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Quantum Ring of Singularity Xp +XY q
Huijun Fan & Yefeng Shen

1. Introduction

Let (X, x) be an isolated complete intersection singularity of dimension N − 1.
This means that X is isomorphic to the fiber (f −1(0), 0) of an analytic map-germ
f : (CN+k−1, 0) → (Ck, 0) and that x ∈ X is an isolated singular point of X. In
particular, if k = 1 then (X, x) is called a hypersurface singularity. The study of
the singularity was initiated by H. Whitney and R. Thom and later developed by
V. Arnold, K. Saito, and many other mathematicians from the 1960s and 1980s
(see [AGV; He; S; ST]). The classification problem is the central topic in singular-
ity theory. Many geometric and topological invariants were introduced to describe
the behavior of the singularity—for example, the Milnor ring, intersection matrix,
Gauss–Manin system, and periodic map. Singularity theory has tight connections
with many fields of mathematics, including differential equations, function theory,
and symplectic geometry.

The papers [FJR1; FJR2; FJR3] construct a quantum theory for a hypersurface
singularity given by a nondegenerate quasi-homogeneous polynomialW. The start-
ing point of this research is Witten’s work [W] that seeks to generalize the Witten–
Kontsevich theorem to the moduli problem of r-spin curves. Unlike in the r-spin
case, in which the Witten equation has only trivial solution, in the generalW case
(e.g., theDn and E7 cases) the Witten equation may have nontrivial solutions that
cannot be ignored in the construction of the virtual cycle [Wg,k]vir. The Witten
equation is defined on an orbifold curve and has the following form:

∂̄ui + ∂W

∂ui
= 0,

where the ui are sections of appropriate orbifold line bundles.
The Witten equation comes from the study of the Landau–Ginzburg (LG) model

in supersymmetric quantum field theory, which can be viewed as a geometrical
realization of the N = 2 superconformal algebra. The other known model is the
nonlinear sigma model corresponding to Gromov–Witten theory. In the LG model,
the Lagrangian is totally determined by its superpotential—for instance, a quasi-
homogeneous polynomial. There are two possible ways of deriving topological
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field theories by twisting the LG model: the so-called LG A model and LG B
model. The LG B model has been studied extensively in physics and mathematics.
The mathematical theory of the LG A model is just the quantum singularity the-
ory constructed by Fan–Jarvis–Ruan. As pointed out in [IV], the more appropriate
model is the orbifold LG model, which should be “identical” to a Calabi–Yau (CY)
sigma model by CY–LG correspondence. In fact, the state space of the quantum
singularity theory is a space of the dual forms of Lefschetz thimbles orbifolded by
an admissible symmetric group G of the polynomialW.

Once we determine the state space and obtain the virtual cycle [Wg,k]vir, we
can build up the quantum invariants for the singularity. For instance, we can de-
fine the correlators 〈τl1(αi1), . . . , τln(αin)〉W,G

g for αij in the state space HW,G and
the cohomological field theory. All the correlators are assembled into a generating
function

DW,G = exp

(∑
g≥0

h̄2g−2Fg,W,G

)
,

where Fg,W,G is the genus-g generating function:

Fg,W,G =
∑
k≥0

〈τl1(αi1), . . . , τln(αin)〉W,G
g

t
l1
i1
· · · t lnis
n!

.

So computing those quantum invariants is critical for understanding the singu-
larity. For an invertible singularity W, Berglund and Hübsch [BH] use Landau–
Ginzburg theory to construct the mirror dual singularity WT (see also [IV; K1;
K2; K3]). This has now been generalized by Krawitz [Kr] to a mirror construc-
tion containing the symmetry group. The mirror symmetry phenomenon is also
described in [C] from the toric point of view. At the Frobenius algebra level, the
modern language of mirror symmetry asserts that the quantum ring (also called the
FJRW ring) in the A model of the singularity (W,Gmax) should be isomorphic to
the Milnor ring in the B model of the dual singularityWT. We also have stronger
conjectures that relate the generating function DW,G to Givental’s formal generat-
ing function. Let us say more about this conjecture.

The genus-g Gromov–Witten (GW) potential function of one point is

F pt
g :=

∑
k≥0

1

k!

∑
d1,...,dk

〈τd1 · · · τdk 〉gtd1 · · · tdk

=
∑
k≥0

1

k!

∑
d1,...,dk

∫
Mg,k

ψ
d1
1 · · ·ψdk

k td1 · · · tdk .

The Witten–Kontsevich generating function is D pt = exp
(∑

g h̄
g−1F pt

g

)
.

Let A be a finite index set having a distinguished element 1. Suppose that the
Q-vector space Vect(A) generated by A is attached with a nondegenerate sym-
metric bilinear form η. The formal genus-0 GW potential is a power series F0 in
variables td,l (d ∈N, l ∈A):
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F0 =
∑
k≥0

1

k!

∑
d1,...,dk
l1,...,lk

〈τd1,l1 · · · τdk,lk 〉0 td1,l1 · · · tdk,lk ;

this series satisfies the string equation (SE), the dilaton equation (DE), and the
topological recursion equation (TRR).

Let Fpr be the primary potential of F, where tdk,lk = 0 for dk > 0. Then Fpr

satisfies the WDVV (Witten–Dijkgraaf–Verlinde–Verlinde) equation and forms a
Frobenius manifold. We call F0 semi-simple of rank µ if |A| = µ and the alge-
bra structure on Vect(A) is semi-simple for generic t0,l . Givental [Gi] found that
there is a transitive action of the twisted loop group on the set of all semi-simple
genus-0 GW potentials of rank µ. So given a semi-simple potential F0 of rank µ,
there exists a group element R taking k copies F pt

0 ⊕ · · · ⊕ F pt
0 to F0.

Using a method to quantize the quadratic functions (see [Gi]), the group ele-
mentR can be quantized to obtain an element R̂(h̄) in Givental’s group; here R̂(h̄)
acts on the k copies of the tau-functions D pt⊕· · ·⊕D pt to get a power series DGiv

in h̄, where DGiv can be written in the form DGiv = exp
(∑

g h̄
g−1Fg

)
. If DGiv is

required to satisfy a homogeneity condition, then it is uniquely defined and satis-
fies the SE, DE, and TRR equations as well as the Virasoro constraints.

Given a genus-0 GW potential of a projective manifold that is semi-simple,
Givental conjectured that the total GW potential is the same to DGiv constructed
from the genus-0 GW potential. We have the same question in the quantum sin-
gularity theory. Let DW,G be the tau-function in our LG A model, and let D0,W,G

be the genus-0 tau-function. If the Frobenius manifold induced by D0,W,G is semi-
simple, then we can get the formal tau-function DGiv,W,G.

Conjecture 1.1. DW,G = DGiv,W,G.

This should be true by Teleman’s theorem [Te] if we can show that D0,W,G is semi-
simple. To prove the semi-simple property, it is natural to show that the Frobe-
nius manifold associated to the singularity W/G in the A model is isomorphic to
Saito’s Frobenius manifold of the dual singularity WT in the B model (which is
easily proved to be semi-simple). If the symmetry groupG is chosen suitably, then
we should have the following problem.

Conjecture1.2. DW,G is identical toDGiv,WT under some mirror transformation.

Conversely, since the construction of the quantum theory depends on choosing the
admissible subgroup G such that 〈J 〉 ≤ G ≤ Gmax (see the definitions in Sec-
tion 2), we should not expect a mirror correspondence from the LG A model of the
dual singularityWT with the trivial symmetry group to the LG B model of the sin-
gularityW. However, a mirror correspondence between the orbifold LG A model
and the orbifold LG B model has been given in [Kr].

So-calledADE singularities are simple singularities (according toArnold’s clas-
sification) and have special properties. For instance, ADE singularities are self-
mirroring; this was shown in [FJR2], where the authors calculated the quantum
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ring structure of the ADE singularities. Furthermore, by computing the basic four-
point correlators (via the WDVV equation and the reconstruction theorems), these
authors proved Conjecture 1.2 and thus (via the conclusions in [GiM]) the gener-
alized Witten conjecture for DE cases.

In this paper we prove the Frobenius algebra level of mirror symmetry for chain-
type singularities in two variables. This is the first example beyond the ADE case.
The Frobenius algebra–level mirror symmetry is also proved for unimodel and
bimodel singularities in [Kr+] and in [Ac] for loop-type singularities in two vari-
ables. Krawitz [Kr] generalized this symmetry to all invertible singularities.

To prove Conjecture 1.2 for more general singularities, one must compare the
Frobenius manifolds. In the B side, it is difficult to calculate the primary po-
tential of Saito’s Frobenius manifold associated to a singularity other than ADE
singularities. On the other hand, Noumi [N] has considered the following type of
singularities:

(i) xp1
1 + xp2

2 + · · · + xpNN ,
(ii) xp1

1 + x1x
p2
2 + xp3

3 + · · · + xpNN .
Noumi considers the Gauss–Manin system associated to these two singularities.
An important fact is that the flat coordinates of the Frobenius manifold and the
formula of primary potential is given in [NY]. This gives one possible way to
compare the Frobeniu manifolds of both mirror sides.

Since the Frobenius structure of singularities (i) and (ii) in either side is the
tensor product of the Frobenius strucures of the Ar singularity and the singu-
larity xp + xy q, it is natural for us to compute only the primary potential func-
tions of the singularity xp + xy q in the A model and then to compare it with
the Noumi–Yamada computation in the B model. By the WDVV equation, one
may show that the primary potential depends on the metric, three-point correla-
tors, and some basic four-point correlators. We need only compare the metric,
the three-point correlators, and some four-point correlators in both sides. Com-
puting the quantum invariants of xp and xp + xy q is important because we can
take the direct sum of those singularities to form a Calabi–Yau singularity (whose
central charge is a positive integer). Once we know the quantum invariants of the
Calabi–Yau singularity, then by the CY–LG correspondence it is hoped we will get
the Gromov–Witten invariants of the Calabi–Yau hypersurface defined by the CY
singularity. Actually, the genus-0 correspondence for the quintic 3-fold has been
verified in [ChR].

In this paper we calculate the quantum ring structure of the chain-type singu-
larity in two variables, W = xp + xy q for p, q ≥ 2, and construct an explicit
isomorphism to the Milnor ring of the dual singularityWT = xpy + y q. We shall
proceed as follows. In Section 2 we give a brief description of the Fan–Jarvis–
Ruan–Witten (FJRW) theory and list some useful axioms. In Section 3, we discuss
the quantum ring structure for the singularity xp + xy q when gcd(p − 1, q) = 1;
in Section 4, we treat the case gcd(p − 1, q) > 1.

The first author would like to thank Tyler Jarvis, Masatoshi Noumi, Kentaro
Hori, and Marc Krawitz for their helpful discussions on a related problem. Both
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authors thank Yongbin Ruan for his helpful suggestions, comments, and kind help
for many years.

2. The Fan–Jarvis–Ruan–Witten Theory

2.1. The Classical Singularity Theory

Definition 2.1. A polynomial W : CN → C is quasi-homogeneous if there are
positive integers d, n1, . . . , nN such that, for any λ∈C∗,

W(λn1x1, . . . , λnNxN) = λdW(x1, . . . , xN).

We also define the weight (or charge) of xi to be qi := ni/d. We sayW is nonde-
generate if the choices of weights qi are unique; note thatW has an isolated critical
value only at zero. There are many examples of nondegenerate quasi-homogeneous
singularities, including all the nondegenerate homogeneous polynomials such as
the famous ADE examples.

A classical invariant of the singularity is the local algebra, also known as the
Milnor ring or Chiral ring in physics:

QW := C[x1, . . . , xN ]/Jac(W );
here Jac(W ) is the Jacobian ideal generated by partial derivatives of W. The de-
gree of the monomial makes the local algebra a graded algebra. There is a unique
highest-degree element det

(
∂2W
∂xi∂xj

)
with degree

ĉW =
N∑
i=1

(1− 2qi). (1)

We call ĉW the central charge of W. The dimension of the local algebra is called
the Milnor number and is given by the formula

µ =
N∏
i=1

(
1

qi
− 1

)
.

Let φi, i = 0,1, . . . ,µ − 1, be a basis of QW . We can consider the miniver-
sal deformation Ft(x) := W + t0φ0 + · · · + tµ−1φµ−1, t = (t0, . . . , tµ−1) ∈ Cµ.

Let S be a small ball centered at the origin of Cµ. We have the Milnor fibration
F : CN × S → C× S given by (x, t)→ (Ft(x), t). Assume that the critical val-
ues of F are in Cδ × S, where Cδ := {z ∈ C | ‖z‖ < δ}. Let z0 ∈ ∂Cδ; then
F −1
t (z0)→ t ∈ S is a fiber bundle. We consider the middle homoly bundle over
S with fiber HN−1(F

−1
t (z0), Z) for each t ∈ S. For a generic t, Ft(x) is a holo-

morphic Morse function. A distinguished basis ofHN−1(F
−1
t (z0), Z) can be con-

structed from a system of paths connecting z0 to the critical values. A system of
paths li : [0,1] → Cδ connecting z0 to critical values zi is called distinguished if

(i) li has no self intersection,
(ii) li, lj has no intersection except li(0) = lj(0) = z0, and
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(iii) the paths l1, . . . , lµ are numbered in the same order in which they enter the
point z0 (counterclockwise).

For each li, we can associate a homology class δi ∈ HN−1(F
−1
t (z0), Z) as a

vanishing cycle along li . More precisely, the neighborhood of the critical point
of zi contains a local vanishing cycle. Then δi is obtained by transporting the
local vanishing cycle to z0 using the homotopy lifting property. The cycle δi is
unique up to the homotopy of li provided the homotopy does not pass another
critical value. Now δ1, . . . , δµ define a distinguished basis of HN−1(F

−1
t (z0), Z).

A different choice of the distinguished system of paths gives a different distin-
guished basis. The transformation relation between two bases is described by the
Picard–Lefschetz transformation. The intersection matrix (δi � δj ) is an invariant
of the singuarity and is used to classify that singularity. Another closely related
set of objects are Lefschetz thimbles, which are the generators of the relative ho-
mology classes HN(CN,F −1

t (z0), Z). The boundary homomorphism ∂ gives an
isomorphism ∂ : HN(CN,F −1

t (z0), Z) → HN−1(F
−1
t (z0), Z). Geometrically, a

Lefschetz thimble 1i is the union of the vanishing cycles along the path li, and
we have ∂1i = δi .

Letting the radius δ of Cδ go to∞, we take z0 =−∞. Let Re(Ft ) be the real part
of Ft . The relative homology class becomes HN(CN, (Re(Ft ))−1(−∞,−M), Z)
for M � 0. We write Re(Ft )−1(−∞,−M) more simply as F −∞

t and write
Re(Ft )−1(M,+∞) as F +∞

t . Now the Lefschetz thimble 1i in HN(CN,F −∞
t , Z)

is canonically determined by a horizontal path from the critical value to −∞.
Although the intersection matrix of the vanishing cycles may be degenerate, the
intersection pairing between Lefschetz thimbles is nondegenerate:

I : HN(C
N,F −∞

t , Z)⊗HN(CN,F +∞
t , Z)→ Z.

This pairing is given by the intersection of the stable manifold and the unsta-
ble manifold of the critical point, and it is preserved by parallel transport via the
Gauss–Manin connection. Naturally (see [FJR2]) we have the dual pairing

ηt : H
N(CN,F −∞

t , C)⊗HN(CN,F∞
t , C)→ C. (2)

2.2. The Quantum Invariants of the Singularity

LetGmax := Aut(W ) be the maximal admissible symmetry group ofW consisting
of group element γ = (c1, . . . , cN) ∈ (C∗)N and such that W(c1x1, . . . , cNxN) =
W(x1, . . . , xN). Observe thatGmax always contains the subgroup 〈J 〉, where J :=
diag(e2πiq1, . . . , e2πiqN ) is the exponential grading element. We can take any sub-
groupG such that 〈J 〉 ≤ G ≤ Gmax. Using the groupG, we can orbifold the space
of Lefschetz thimbles. For any γ ∈G, let CNγ

γ be the fixed locus of γ, let Nγ be
the complex dimension of the fixed locus, and letWγ :=W |

C
Nγ
γ

be the restriction.
According to [FJR2, Lemma 3.2.1], 0 is the only critical point of Wγ and G is a
subgroup of Aut(Wγ ). LetW∞

γ = Re(Wγ )
−1(−∞,−M) for M � 0.

Definition 2.2. For γ ∈ G, the γ -twisted sector Hγ is defined to be the G-
invariant part of the middle-dimensional relative cohomology forWγ :
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Hγ := HNγ(CNγ
γ ,W∞

γ , C)G. (3)

For α ∈Hγ , we say α is narrow if Nγ = 0 or that α is broad if Nγ �= 0.

Definition 2.3. Suppose γ = (e2πi7γ1, . . . , e2πi7γ
N ) ∈ G for rational numbers

0 ≤ 7γi < 1. Then the degree-shifting number of γ is

ιγ :=
∑
i

(7
γ

i − qi). (4)

For a class α ∈Hγ , we define the complex degree of α to be

degC(α) := Nγ/2+ ιγ . (5)

The following result was proved as Proposition 3.2.4 in [FJR2].

Proposition 2.4. Let γ ∈Gmax. Then, for any α ∈Hγ and β ∈Hγ−1,

ιγ + ιγ−1 = ĉW −Nγ ,

degC(α)+ degC(β) = ĉW . (6)

Definition 2.5. The state space of the singularityW/G is defined to be

HW,G =
⊕
γ∈G

Hγ .

The pairing in HW,G is defined to be the direct sum of the pairings

〈·, ·〉γ : Hγ ⊗Hγ−1 → C,

where 〈·, ·〉γ is just the pairing η(·, ·) of the singularityWγ .

The quantum invariants of the singularityW/G are defined via the construction of
the virtual fundamental cycle [Wg,k(γ)]vir (or [W(:)]vir ). Let us briefly describe
the properties of these virtual fundamental cycles and some axioms related to our
computations in this paper. We consider only the case G = Gmax.

Recall that an orbicurve C of genus g and k marked points p1, . . . ,pk is a Rie-
mann surface with orbifold structure at each marked point. The isotropy group at
each marked point pi is canonically isomorphic to Z/mi for some positive inte-
ger mi. Given a nondegenerate quasi-homogeneous polynomialW, we can define
aW-structure on C. Roughly speaking, aW-structure on an orbicurve C is a choice
of N orbifold line bundles L1, . . . , LN satisfying some relations defined by the
polynomialW (see [FJR2] for details).

Any γl = (e2πi7γl
1 , . . . , e2πi7γl

N ) ∈ Gmax gives an action on each orbifold line
bundle Lj at the marked point pi. We use |Lj | to denote the desingularization of
Lj , which is a line bundle on the coarse curve of C. If aW-structure exists on an
orbicurve C, then

deg(|Lj |) =
(
qj(2g − 2+ k)−

k∑
l=1

7
γl
j

)
∈Z. (7)
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The orbicurve withW-structure is called W-orbicurve, and the stack of stable
W-orbicurves forms the moduli space Wg,k. For any choice γ := (γ1, . . . , γk) ∈
Gk

max, we define Wg,k(γ) ⊆ Wg,k to be the open and closed substack with orbifold
decoration γ, where γi is the canonical generator of the isotropy group at pi. We
call γ the type of anyW-orbicurve in Wg,k(γ). Note that Wg,k(γ) is not empty if
and only if condition (7) holds. Forgetting theW-structure and the orbifold struc-
ture gives a morphism st : Wg,k(γ)→ Mg,k. This morphism plays a role similar
to that played by the stabilization morphism of stable maps. The following theo-
rem is proved in [FJR2].

Theorem 2.6. For any nondegenerate and quasi-homogeneous polynomial W,
the stack Wg,k is a smooth compact orbifold (Deligne–Mumford stack) with pro-
jective coarse moduli. In particular, the morphism st : Wg,k → Mg,k is flat,
proper, and quasi-finite (but not representable).

Moreover, one can consider the decorated dual graph : of a stableW-curve and
obtain the moduli space Wg,k(:), which is a closed substack of Wg,k(γ). Let T(:)
be the set of tails of the decorated graph : and attach an element γτ ∈Gmax to each
tail τ. The virtual cycle [W(:)]vir was constructed in [FJR2; FJR3] by studying
the Witten equation and its moduli problem. It was proved that the virtual cycle
[W(:)]vir satisfies a series of axioms analogous to those in Gromov–Witten the-
ory. We will list some of those axioms after introducing the FJRW correlators.

2.3. Cohomological Field Theory

For any homogeneous elements α := (α1, . . . ,αk) with αi ∈Hγi , the map <Wg,k ∈
Hom(H⊗k

W ,H ∗(Mg,k)) is defined as

<Wg,k(α) := |G|g
deg(st)

PD st∗
(

[Wg,k(W, γ)]vir ∩
k∏
i=1

αi

)
(8)

and then extends linearly to general elements of H⊗k
W , where PD is the Poincare

duality map.
The following statements were proved in [FJR2].

Theorem 2.7. The collection (HW , 〈·, ·〉W, {<Wg,k}, e1) is a cohomological field
theory with flat identity. The genus-0 theory defines a Frobenius manifold.

The quantum invariants of the singularity W/Gmax consist of the correlators de-
fined as follows.

Definition 2.8. Letψi be the canonical classes in the tautological ring of Mg,k.

Then the FJRW correlators are defined to be

〈τl1(α1), . . . , τlk (αk)〉Wg :=
∫

[Mg,k ]
<Wg,k(α1, . . . ,αk)

k∏
i=1

ψ
li
i .
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We mainly use the following axioms about the virtual cycle. For the proofs, see
[FJR3].

Theorem 2.9. Let : be a decoratedW-graph of a genus-g curve with k marked
points, and let γi ∈ G be the decoration of :. Then the virtual cycle [W(:)]vir

satisfies the following axioms.
1. Dimension. The virtual cycle [W(:)]vir has degree 6g−6+2k−2D and lies in

Hr(W(:), Q)⊗∏k
i=1HNγi

(CNγi
γi

,W∞
γi

, Q). Here r = 6g−6+2k−2D−∑k
i=1Nγi

and

D := −
N∑
i=1

index(L i ) = ĉW (g − 1)+
k∑
j=1

ιγj . (9)

Thus 〈τl1(α1), . . . , τlk (αk)〉Wg �= 0 implies

k∑
i=1

degC(αi)+
k∑
i=1

li = (ĉW − 3)(1− g)+ k. (10)

2. Degenerating connected graphs. Let : be a connected, genus-g, stable, dec-
orated W-graph, and let ĩ : W(:) → Wg,k(γ) be the canonical inclusion map.
Then

[W(:)]vir = ĩ∗ [Wg,k(γ)]
vir. (11)

3. Concavity. Suppose that all tails of : are narrow. If π∗
(⊕N

i=1 L i

) = 0, then

[W(:)]vir = ctop

((
R1π∗

t⊕
i=1

L i

)∗)
∩ [W(:)]. (12)

4. Index zero. Suppose dim(W(:)) = 0 and let all the decorations on tails
be narrow. Let π∗

(⊕N
i=1 L i

)
and R1π∗

(⊕N
i=1 L i

)
be vector bundles of the same

rank, and denote the Witten map D : (x1, . . . , xN) �→
(
∂W

∂x1
, . . . , ∂W

∂xN

)
. Then

[W(:)]vir = deg(D)[W(:)]. (13)

5. Composition. Given any genus-g decorated stable W-graph : with k tails
and given any edge e of :, let :̂ denote the graph obtained by “cutting” the edge
e and replacing it with two unjoined tails τ+ and τ− decorated (respectively) with
γ+ and γ−. Consider the fiber product F := W(:̂)×M(:)W(:) with morphisms
W(:̂)

q←− F pr2←−− W(:). We have

〈[W(:̂)]vir〉± = 1

deg(q)
q∗ pr∗2([W(:)]vir ), (14)

where 〈·〉± is the map obtained by contracting via the pairing

〈·, ·〉 : HNγ+(CN
γ+ ,W∞

γ+ , Q)⊗HNγ−(CN
γ− ,W∞

γ− , Q)→ Q.

Remark 2.10. Let :4 be the graph corresponding to the singular point in M0,4.

Consider the virtual cycle W(:4;α1, . . . ,α4) for :4 with decorations α1, . . . ,α4,
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and let 〈|α1, . . . ,α4|〉W0 = ∫
[:4]<

W
0,4(α1, . . . ,α4). Then the composition axiom im-

plies that
〈|α1, . . . ,α4|〉W0 =

∑
i,j

〈α1,α2,αi〉W0 ηi,j〈αj ,α3,α4〉W0 . (15)

2.4. Quantum Ring (Quantum Cohomology Group)
of the Singularity

The simplest quantum structure of a singularity is the Frobenius algebra consist-
ing of the state space, the metric, and the quantum multiplication � given by the
genus-0 three-point correlators:

〈α�β, γ〉 = 〈τ0(α), τ0(β), τ0(γ )〉W,G
0 . (16)

In order to show the mirror symmetry between the LG A model of the quasi-
homogenous singularity W and the LG B model of the dual singularity WT, we
must first identify the corresponding Frobenius algebra structures and then com-
pare the Frobenius manifold structure. When these structures are identical, we aim
to construct the mirror map between the A model theory (FJRW theory) and the
B model theory (Saito–Givental theory).

In the LG B model, the Frobenius algebra is the Milnor ring QW with the resi-
due pairing and the multiplication of the monomials. For f , g ∈QW , the residue
pairing is nondegenerate and defined as

〈f , g〉 := Resx=0
fg dx1 ∧ · · · ∧ dxN

∂W

∂x1
· · · ∂W

∂xN

= Cµ. (17)

Here x = (x1, . . . , xN), µ is the Milnor number, and C is a unique constant that
satisfies

fg = C · Hessian(W ) modulo Jac(W ).

In the LG A model, the intersection pairing I of the Lefschetz thimbles is dual
to ηt in (2). The relative cohomology groups HN(CN,F ±∞

t , C) and the pairing ηt
can be identified with the space>N/dFt ∧d>N−1 via the residue pairing on the de-
formed Milnor ring QFt ; see [FJR2, Sec. 5.1] and [Ce]. An explicit isomorphism
will be given in [FSh].

3. Quantum Ring of (W = Xp +XYq, G = Gmax),
gcd(p −1, q) = 1

3.1. Basic Calculation

Consider the singularityW = Xp +XY q for p, q ≥ 2, where p−1 and q are co-
prime. In this case, the group G = 〈J 〉 ∼= Z/(pq)Z. Let ξ = exp

( 2πi
pq

); then J
acts on QWω by (ξ q, ξp−1), where ω = dX ∧ dY. We also have

qx = 1

p
, qy = p − 1

pq
, ĉW = 2(p − 1)(q − 1)

pq
, 7Jx =

1

p
, 7Jy =

p − 1

pq
.
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Let < = {i | 1≤ i ≤ pq − 1, p � i}. Then the state space is

HW,G = C〈y q−1e0, ek | k ∈<〉,
where e0 := dX ∧ dY ∈ H 2(C2

J 0 ,W∞
J 0 , Q) and ek := 1 ∈ H 0(C0

J k
,W∞

J k
, Q). We

remark that only y q−1e0 is a broad sector. Furthermore,

dimC HW,G = pq + 1− q.
We shall use

{
r
}

to denote the fractional part of the real number r. Then

7J
k

x =
{
k

p

}
and 7J

k

y =
{
k(p − 1)

pq

}
;

by (4) in Definition 2.3, the degree-shifting numbers are

ιJ k = 7Jkx − qx +7Jky − qy =
{
k

p

}
+

{
k(p − 1)

pq

}
+ 1− p − q

pq
.

For any α ∈HJ k , we can use the degree formula (7) to obtain:

degC ek =
{
k

p

}
+

{
k(p − 1)

pq

}
+ 1− p − q

pq
, k ∈<; (18)

degC(y
q−1e0) = (p − 1)(q − 1)

pq
= ĉW

2
. (19)

3.2. Correlators

For simplicity, we identify e0 with y q−1e0 and define the set

<̂ := <
⋃
{0}.

For any i, j, k ∈ <̂, the computation of 〈ei, ej , ek〉W0 can be classified into four cases.

Case 1. i = j = k = 0
By the dimension axiom (10), we have

〈y q−1e0, y q−1e0, y q−1e0〉W0 = 0.

Case 2. i �= 0 and j = k = 0
By the dimension axiom (10), only 〈e1, y q−1e0, y q−1e0〉W0 is nonzero. From the
residue pairing (17) we obtain

η0,0 = 〈e1, y q−1e0, y q−1e0〉W0 = − 1

q
. (20)

Case 3. ijk �= 0

Lemma 3.1. If ijk �= 0, then 〈ei, ej , ek〉W0 �= 0 if and only if i + j + k is equal to
pq + 1 or to 2pq + 1. Furthermore,

〈ei, ej , ek〉W0 =
{

1 if deg|Lx | = deg|Ly | = −1,

−q if deg|Lx | = −2 and deg|Ly | = 0.
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Proof. In this case, we can compute the degrees of orbifold line bundles using
equation (7):

deg|Lx | = 1

p
−

{
i

p

}
−

{
j

p

}
−

{
k

p

}
;

deg|Ly | = p − 1

pq
−

{
i(p − 1)

pq

}
−

{
j(p − 1)

pq

}
−

{
k(p − 1)

pq

}
.

We observe that

degC(ei )+ degC(ej )+ degC(ek) = ĉW − deg|Lx | − deg|Ly | − 2. (21)

Now let us assume 〈ei, ej , ek〉W0 to be nonzero. Applying the dimension axiom (10)
yields

deg|Lx | + deg|Ly | = −2. (22)

Furthermore, the degrees of |Lx | and |Ly | should be integers. Hence

i + j + k ≡ 1 modulo (p) and

(i + j + k)(p − 1) ≡ p − 1 modulo (pq).

Since 3 ≤ i+ j + k ≤ 3pq−3 and since p−1 and pq are coprime, we must have

i + j + k = pq + 1 or 2pq + 1.

Therefore,

−3 < deg|Lx | = 1

p
−

{
i

p

}
−

{
j

p

}
−

{
k

p

}
< 0.

Thus (22) implies that (deg|Lx |, deg|Ly |) is either (−1,−1) or (−2, 0). In the
former case, π∗(Lx ⊕ Ly) = 0 and R1π∗(Lx ⊕ Ly) = 0. Using the concavity
axiom (12), we then obtain

〈ei, ej , ek〉W0 = 1.

In the latter case, for each fiber (isomorphic to CP 1) of the universal curve C over
W0,3(W ; J i, Jj, J k), we have

H 0(CP 1, |Lx | ⊕ |Ly |) = 0⊕ C and H1(CP 1, |Lx | ⊕ |Ly |) = C⊕ 0.

The Witten map from H 0 to H1 is (px̄p−1 + ȳ q, qx̄ȳ q−1). This map has degree
−q and so, by the index zero axiom (13), we have

〈ei, ej , ek〉W0 = −q.
Combining (20) and Lemma 3.1 yields the following statement.

Corollary 3.2. The inverse matrix ηαβ of the metric ηαβ has the form

ηαβ =




1 if α + β = pq,

−q if α = β = 0,

0 otherwise.
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Remark 3.3. We also have the following conclusions:

• for fixed i and j, there is at most one k such that 〈ei, ej , ek〉W0 �= 0;
• if 2 ≤ (i + j) ≤ pq then k = pq + 1− (i + j);
• if (pq + 2) ≤ (i + j) ≤ (2pq − 2) then k = 2pq + 1− (i + j).

Case 4. ij �= 0 and k = 0

Lemma 3.4. For i, j ∈<,

〈ei, ej , y q−1e0〉W0 =
{ ±1 if i + j = pq + 1 and 〈|ei, ej , ei, ej |〉W0 = −q,

0 otherwise.

Before giving the proof, we discuss the sign in the formula. For a single term—say,
〈ek , eM , y q−1e0〉W0 as in Lemma 3.5—we know it is a square root of 1. Yet because
this term contains a broad sector y q−1e0, computing the exact value of such a cor-
relator is beyond the reach of current methods. However, we can always fix the
sign to be +1 by choosing either y q−1e0 or −y q−1e0 as an insertion. Once we
have made such a choice, the sign will no longer depend on i, j in the formula.
See Remark 3.7 for more details.

Proof of Lemma 3.4. We assume that 〈ei, ej , y q−1e0〉W0 is nonzero. On the one
hand, since degC(y

q−1e0) = ĉW/2, dimension axiom (10) implies

degC(ei )+ degC(ej ) = (p − 1)(q − 1)

pq
. (23)

On the other hand, from the composition axiom (2.9) it follows that

〈|ei, ej , ei, ej |〉W0 =
∑
α,β∈<

〈ei, ej , eα〉W0 ηαβ〈ei, ej , eβ〉W0

+ (〈ei, ej , y q−1e0〉W0 )2η0,0. (24)

Denote by Lx,i,j,i,j and Ly,i,j,i,j the orbifold line bundles corresponding to the
G-decorated graph (J i, Jj, J i, Jj ). Then using equation (7) yields

deg|Lx,i,j,i,j | = 2

p
− 2

{
i

p

}
− 2

{
j

p

}
and

deg|Ly,i,j,i,j | = 2p − 2

pq
− 2

{
i(p − 1)

pq

}
− 2

{
j(p − 1)

pq

}
.

(25)

Because gcd(p − 1, q) = 1, there are three cases.

Case 1: p and q are both odd. In this case, for fixed α,β ∈< we cannot have
both α = β and α + β = pq. Therefore, at least one of ηαβ , 〈ei, ej , eα〉W0 , and
〈ei, ej , eβ〉W0 vanishes. By (24) we know that 〈ei, ej , y q−1e0〉W0 �= 0 if and only
if 〈|ei, ej , ei, ej |〉W0 �= 0. So suppose that 〈|ei, ej , ei, ej |〉W0 �= 0; then, using the
dimension axiom (10), again we have

deg|Lx,i,j,i,j | + deg|Lx,i,j,i,j | = −2. (26)
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Moreover, deg|Lx,i,j,i,j | and deg|Lx,i,j,i,j | are integers; hence

deg|Lx,i,j,i,j | = 2

p
− 2

{
i

p

}
− 2

{
j

p

}
< 0 (27)

and

deg|Ly,i,j,i,j | = 2p − 2

pq
− 2

{
i(p − 1)

pq

}
− 2

{
j(p − 1)

pq

}
< 1. (28)

Since p is odd, we must have

(deg|Lx,i,j,i,j |, deg|Ly,i,j,i,j |) = (−2, 0).

Similarly, by the index zero axiom (13) we have

〈|ei, ej , ei, ej |〉W0 = −q.
And since pq/2 is not an integer, it follows that deg|Ly,i,j,i,j | = 0 implies i+j =
pq + 1. Now using equation (24), we obtain 〈ei, epq+1−i, y q−1e0〉W0 = ±1.

Case 2: p is even and q is odd. In this case, the first term on the right side of
(24) is nonzero if and only if 〈ei, ej , epq/2〉W0 �= 0. Since p is even, we have

deg|Ly,i,j,pq/2| = p − 1

pq
−

{
i(p − 1)

pq

}
−

{
j(p − 1)

pq

}
− 1

2
< 0.

From Lemma 3.1 it follows that 〈ei, ej , epq/2〉W0 �= 0 implies 〈ei, ej , epq/2〉W0 = ±1
for i + j = pq/2+ 1 or 3pq/2+ 1, and

deg|Lx,i,j,pq/2| = deg|Ly,i,j,pq/2| = −1.

Hence the corresponding degree formula is

deg|Lx,i,j,i,j | = deg|Ly,i,j,i,j | = −1.

Thus, by the concavity axiom (12), 〈ei, ej , ei, ej〉W0 = 1. Given (24), we know that

〈ei, ej , y q−1e0〉W0 = 0.

Now we need only consider what happens when the first term on the right-hand
side of equation (24) vanishes, in which case 〈ei, ej , epq/2〉W0 = 0. We have

〈|ei, ej , ei, ej |〉W0 = −q(〈ei, ej , y q−1e0〉W0 )2.
Using a similar argument as in Case 1, we need only prove

(deg|Lx,i,j,i,j |, deg|Ly,i,j,i,j |) �= (−1,−1);
otherwise, we can compute deg|Lx,i,j,pq/2| = deg|Ly,i,j,pq/2| = −1. Using Lem-
ma 3.1 yields 〈ei, ej , epq/2〉W0 = 1, which is a contradiction.

Case 3: q is even. Then p is also even by our assumption gcd(p − 1, q) = 1.
Hence pq/2 /∈< and so the first term on the right-hand side of (24) must be zero.
We assume that 〈ei, ej , y q−1e0〉W0 �= 0; then, by equation (24), 〈|ei, ej , ei, ej |〉W0 �=
0. Hence deg|Ly,i,j,i,j | is an integer and we have

2(p − 1)(1− i − j) ≡ 0 modulo (pq).
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Now i + j = pq/2 + 1 or pq + 1 or 3pq/2 + 1. We claim that i + j = pq + 1,
and arguing as before shows that 〈|ei, ej , ei, ej |〉W0 = −q.

Otherwise, if i + j = pq/2+ 1 or 3pq/2+ 1 then

i + j ≡ 1 modulo (p)

and
(i + j)(p − 1)

pq
≡ 1

2
+ p − 1

pq
modulo (1).

Using degree formula (18), we obtain

degC(ei )+ degC(ej ) ≡ (p − 1)(q − 1)

pq
+ 1

2
modulo (1).

This contradicts equation (23).

3.3. Generators and Mirror Symmetry

We will now prove that there exist two generators for the ring structure of HW,G

defined by Fan–Jarvis–Ruan–Witten theory.

Lemma 3.5. There exists a unique pair of integers k and m in <̂ that satisfy
degC ek = q−1

pq
, degC em = 1

q
, and the following congruence equation:

−(k − 1)(p − 1) ≡ (m− 2)(p − 1) ≡ 1 modulo (pq). (29)

Proof. Ifp = 2 then it is easy to deriveM = 1, k = 0,m= 3, and k ≡ pq +1−M.
For p > 2, since p − 1 and q are coprime it follows easily that the congruence

equation (29) has a unique solution k such that 1 ≤ k ≤ pq − 1 and p � k; this k
will satisfy p | (k − 2), so

degC ek =
{
k

p

}
+

{
k(p − 1)

pq

}
+ 1− p − q

pq
= q − 1

pq
.

We can find em similarly. In fact, there exists a uniqueM with 1≤M ≤ (pq − 1)
and such that

(p − 1)M ≡ 1 modulo (pq).

Now we have k = pq + 1−M and set m = M + 2.

In the rest of this section, m, k,M are the integers in Lemma 3.5. We always have

M + 1= m− 1, p | (M + 1), k ≡ pq + 1−M modulo (pq). (30)

Lemma 3.6. There is a canonical bijective map f between the set1 := {(s, t)∈
Z⊕ Z | 0 ≤ s ≤ p− 2, 0 ≤ t ≤ q − 1} and the set < = {i ∈Z | 1 ≤ i ≤ pq − 1,
p � i}.
Proof. We define a map f : 1→ < as follows. If there exists an i ∈< such that

i ≡ 1+ s(k − 1)+ t(m− 1) modulo (pq),

then f(s, t) = i. Using (30), we have
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1+ s(k − 1)+ t(m− 1) ≡ (M + 1)(t − s)+ (s + 1) modulo (pq).

Since p | (M+1) and 0 < s+1≤ p−1, it follows that the map f is well-defined
and so

p � (1+ s(k − 1)+ t(m− 1)).

Moreover, if f(s, t) = f(s ′, t ′) then

1+ s(k − 1)+ t(m− 1) ≡ 1+ s ′(k − 1)+ t ′(m− 1) modulo (pq).

Therefore,
s − s ′ ≡ (M + 1)(s ′ + t ′ − s − t) modulo (pq).

Since p | (M + 1) and since 0 ≤ s, s ′ ≤ p − 2, we have s ′ = s and

(t ′ − t)(M + 1) ≡ 0 modulo (pq).

Since 0 ≤ t, t ′ ≤ q − 1, it follows that t ′ = t and the map is injective.
Finally, bijectiveness follows because the cardinality of both 1 and < is

(p − 1)q.

Now, for each i ∈<we can identify ei, e1+s(k−1)+t(m−1), and (s, t), where f(s, t) =
i. We define (p − 1, 0) = ∓q · y q−1e0 and (p, 0) = (1, 0)� (p − 1, 0).

Remark 3.7. Consider ek = (1, 0), em = (0, 1), and eM = (p − 2, 0). By (27)
and (28), it is not hard to check for nonzero 〈ei, ej , y q−1e0〉W0 in Lemma 3.4. With
nonzero 〈|ei, ej , ei, ej |〉W0 , we must have ei = (s, 0) and ej = (p − 1− s, 0) for
some 1≤ s ≤ p − 2. Then the associativity of � implies

〈ei, ej , y q−1e0〉W0 = 〈ek , eM , y q−1e0〉W0 .
Lemma 3.8. (s, t)� (u, v) = (s + u, t + v) if 0 ≤ s + u ≤ p − 2 and 0 ≤
t + v ≤ q − 1.

Proof. Let i = f(s, t) and j = f(u, v); then

(s, t)� (u, v) = ei � ej =
∑
α,β∈<̂

〈ei, ej , eα〉W0 ηαβeβ.

Using (30) now yields

i + j ≡ 1+ s(k − 1)+ t(m− 1)+ 1+ u(k − 1)+ v(m− 1)

≡ (M + 1)(t + v − s − u)+ (2+ s + u) modulo (pq).

Since 2 ≤ 2+ s + u ≤ q and p | (M + 1), we have

i + j �≡ 1 modulo (pq).

By Remark 3.3, there exists at most oneα ∈< such that 〈ei, ej , eα〉W0 is nonzero and

α ≡ −(M + 1)(t + v − s − u)− (1+ s + u) modulo (pq).

Therefore,
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deg|Lx | = 1

p
−

{
i

p

}
−

{
j

p

}
−

{
α

p

}
= −1.

Hence deg|Ly | = −1 also and 〈ei, ej , eα〉W0 = 1.
Now (s, t)� (u, v) = ei � ej = epq−α = e1+(s+u)(k−1)+(t+v)(m−1) = (s + u,

t + v).
Lemma 3.9. We have the following identities characterizing the multiplication �:

(i) (p − 2, 0)� (1, 0) = ∓q · y q−1e0 = (p − 1, 0);
(ii) (p − 1, 0)� (0, 1) = 0;

(iii) (p, 0)+ q(0, q − 1) = 0;
(iv) (s, t)� (u, v) = 0 if t + v ≥ q;
(v) (s, t)� (u, v) = 0 if s + u ≥ p − 1 and t + v �= 0;

(vi) (s, 0)� (u, 0) = −q(s + u− p, q − 1) for 0 ≤ s, u ≤ p − 1 and
p ≤ s + u ≤ 2p − 2.

Proof. We can check directly as follows.
(i) Since e1+(p−2)(k−1) = eM andM+k = pq+1, we know that 〈e1+(p−2)(k−1),

ek , eα〉W0 �= 0 if and only if α = 0. Therefore,

(p − 2, 0)� (1, 0) = e1+(p−2)(k−1) � ek

= 〈eM , ek , y q−1e0〉W0 η0,0y q−1e0 = ∓q · y q−1e0.

By associativity, for any 0 ≤ s ≤ p − 2 we have (p − 1 − s, 0)� (s, 0) =
(p − 1, 0).

(ii) 〈y q−1e0, em, eα〉W0 �= 0 implies m + α = pq + 1. Then p | α and α /∈ <̂.
Thus

(p−1, 0)� (0, 1) = ∓q · y q−1e0 � em = ∓q
∑
α,β∈<̂

〈y q−1e0, em, eα〉W0 ηαβeβ = 0.

(iii) Recall that 〈ek , y q−1e0, eM〉W0 = ±1, (p−1, 0) = ∓q·y q−1e0, and epq−M =
(0, q − 1). Hence

(p, 0) = ek � (∓q · y q−1e0)

= ∓q〈ek , y q−1e0, eM〉W0 ηM,pq−Mepq−M = −q(0, q − 1).

(iv) For t + v ≥ q we have (0, q − 1)� (0, 1) = − 1
q
(p, 0)� (0, 1) = 0.

Therefore,

(s, t)� (u, v) = (s, 0)� [(0, q − 1)� (0, 1)] � (0, v + t − q)� (u, 0) = 0.

(v) For s + u ≥ p − 1 and t + v �= 0,

(s, t)� (u, v) = [(0, t)� (p − 1, 0)] � (s + u+ 1− p, v) = 0.

(vi) For this last case, we have

(s, 0)� (u, 0) = (p, 0)� (s + u− p, 0)

= −q(0, q − 1)� (s + u− p, 0)

= −q(s + u− p, q − 1).
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Theorem 3.10. If gcd(p−1, q) = 1 then ek and em in Lemma 3.5 generate the
quantum ring of (W = Xp +XY q, Gmax). The multiplication is given by

• ∓q · y q−1e0 = ep−1
k ,

• ei = esk � etm, if i ∈< such that f(s, t) = i for (s, t)∈1.
Here ep−1

k denotes the (p−1)th power of ek under the multiplication �.Moreover,
we have:

• ep−1
k � em = (p − 1, 0)� (0, 1) = 0;

• epk + qeq−1
m = (p, 0)+ q(0, q − 1) = 0.

The mirror symmetry phenomenon between two dual singularities is formalized
in our next corollary.

Corollary 3.11. If gcd(p−1, q) = 1, then for the pair (W = Xp+XY q,G =
Gmax) we have a C-algebra isomorphism HW,G

∼= QWT , whereWT = XpY + Y q
is the dual singularity.

Proof. Define a C-algebra epimorphism F : C[X,Y ] → HW,G such that F(X) =
ek and F(Y ) = em. Theorem 3.10 implies that both Xp−1Y and Xp + qY q−1 are
in Ker(F ). Observe that the dimension of the vector space C[X,Y ]/(pXp−1Y,
Xp + qY q−1) and of HW,G are both pq − q + 1. Hence we have the C-algebra
isomorphism

F̄ : C[X,Y ]/(pXp−1Y,Xp + qY q−1)→ HW,G.

The corollary now follows because C[X,Y ]/(pXp−1Y,Xp + qY q−1) = QWT .

4. Quantum Ring of (W = Xp +XYq, G = Gmax),
gcd(p −1, q) = d �= 1

4.1. Basic Calculation

We have the same fractional degrees and the central charge:

qx = 1

p
, qy = p − 1

pq
, ĉW = 2(p − 1)(q − 1)

pq
.

Let ξ = exp
( 2πi
pq

)
and let λ act on QWω by (ξ−q, ξ). Then λ generates the maxi-

mal admissible abelian groupG = Z/(pq)Z. Now7Jx = p−1
p

and7Jy = 1
pq
. The

G-invariant state space of the polynomialW is

HW,G = C〈y q−1e0, ek | k ∈<〉.
Here e0, ek , and < are defined as before. We also have

dimC HW,G = pq + 1− q.
Moreover,
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7J
k

x =
{
p − k
p

}
, 7J

k

y =
{
k

pq

}
,

ιJ k =
{
p − k
p

}
+

{
k

pq

}
− p + q − 1

pq
,

degC(y
q−1e0) = (p − 1)(q − 1)

pq
= ĉW

2
,

degC ek =
{
p − k
p

}
+

{
k

pq

}
+ 1− p − q

pq
.

Remark 4.1. In this case, ep−1 will be the unit in the quantum ring.

4.2. Correlators

The computation of 〈ei, ej , ek〉W0 is also classified into four cases.

Case 1. i = j = k = 0
By dimension axiom (10), all correlators of this type vanish.

Case 2. i �= 0 and j = k = 0
The only nonzero correlator is

〈ep−1, y
q−1e0, y q−1e0〉W0 = − 1

q
.

Case 3. ijk �= 0

Lemma 4.2. If i, j, k ∈<, then

〈ei, ej , ek〉W0 =



−q if i + j + k = p − 1,

1 if i + j + k = pq + p − 1,

0 otherwise.

Proof. We have

deg|Lx | = 1

p
−

{
p − i
p

}
−

{
p − j
p

}
−

{
p − k
p

}
, (31)

deg|Ly | = p − 1

pq
−

{
i

pq

}
−

{
j

pq

}
−

{
k

pq

}
. (32)

If 〈ei, ej , ek〉W0 �= 0, then deg|Lx | and deg|Ly | are integers. Using (31) and (32)
together with dimension axiom (10), we have

deg|Lx | + deg|Ly | = −2. (33)

Since deg|Ly | is an integer, (32) now implies

i + j + k ≡ p − 1 modulo (pq). (34)
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Thus i + j + k = p−1, pq + p−1, or 2pq + p−1. The last case is impossible
because if i + j + k = 2pq + p − 1 then deg|Ly | = −2. By (31) and (33), this
contradicts the fact that

deg|Lx | = 1

p
−

{
p − i
p

}
−

{
p − j
p

}
−

{
p − k
p

}
< 0.

If i + j + k = p − 1 then (deg|Lx |, deg|Ly |) = (−2, 0). In this case, index zero
axiom (13) implies

〈ei, ej , ek〉W0 = −q.
If i + j + k = pq + p − 1 then (deg|Lx |, deg|Ly |) = (−1,−1). Using the con-
cavity axiom (12) now yields 〈ei, ej , ek〉W0 = 1.

Remark 4.3. The metric ηαβ has the same form as in Corollary 3.2.

Case 4. ij �= 0 and k = 0

Lemma 4.4. For ij �= 0,

〈ei, ej , y q−1e0〉W0 =
{ ±1 if i + j = p − 1,

0 otherwise.

Proof. We have

deg|Lx,i,j,i,j | = 2

p
− 2

{
p − i
p

}
− 2

{
p − j
p

}
, (35)

deg|Ly,i,j,i,j | = 2(p − 1)

pq
− 2

{
i

pq

}
− 2

{
j

pq

}
. (36)

If 〈ei, ej , y q−1e0〉W0 �= 0 then, by (35), (36), and dimension axiom (10),

deg|Lx,i,j,i,j | + deg|Ly,i,j,i,j | = −2. (37)

From (35) it follows that−3 < deg|Lx,i,j,i,j | < 0. Then deg|Ly,i,j,i,j | = 0 or−1.
Using (36), we have

i + j = p − 1 or p − 1+ pq

2
. (38)

We see that the second case holds only if 2 | (pq). On the one hand, composition
axiom (2.9) yields

〈|ei, ej , ei, ej |〉W0 =
∑
l∈<
〈ei, ej , el〉W0 ηl,pq−l〈ei, ej , epq−l〉W0

+ (〈ei, ej , y q−1e0〉W0 )2η0,0.

On the other hand, 〈|ei, ej , ei, ej |〉W0 �= 0 if and only if

(deg|Lx,i,j,i,j |, deg|Ly,i,j,i,j |) = (−2, 0) or (−1,−1). (39)

Hence we have three cases.
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Case 1: q is even and pq/2 /∈<. Then

〈|ei, ej , ei, ej |〉W0 = (〈ei, ej , y q−1e0〉W0 )2η0,0.

If i + j = p − 1 then (35) shows that deg|Lx,i,j,i,j | = −2. Thus (36) implies
deg|Ly,i,j,i,j | = 0 and so 〈|ei, ej , ei, ej |〉W0 = −q.

If i + j = pq/2+ p − 1, then

i + j ≡ −1 modulo (p).

So (35) and (36) imply deg|Lx,i,j,i,j | = −2 and deg|Ly,i,j,i,j | = −1, which con-
tradict with (37). Therefore 〈ei, ej , y q−1e0〉W0 �= 0 if and only if i + j = p − 1.

Case 2: p is even, q is odd, and pq/2 ∈ <. In this case, if i + j = pq/2 +
p − 1 then (35) and (36) imply that deg|Lx,i,j,i,j | = deg|Ly,i,j,i,j | = −1. Thus
〈|ei, ej , ei, ej |〉W0 = 1 and we have∑

l∈<
〈ei, ej , el〉W0 ηl,pq−l〈ei, ej , epq−l〉W0

= 〈ei, ej , epq/2〉W0 ηpq/2,pq/2〈ei, ej , epq/2〉W0 = 1.

Thus 〈ei, ej , y q−1e0〉W0 = 0.
If i + j = p − 1, then deg|Lx,i,j,i,j | = −2 and deg|Ly,i,j,i,j | = 0. Therefore,

(〈ei, ej , y q−1e0〉W0 )2η0,0 = 〈|ei, ej , ei, ej |〉W0 = −q
and so 〈ei, ej , y q−1e0〉W0 = ±1.

Case 3: p and q are both odd, and pq/2 is not an integer. Hence

(〈ei, ej , y q−1e0〉W0 )2η0,0 = 〈|ei, ej , ei, ej |〉W0 .
Once again, 〈ei, ej , y q−1e0〉W0 = ±1 if and only if i + j = p − 1.

4.3. Generators and Mirror Symmetry

Lemma 4.5. There is a canonical bijective map g between the set 1 = {(s, t) ∈
Z⊕ Z | 0 ≤ s ≤ p− 2, 0 ≤ t ≤ q − 1} and the set < = {i ∈Z | 1 ≤ i ≤ pq − 1,
p � i}.
Proof. We define a map g : 1→ < by g(s, t) = i for i ∈< such that

i ≡ p − 1− s + tp modulo (pq).

For any i ∈ <, we identify ei and (s, t) as the same element if g(s, t) = i. Then
(1, 0) = ep−2 and (0, 1) = e2p−1. If we replace ek and em in Theorem 3.10 by
ep−2 and e2p−1, respectively, then it is straightforward (as in Section 3) to prove
the following theorem.

Theorem 4.6. For gcd(p − 1, q) = d �= 1, we have that ep−2 and e2p−1 gen-
erate the quantum ring of (W = Xp + XY q, G = Gmax). The multiplication is
determined as follows:
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• ep−1 is the unit of this ring;
• ∓q · y q−1e0 = ep−1

p−2;
• ei = esp−2 � et2p−1 for each i ∈<, where (s, t)∈1 such that g(s, t) = i.
We also have the following equalities:

• ep−1
p−2 � e2p−1 = (p − 1, 0)� (0, 1) = 0;

• epp−2 + qeq−1
2p−1 = (p, 0)+ q(0, q − 1) = 0.

Corollary 4.7. Let gcd(p − 1, q) = d �= 1,W = Xp +XY q, and G = Gmax.

Then we have a C-algebra isomorphism HW,G
∼= QWT , where WT = XpY + Y q

is the dual singularity.
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