX|Z
)d

ac ≥ (d + 1)dd!

2d
vCX|Z. (6)

Furthermore, the following pluripotential version of (6) holds if the non-pluripolar
Monge–Ampère product in the left-hand side is well-defined :〈(√−1∂∂̄ log vCX|Z

)d 〉 ≥ (d + 1)dd!

2d
vCX|Z. (7)

The inequality (7) for d = 1 corresponds to the holomorphic sectional curvature
of the Carathéodory metric being bounded above by −1 [8; 32].

We shall begin a proof of Theorem 4.2. In the same way as in the corresponding
part of the proof of Theorem 3.2, we can prove that (6) implies (7). Moreover, one
of the proofs of (6) is almost the same as the proof of Theorem 4.1 given in [20].
One difference with proving Theorem 4.1 is that here we apply the inequality

√−1∂∂̄ log((f̃ |Z)∗v(d )1 ) ≥ (f̃ |Z)∗
√−1∂∂̄ log v(d )1 (8)

for every f̃ ∈ Hol(X, Bd) that is nondegenerate on Z (we omit the details). How-
ever, we can also prove (6) by using another expression given in Proposition 2.2
of restricted Carathéodory pseudo-volume forms. For that, the following inequal-
ity is used in place of (8).

Lemma 4.1. For any f ∈ Hol(X, Bn) that is nondegenerate on Z,
√−1∂∂̄ log

(
(f |Z)∗

√−1∂∂̄ log v1
)d ≥ d + 1

n+ 1
(f |Z)∗

√−1∂∂̄ log v1.

Note that this lemma follows more easily if f |Z is an immersion into B
n. Actually,

it amounts to the elementary fact that the holomorphic bisectional curvature of a
complex submanifold is not larger than the one of its ambient space. If this were
not the case then we could not prove the inequality in Lemma 4.1 directly from the
general theory because the left-hand side is not regular.

Proof of Lemma 4.1. We give a proof by direct albeit rather long calculations. For
simplicity, we use f |Z to denote f = (f α)α=1,2,...,n = (f 1, f 2, . . . , f n) : Z →
B
n. The result is local, so it is sufficient to prove the inequality on any local

holomorphic chart (U ; z1, . . . , zd) of Z. We use the Einstein convention and omit∧d
α=1

√−1dzα ∧ dz̄α in what follows.

First we calculate the term
(
f ∗√−1∂∂̄ log v1

)d
in the inequality of Lemma 4.1

using the quantity

∆α = det

(
∂f αi

∂zj

)
i,j=1,2,...,d

for a pair α = (α1, . . . ,αd) of d integers with 1 ≤ α1 < α2 < · · · < αd ≤ n.

Claim.(
f ∗√−1∂∂̄ log v1

)d = d! (n+ 1)d

(1 − |f |2)d+1

∑
α,β

(
δαβ̄ −

d+1∑
i,j=1

∑
γ

(−1)i+jf γif γj

)
∆α∆β;
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here α = (α1, . . . ,αd) and β = (β1, . . . ,βd) run over all pairs of d integers such
that 1 ≤ α1 < α2 < · · · < αd ≤ n and 1 ≤ β1 < β2 < · · · < βd ≤ n, and γ =
(γ1, . . . , γd , γd+1) runs over all pairs of d + 1 integers with 1 ≤ γ1 < γ2 < · · · <
γd < γd+1 ≤ n satisfying (γ1, . . . , γ̂i , . . . , γd+1) = α and (γ1, . . . , γ̂j , . . . , γd+1) =
β (where the wide hat marks terms that are to be omitted ).

Proof. At first, we have

f ∗√−1∂∂̄ log v1

=
∑

α,β=1,2,...,n

√−1(n+ 1)

1 − |f |2
(
δαβ̄ + f α · f β

1 − |f |2
)
∂f α

∂zi
· ∂f

β

∂zj
dzi ∧ dz̄j

=
√−1(n+ 1)

1 − |f |2
(〈

∂f

∂zi
,
∂f

∂zj

〉
+ 1

1 − |f |2
〈
∂f

∂zi
, f

〉〈
f ,

∂f

∂zj

〉)
dzi ∧ dz̄j.

Here 〈·, ·〉 denotes the usual Hermitian inner product for complex n-vectors; thus,
for example, 〈

∂f

∂zi
,
∂f

∂zj

〉
=

n∑
α=1

∂f α

∂zi
· ∂f

α

∂zj
.

If we set A = (Aij̄ ) = (〈 ∂f
∂zi

, ∂f

∂zj

〉)
i,j

and A−1 = (Aīj )i,j , then
(
f ∗√−1∂∂̄ log v1

)d
can be calculated as follows:(

f ∗√−1∂∂̄ log v1
)d

= d! (n+ 1)d

(1 − |f |2)d det

(〈
∂f

∂zi
,
∂f

∂zj

〉
+ 1

1 − |f |2
〈
∂f

∂zi
, f

〉〈
f ,

∂f

∂zj

〉)
i,j=1,...,d

= d! (n+ 1)d

(1 − |f |2)d detA

(
1 + 1

1 − |f |2A
j̄i

〈
∂f

∂zi
, f

〉〈
f ,

∂f

∂zj

〉)
= d! (n+ 1)d

(1 − |f |2)d+1

(
detA · (1 − |f |2)+ detA · Aj̄i

〈
∂f

∂zi
, f

〉〈
f ,

∂f

∂zj

〉)
.

Here the second term in the last line becomes

detA · Aj̄i

〈
∂f

∂zi
, f

〉〈
f ,

∂f

∂zj

〉
= (−1)i+j det

(〈
∂f

∂zk
,
∂f

∂zl

〉)
k �=i, l �=j

〈
∂f

∂zi
, f

〉〈
f ,

∂f

∂zj

〉

= det

(〈
∂f

∂zi
,
∂f

∂zj

〉)
|f |2 − det


〈
∂f

∂zi
,
∂f

∂zj

〉 〈
∂f

∂zi
, f

〉
〈
f ,

∂f

∂zj

〉
〈f , f 〉

.

Let α = (α1, . . . ,αd) denote a pair of d integers with 1 ≤ α1 < α2 < · · · <
αd ≤ n and let γ = (γ1, . . . , γd , γd+1) denote a pair of d +1 integers satisfying the
same property 1 ≤ γ1 < γ2 < · · · < γd < γd+1 ≤ n. Then
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(1 − |f |2)d+1

d! (n+ 1)d
(
f ∗√−1∂∂̄ log v1

)d

= detA− det


〈
∂f

∂zi
,
∂f

∂zj

〉 〈
∂f

∂zi
, f

〉
〈
f ,

∂f

∂zj

〉
〈f , f 〉



=
∑
α

|∆α|2 −
∑
γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



∂f γ1

∂z1
· · · ∂f γ1

∂zd
f γ1

∂f γ2

∂z1
· · · ∂f γ2

∂zd
f γ2

...
. . .

...
...

∂f γd+1

∂z1
· · · ∂f γd+1

∂zd
f γd+1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

,

where α runs over all such pairs α = (α1, . . . ,αd) of d integers as before and like-
wise γ runs over all such pairs γ = (γ1, . . . , γd , γd+1) of d + 1 integers as before.
Calculating the second term further, we obtain

(1 − |f |2)d+1

d! (n+ 1)d
(
f ∗√−1∂∂̄ log v1

)d
=

∑
α

|∆α|2 −
∑
γ

∣∣∣∣ d+1∑
i=1

(−1)if γi∆γ1··· γ̂i ···γd+1

∣∣∣∣2

=
∑
α

|∆α|2 −
∑
γ

d+1∑
i,j=1

(−1)i+jf γif γj∆γ1··· γ̂i ···γd+1∆γ1··· γ̂j ···γd+1

=
∑
α

|∆α|2 −
∑
α,β

d+1∑
i,j=1

∑
γ

(−1)i+jf γif γj∆α∆β ,

where α, β, and γ run over all such pairs as in the Claim.

Define a Hermitian metric h on the trivial bundle U × C
n(n−1)/2 over U of rank

n(n−1)
2 by

h(ξ, ζ) =
∑
α,β

hαβ̄ ξζ
β =

∑
α,β

(
δαβ̄ −

d+1∑
i,j=1

∑
γ

(−1)i+jf γif γj

)
α,β

ξ αζ β

for two sections (ξ α)α and (ζ β)β of the bundleU×C
n(n−1)/2. Hereα = (α1, . . . ,αd)

and β = (β1, . . . ,βd) run over all pairs of d integers such that 1 ≤ α1 < α2 <

· · · < αd ≤ n and 1 ≤ β1 < β2 < · · · < βd ≤ n, and γ = (γ1, . . . , γd , γd+1) runs
over all pairs of d + 1 integers with 1 ≤ γ1 < γ2 < · · · < γd < γd+1 ≤ n satisfy-
ing (γ1, . . . , γ̂i , . . . , γd+1) = α and (γ1, . . . , γ̂j , . . . , γd+1) = β. Then the preceding
Claim means that
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(
f ∗√−1∂∂̄ log v1

)d = d! (n+ 1)d

(1 − |f |2)d+1
h(∆,∆)

holds if ∆ := (∆α)α is regarded as a holomorphic section of U × C
n(n−1)/2.

Claim. The metric h is positive definite.

Proof. If α �= β and α \ {αk} = (α1, . . . , α̂k , . . . ,αd) = (β1, . . . , β̂l , . . . ,βd) =
β \ {βl} for some k and l, then

d+1∑
i,j=1

∑
γ

(−1)i+jf γif γj = −(−1)k+lf βlf αk

in the component hαβ̄ of h; the reason is that γ = (γ1, . . . , γd , γd+1) runs over all
pairs of d + 1 integers with 1 ≤ γ1 < γ2 < · · · < γd < γd+1 ≤ n satisfying
both (γ1, . . . , γ̂i , . . . , γd+1) = α and (γ1, . . . , γ̂j , . . . , γd+1) = β. If α = β, then it
follows for the same reason that

d+1∑
i,j=1

∑
γ

(−1)i+jf γif γj = |f |2 −
d∑
i=1

f αif βi

in the component hαβ̄ of h. Moreover, except in the two cases just described, we
obviously have

d+1∑
i,j=1

∑
γ

(−1)i+jf γif γj = 0

in the component hαβ̄ of h for the same reason. If two pairs α and β satisfy α\β =
{αk} and β \ α = {βl} for some k and l, then we set εαβ̄ = (−1)k+l, f β\α = f βl ,
and f α\β = f αk ; otherwise, we set εαβ̄ = 0. Then we obtain the expression

hαβ̄ =
((

1 − |f |2 +
d∑
i=1

f αif βi

)
δαβ̄ + εαβ̄f

β\αf α\β
)
.

This equality yields, for all complex vectors (ξ α)α ,

hαβ̄ ξ
αξβ = (1 − |f |2)|ξ|2 +

∑
α

d∑
i=1

|f αi |2|ξ α|2

+
∑
τ

∑
a,b/∈τ,a �=b

sgn(bτ)f b sgn(aτ)f aξ τ∪{a}ξ τ∪{b}

= (1 − |f |2)|ξ|2 +
∑
τ

∑
a=b/∈τ

|f a|2|ξ τ∪{a}|2

+
∑
τ

∑
a,b/∈τ,a �=b

sgn(bτ)f b sgn(aτ)f aξ τ∪{a}ξ τ∪{b}

= (1 − |f |2)|ξ|2 +
∑
τ

∣∣∣∣∑
a /∈τ

sgn(aτ)f aξ τ∪{a}
∣∣∣∣2

,
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where τ in the summations runs over all pairs τ = (τ1, . . . , τd−1) of d −1 integers
with the property 1 ≤ τ1 < · · · < τd−1 ≤ n. Furthermore, for a /∈ τ and b /∈ τ we
use sgn(aτ) and sgn(bτ)) to denote sgn(a, τ1, . . . , τd−1) and sgn(b, τ1, . . . , τd−1),
respectively. By τ ∪ {a} and τ ∪ {b} we denote the respective pairs of d integers
arranged in ascending order. Therefore, we can see from the preceding formula
that the Claim is true.

Let D and R be, respectively, the Chern connection and the curvature form asso-
ciated with the Hermitian structure h on the vector bundle U × C

n(n−1)/2 over U.
In order to yield the inequality in Lemma 4.1, we take

√−1∂∂̄ log on both sides
of (9) to obtain

√−1∂∂̄ log
(
f ∗√−1∂∂̄ log v1

)d
= d + 1

n+ 1
f ∗√−1∂∂̄ log v1 + √−1∂∂̄ logh(∆,∆)

= d + 1

n+ 1
f ∗√−1∂∂̄ log v1

+ √−1
h(∆,∆)h(D∆ ∧D∆)− h(D∆,∆) ∧ h(∆,D∆)

h(∆,∆)2

− h
(√−1R∆,∆

)
h(∆,∆)

≥ d + 1

n+ 1
f ∗√−1∂∂̄ log v1 − h

(√−1R∆,∆
)

h(∆,∆)
.

In the last line we use the Cauchy–Schwarz inequality. In addition, we can see the
following about the last term of the right-hand side of the inequality.

Claim. The term R∆ vanishes.

Proof. In fact, for any pair ε = (ε1, . . . , εd) of d integers with 1 ≤ ε1 < ε2 <

· · · < εd ≤ n, we have∑
α

∂hαε̄

∂zk
∆α =

∑
α

∂

∂zk

(
δαε̄ −

d+1∑
i,j=1

∑
γ

(−1)i+jf γif γj

)
∆α

= −
d+1∑
i,j=1

∑
α

∑
γ

(−1)i+j ∂f
γi

∂zk
f γj∆α

= −
d+1∑
j=1

∑
γ

(−1)jf γj

d+1∑
i=1

(−1)i
∂f γi

∂zk
∆γ1γ2··· γ̂i ···γd+1;

in the last line, γ runs over all such pairs γ = (γ1, . . . , γd+1) of d+1 integers as be-
fore satisfying (γ1, . . . , γ̂j , . . . , γd+1) = ε. Moreover, if we substitute the equality
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d+1∑
i=1

(−1)i+d+1∂f
γi

∂zk
∆γ1γ2··· γ̂i ···γd+1

= det



∂f γ1

∂z1

∂f γ1

∂z2
· · · ∂f γ1

∂zd

∂f γ1

∂zk

∂f γ2

∂z1

∂f γ2

∂z2
· · · ∂f γ2

∂zd

∂f γ2

∂zk

...
...

. . .
...

...

∂f γd+1

∂z1

∂f γd+1

∂z2
· · · ∂f γd+1

∂zd

∂f γd+1

∂zk


= 0,

which holds by the definition of ∆, then∑
α

∂hαε̄

∂zk
∆α = 0

and we have in particular the β-component of R∆:

(R∆)β =
∑

k,j=1,2,...,d

∂

∂z̄j

{∑
α,ε

hε̄β
∂hαε̄

∂zi
∆α

}
dzi ∧ dz̄j = 0

for any β = (β1,β2, . . . ,βd) with 1 ≤ β1 < β2 < · · · < βd ≤ n. Here α and ε

in the summation run over all pairs of d integers such that 1 ≤ α1 < α2 < · · · <
αd ≤ n and 1 ≤ ε1 < ε2 < · · · < εd ≤ n, respectively.

This completes the proof of Lemma 4.1.

Next we provide another proof of (7) in Theorem 4.2 via viscosity subsolutions of
a complex Monge–Ampère equation; the concept is introduced in [15]. As men-
tioned before, it may (or may not) be possible to prove (2) in Theorem 3.2 in
this way.

Recall that we must prove the inequality〈(√−1∂∂̄ log vCX|Z
)d 〉 ≥ (d + 1)dd!

2d
vCX|Z.

If the left-hand side is well-defined over Z, then we already know that it coincides
with 1Z\Zero(vC

X|Z)
(√−1∂∂̄ log vCX|Z

)d
, where the wedge product

(√−1∂∂̄ log vCX|Z
)d

on Z \ Zero(vCX|Z) is due to Bedford and Taylor. Hence we need only show that(√−1∂∂̄ log vCX|Z
)d ≥ (d + 1)dd!

2d
vCX|Z (10)

overZ \Zero(vCX|Z). Since log vCX|Z is continuous onZ \Zero(vCX|Z), we can apply
the viscosity approach of [15] to the complex Monge–Ampère equation in the form(√−1∂∂̄ϕ

)d = (d + 1)dd!

2d
vCX|Z. (11)

A viscosity subsolution for a general complex Monge–Ampère equation is de-
fined as follows.
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Definition 4.2. Let M be a connected complex manifold of dimension m, and
let v be a continuous pseudo-volume form on M. Then an upper semicontinuous
function ϕ : M → R ∪ {−∞} is called a viscosity subsolution of the complex
Monge–Ampère equation

(√−1∂∂̄ϕ
)m = v if it satisfies the following conditions:

(i) ϕ �≡ −∞;
(ii) for every x0 ∈M and any C2 function q defined on a neighborhood of x0, if

ϕ − q has a local maximum 0 at x0 then
(√−1∂∂̄q

)m
x0

≥ vx0 .

We need the following theorem (which is [15, Prop. 1.5]) on a relation between vis-
cosity subsolutions and pluripotential subsolutions of a complex Monge–Ampère
equation.

Theorem 4.3. Let M be a connected complex manifold of dimension m and let
v be a continuous pseudo-volume form on M. Then, for any locally bounded and
upper semicontinuous function ϕ in M, ϕ is a viscosity subsolution of the complex
Monge–Ampère equation

(√−1∂∂̄ϕ
)m = v if and only if it is plurisubharmonic

and
(√−1∂∂̄ϕ

)m ≥ v holds in the sense of the Bedford–Taylor product.

We apply this theorem with M = Z \ Zero(vCX|Z), v = (d + 1)dd!/2d × vCX|Z , and
ϕ = log vCX|Z. We have already shown that ϕ is plurisubharmonic; hence, in order
to prove (10), it suffices to check that ϕ = log vCX|Z is actually a viscosity subsolu-
tion of the complex Monge–Ampère equation (11). Take every x0 ∈Z\Zero(vCX|Z)
and any C2 function q defined on a neighborhood of x0 such that log vCX|Z − q has
a local maximum 0 at x0. In that case, if hx0 ∈ Hol(X, Bd) attains the supremum
of vCX|Z at x0 then log(hx0 |Z)∗v(d )1 −q also has a local maximum 0 at x0, and what
is most important is that the function is smooth around x0. Therefore,(√−1∂∂̄q

)
x0

≥ (√−1∂∂̄ log(hx0 |Z)∗v(d )1

)
x0

≥ (hx0 |Z)∗
(√−1∂∂̄ log v(d )1

)
x0

,

which implies that(√−1∂∂̄q
)d
x0

≥ (hx0 |Z)∗
(√−1∂∂̄ log v(d )1

)d
x0

= (d + 1)dd!

2d
((hx0 |Z)∗v(d )1 )x0 = (d + 1)dd!

2d
(vCX|Z)x0 .

As a result, q has the required properties in Definition 4.2. We can thus conclude
that ϕ = log vCX|Z is a viscosity subsolution of the complex Monge–Ampère equa-
tion (11).

4.2. Nef Properties of Exterior Products of the Cotangent Bundle

In this section, Theorem 4.2 is applied to derive some explicit positivity properties
of the cotangent bundle—or, more generally, its exterior products over a compact
complex manifold.

Referring to Chandler and Wong [8], Wong [32], Graham [16], Eisenman
[14], and Kobayashi [23], we first recall briefly some standard terminology from
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complex Finsler geometry and the theory of hyperbolic complex spaces. This ter-
minology will be used to state our result.

Definition 4.3. The dth Carathéodory metric C d
X of a complex manifold X is a

complex Finsler metric on
∧d

TX defined as

(C d
X)

2 = sup{g∗v(d )1 ; g ∈ Hol(X, Bd)}.
Then we immediately prove the following relation between the dth Carathéodory
metric and the restricted Carathéodory pseudo-volume form of Z over X.

Proposition 4.1. For local holomorphic coordinates (z1, . . . , zd) on a smooth
subvariety Z,

(C d
X)

2

(
∂

∂z1
∧ · · · ∧ ∂

∂zd

) d∧
α=1

(√−1dzα ∧ dz̄α
) = vCX|Z on Z. (12)

Let π : E → X be a general holomorphic vector bundle over a compact complex
manifold X—say, the d-times exterior product

∧d
TX of the tangent bundle TX

of X. We consider the projectivized bundle πq : P(E) := E×/C× → X of E and
the quotient map q : E× → P(E), where E× := E \(zero section). We set [v] :=
q(v) for v ∈E×. The tautological line bundle OP(E)(−1) over P(E) is defined as

OP(E)(−1) = {([v], λv)∈π∗
qE; [v] ∈ P(E), λ∈ C};

its dual OP(E)(1) := OP(E)(−1)∗ is called the hyperplane bundle, and it satis-
fies the condition that OP(E)(1)|P(Ez) be equal to the hyperplane bundle OP(Ez)(1)
over the complex projective space P(Ez) for all z ∈ X, where Ez := π−1(z). A
positivity condition of E∗ is defined by the corresponding positivity condition of
OP(E)(1). For instance, E∗ is said to be nef if and only if OP(E)(1) is nef.

As a matter of fact, OP(E)(−1) is obtained after blowing up E along its zero
section. We therefore denote the blow-up by β : OP(E)(−1) → E.

Lemma 4.2. Through the blow-up β : OP(E)(−1) → E we have a one-to-one
correspondence between the space of all complex Finsler metrics on E whose log-
arithms are locally integrable and the space of all singular Hermitian metrics
on OP(E)(1). Hence the singular Hermitian metric hF corresponding to a given
locally logarithmic integrable complex Finsler metric F is of the form hF :=
(F 2 � β)−1.

Then we obtain that

c1(OP(E)(1),hF ) = 1

2π

√−1∂∂̄ logF 2 (13)

on P(E). Here it should be pointed out that the right-hand side can be interpreted
as a current on P(E) by the homogeneity of F.

We now begin to give a detailed explanation about an application of Theorem
4.2. For this purpose, we introduce a construction of a d-dimensional complex
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subvariety in P
(∧d

TX
)

from any d-dimensional subvariety iZ : Z ↪→ X of an
n-dimensional complex manifold X, where πd : P

(∧d
TX

) → X is the projec-
tivization of

∧d
TX. If Z is smooth, then the subvariety is indeed defined as the

image IZ(Z) of the following embedding IZ : Z → P
(∧d

TX
)
:

IZ(z) =
[(

∂

∂z1
∧ · · · ∧ ∂

∂zd

)
z

]
∈ P

(∧d
TX

)
for z∈Z and holomorphic local coordinates (z1, . . . , zd) of Z around z, where [·]
denotes the equivalence class. Observe that, because of the projectivization, this
definition does not depend on the choice of the holomorphic local coordinates.
For singular Z, we define a subvariety IZ(Z) as the Zariski closure of IZreg(Zreg)

in P
(∧d

TX
)
.

Unless stated otherwise, hereafter an n-dimensional complex manifold X is
assumed to be compact. Take a Galois cover X̃

p−→ X, and denote by Z̃ the pull-
back by p of a d-dimensional irreducible closed subvariety Z of X.

Kratz [24] has shown that the cotangent bundle T ∗X of X is nef if X̃ is
strongly Carathéodory measure hyperbolic. His proof goes as follows. By the
definition of the Carathéodory metric C1

X̃
on X̃, its logarithm is plurisubharmonic

on TX. Moreover, its logarithm is finite and continuous on (TX)× because the
Carathéodory metric is nondegenerate everywhere (by the strong Carathéodory
measure hyperbolicity of X̃). Therefore, since the curvature current of the singu-
lar Hermitian line bundle (OP(TX)(1),hC1

X̃

) is
√−1∂∂̄ log(C1

X̃
)2 by (13), it follows

from the Richberg regularization theorem that the curvature current can be regu-
larized with an arbitrarily small negative part. From this we have that OP(TX)(1)
is nef. By definition, the nefness of the cotangent bundle T ∗X holds.

However, the proof does not tell us how nef T ∗X becomes as the Carathéodory
measure hyperbolicity becomes stronger. So our aim is to numericalize Kratz’s
result, and we actually obtain the following result from Theorem 4.2.

Corollary 4.1. Let X be an n-dimensional compact complex manifold and Z

its d-dimensional irreducible closed subvariety. Take any Galois cover X̃
p−→ X,

and denote by Z̃ the pull-back of Z by p. Suppose that Z ∩ Zero(vC
X̃
) = ∅. Then

(O
P(

∧d
TX)(1)

d · IZ(Z)) ≥ d! (d + 1)d

(4π)d
µC

X̃|Z̃(Z). (14)

Proof. By (13) we know that c1(OP(
∧d

TX)(1),hC d

X̃

) is just1/2π×√−1∂∂̄ log(C d

X̃
)2.

Owing to the requisite hypothesis Z ∩ Zero(vC
X̃
) = ∅ for the theorem, we can

apply Richberg’s regularization technique to the semi-positive current
(
1/2π ×√−1∂∂̄ log(C d

X̃
)2

)∣∣
IZ reg(Zreg)

and obtain

(O
P(

∧d
TX)(1)

d · IZ(Z)) =
∫
IZ reg(Zreg)

〈((
1

2π

√−1∂∂̄ log(C d

X̃
)2

)∣∣∣∣
IZ reg(Zreg)

)d 〉

=
∫
IZ reg(Zreg)

〈((
1

2π

√−1∂∂̄ log(C d

X̃
)2

)∣∣∣∣
I
Z̃ reg

(Z̃reg)

)d 〉
.
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Here the wedge product in the integral is taken in the sense of Bedford and Tay-
lor, and in the first equality we used the continuity property of Bedford–Taylor
products along locally uniformly convergent sequences of potentials. By Propo-
sition 4.1,

(O
P(

∧d
TX)(1)

d · IZ(Z)) =
∫
Zreg

〈(
1

2π

√−1∂∂̄ log vC
X̃|Z̃reg

)d 〉
.

Therefore, the proof can be reduced to a curvature property of restricted Carathé-
odory pseudo-volume forms. Hence, by Theorem 4.2 and the Riemann extension
theorem, we have the desired inequality:

(O
P(

∧d
TX)(1)

d · IZ(Z)) ≥ d! (d + 1)d

(4π)d

∫
Zreg

vC
X̃|Z̃reg

= d! (d + 1)d

(4π)d
µC

X̃|Z̃(Z).
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