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Global Solutions of Homogeneous
Linear Partial Differential Equations

of the Second Order

Pei -Chu Hu & Chung-Chun Yang

1. Introduction and Main Results

In 1995, we proved in [9] that the meromorphic solutions of the system of partial
differential equations

∂u

∂zj
= aj(z)+ bj(z)u+ cj(z)u

2, j = 1, 2, . . . ,m

(where aj , bj , cj are polynomials on C
m) are of finite positive order and are pseudo-

prime. Li and Saleeby [13] characterized entire solutions in C
m of first-order par-

tial differential equations of the form

∂u

∂zj
= fj(u), j = 1, 2, . . . ,m,

where the fj are meromorphic functions in C. Berenstein and Li [2] studied entire
solutions in C

m for first-order partial differential equations of the form

∂u

∂zj
= p(z)f(u), j = 1, 2, . . . ,m,

where p and f are entire or meromorphic functions in C
m and C, respectively.

Li [12] also gave a complete description of entire solutions of the Fermat type par-
tial differential equation (

∂u

∂z1

)m
+

(
∂u

∂z2

)n
= 1.

In this paper, we study meromorphic solutions of homogeneous linear partial
differential equations of the second order in two independent complex variables,

a0
∂ 2u

∂t 2
+ 2a1

∂ 2u

∂t∂z
+ a2

∂ 2u

∂z2
+ a3

∂u

∂t
+ a4

∂u

∂z
+ a6u = 0; (1)

here ak = ak(t, z) are holomorphic functions for (t, z) ∈ �, where � is a region
on C

2.
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When t and z are real variables, Hilbert’s 19th problem conjectures that if all
ak = ak(t, z) are analytic on t and z, then any solution u = u(t, z) of an elliptic
equation of the form (1) also is analytic on its existing region; this was confirmed
by Berns̆teı̆n [3] provided one knows that u ∈ C 3. Lewy [11], using the solvabil-
ity of the initial value problem for hyperbolic equations, gave a simple proof by
extending t and z to a domain of C

2. Petrovskiı̆ [14] then extended this result to
general nonlinear elliptic systems. It is known also that all regular solutions of lin-
ear elliptic equations of the second order have bounded derivatives up to order k,
provided all coefficients have bounded derivatives up to order k.

In this paper, we follow Lewy’s idea of studying equation (1) on a region � ⊆
C

2. Let S(P)(�) be solutions of (1) satisfying some property (P) on �. It is nat-
ural to seek proper properties (P) determining the cardinal number of S(P)(�).

For example, Shol(�) denotes holomorphic solutions of equation (1) on �. Then
Shol(�) is a vector space. When � = C

2, equation (1) usually has many entire
solutions on C

2; that is, dim Shol(C
2) > 0. To explain matters clearly, here we

examine the following special differential equation:

t 2 ∂
2u

∂t 2
− z2 ∂

2u

∂z2
+ t

∂u

∂t
− z

∂u

∂z
+ t 2u = 0. (2)

Theorem 1.1. The differential equation (2) has an entire solution f(t, z) on C
2

if and only if f is an entire function expressed by the series

f(t, z) =
∞∑
n=0

n! cnJn(t)z
n (3)

such that
lim sup
n→∞

|cn|1/n = 0, (4)

where Jn(t) is the first kind of Bessel function of order n. Moreover, the order
ord(f ) of the entire function f satisfies

ρ ≤ ord(f ) ≤ max{1, ρ},
where

ρ = lim sup
n→∞

2 log n

log(1/|cn|1/n) . (5)

By definition, the order of f is defined by

ord(f ) = lim sup
r→∞

log+ log+M(r, f )
log r

,

where

log+ x =
{

log x if x ≥ 1,

0 if x < 1,
and

M(r, f ) = max|t |≤r,|z|≤r|f(t, z)|.
Valiron [17] showed that each transcendental entire solution of a homogeneous lin-
ear ordinary differential equation with polynomial coefficients is of finite positive
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order. However, Theorem 1.1 shows that Valiron’s theorem is not true for general
partial differential equations. For example, the equation

t 2 ∂
2u

∂t 2
− ∂ 2u

∂z2
+ t

∂u

∂t
= 0

has an entire solution exp(tez) of infinite order.
If 0 < λ = ord(f ) < ∞, we define the type of f by

typ(f ) = lim sup
r→∞

log+M(r, f )
rλ

.

For the type of entire solutions of equation (2) we have an analogue of the Lindelöf–
Pringsheim theorem, whose proof is essentially the same as that of determining
the type for Taylor series of entire functions of one complex variable.

Theorem 1.2. If f(t, z) is an entire solution of (2) defined by (3) and (4) such
that 1< λ = ord(f ) < ∞, then the type σ = typ(f ) satisfies

eλσ = 2−λ/2 lim sup
n→∞

2n|cn|λ/(2n).

Next we introduce some properties (P) on C
2 such that the cardinal number of

S(P)(C
2) is finite. In other words, we give some conditions that determine uniquely

meromorphic solutions of (1) on C
2. Nevanlinna’s four-value theorem states that

if two nonconstant meromorphic functions f and g on C share four distinct values
counting multiplicity, then gmust be a fractional linear transformation of f , which
is also called a Möbius transformation of f. Brosch [4] proved that if two non-
constant meromorphic functions f and g on C share three distinct values c1, c2, c3

counting multiplicity, if f is a solution of the differential equation
(
dw

dz

)n
=

2n∑
j=0

bj(z)w
j := P(z,w)

such that b0, b1, . . . , b2n (b2n �≡ 0) are small functions of f (grow more slowly
than f ), and if P(z, ci) �≡ 0 for i = 1, 2, 3, then f = g.

To state a generalization of Brosch’s result to partial differential equations, we
abbreviate

ut = ∂u

∂t
, utz = ∂ 2u

∂t∂z
, utt = ∂ 2u

∂t 2
,

and so on, and we set

Du = a0u
2
t + 2a1utuz + a2u

2
z and

Lu = a0utt + 2a1utz + a2uzz + a3ut + a4uz.

We make the following assumption.

(A) All coefficients ai in (1) are polynomials, and when a6 = 0 there are no non-
constant polynomials u satisfying the system{

Du = 0,
Lu = 0.
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For technical reasons, here we study only meromorphic functions of finite orders.
The order of a meromorphic function of several variables may be defined by using
its Nevanlinna characteristic function (see [8; 16]).

Theorem1.3. Suppose assumption (A) holds. Let f(t, z) be a nonconstant mero-
morphic solution of (1) such that ord(f ) < ∞, and let g be a nonconstant mero-
morphic function of finite order on C

2. If f and g share 0,1, ∞ counting multi-
plicity, then one of the following five statements holds:

(a) g = f ;
(b) gf = 1;
(c) a6 = 0, gf = f + g;
(d) a6 = 0, and there exist a constant b /∈ {0,1} and a polynomial β such that

f = 1

b − 1
(eβ − 1), g = b

b − 1
(1 − e−β);

(e) a6 �= 0, f 2g2 = 3fg − f − g.

When a6 �= 0, case (b) may occur. For example, consider the differential equation

∂ 2u

∂t 2
+ ∂ 2u

∂z2
− ∂u

∂t
− u = 0, (6)

which has an entire solution of order 1:

f(t, z) = e t+z.

Let’s compare f with the following entire function of order 1:

g(t, z) = e−t−z.

Obviously, f and g share 0,1, −1, ∞ counting multiplicity, but g �= f , gf = 1.
Now the differential equation

Lu+Du+ a6 = utt + uzz − ut + u2
t + u2

z − 1 = 0

has the nonconstant polynomial solution

u(t, z) = t + z.

Condition (A) is meaningful. For example, Theorem 1.1 shows that the differen-
tial equation (2) admits many entire solutions of finite order. Furthermore, we can
prove that condition (A) when associated with the differential equation (2) holds,
thereby obtaining the following result.

Corollary 1.4. Let f(t, z) be a nonconstant meromorphic solution of (2) such
that ord(f ) < ∞, and let g be a nonconstant meromorphic function of finite order
on C

2. If f and g share 0,1, ∞ counting multiplicity, then we have g = f or
gf = 1 or f 2g2 = 3fg − f − g.

Case (b) in Theorem 1.3 may actually occur for a6 = 0. For example, consider
the differential equation
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∂ 2u

∂t 2
− ∂u

∂z
= 0, (7)

which has an entire solution f(t, z) = e t+z of order 1 such that assumption (A)
clearly holds. The entire solution f and the function g = e−t−z share 0,1, ∞
counting multiplicity and also satisfy gf = 1; this is case (b) in Theorem 1.3.

For a real number x, let [x] denote the maximal integer ≤ x. We give the fol-
lowing result, which is an analogue of Anastassiadis’s theorem [1] on uniqueness
of entire functions of one variable.

Theorem 1.5. Let f(t, z) and g(t, z) be transcendental entire solutions of (2)
such that ord(f ) < ∞, ord(g) < ∞, and

∂ 2jf

∂t j∂zj
(0, 0) = ∂ 2jg

∂t j∂zj
(0, 0), j = 0,1, . . . , q,

where
q = max{[ord(f )], [ord(g)]}.

If there exists a complex number a with (a, f(0, 0)) �= (0, 0) such that f and g
share a counting multiplicity, then f = g.

Theorem 1.3 shows that, when a6 = 0, global solutions of the equation (1) can
be quite complicated; however, when a6 �= 0, these solutions have normal prop-
erties. Our next result also supports this view. Theorem 1.6 extends a theorem [6,
Thm. 5.8] on meromorphic solutions of linear ordinary differential equations.

Theorem 1.6. Assume that all ak in (1) are entire functions on C
2 that grow

more slowly than a meromorphic solution of equations (1) on C
2. If a6 �≡ 0, then

the deficiency of the solution for each nonzero complex number is zero.

Some notation and remarks related to Theorem 1.6 will be given in Section 7. For
example, the so-called telegraph equation

∂ 2u

∂t 2
− c2 ∂

2u

∂z2
+ 2α

∂u

∂t
+ α2u = 0

has entire solutions

u(t, z) = e−αt {f(z+ ct)+ g(z− ct)},
where f and g are entire functions on C. If α �= 0, Theorem 1.6 shows that the
deficiency of a nonconstant u(t, z) for each nonzero complex number a is zero,
which means that the equation

f(z+ ct)+ g(z− ct)− aeαt = 0

has zeros.

2. Proof of Theorem 1.1

First of all, we assume that u = f(t, z) is an entire function on C
2 satisfying (2).

Then we have the Taylor expansion
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f(t, z) =
∞∑
n=0

wn(t)z
n,

where

wn(t) = 1

n!

∂nf

∂zn
(t, 0).

Since f(t, z) satisfies equation (2), we find

t 2 ∂
2f

∂t 2
− z2 ∂

2f

∂z2
+ t

∂f

∂t
− z

∂f

∂z
+ t 2u

=
∞∑
n=0

(
t 2 d

2wn

dt 2
+ t

dwn

dt
+ (t 2 − n2)wn

)
zn = 0;

that is, the wn(t) are entire solutions of Bessel’s differential equations

t 2 d
2w

dt 2
+ t

dw

dt
+ (t 2 − n2)w = 0, n = 0,1, . . . . (8)

Because the first kind of Bessel function of order n,

Jn(t) = 1

2π

∫ π

−π
cos(nθ − t sin θ) dθ,

and the second kind of Bessel function (Neumann function) of order n,

Nn(t) = 2

π
Jn(t)

(
C + log

t

2

)
− 1

π

(
t

2

)−n n−1∑
k=0

(n− k − 1)!

k!

(
t

2

)2k

− 1

π

(
t

2

)n ∞∑
k=0

(−1)k

k! (n+ k)!

( k∑
m=1

1

m
+

n+k∑
m=1

1

m

)(
t

2

)2k

,

are linearly independent solutions of (8), there must exist constants cn and dn
such that

wn(t) = n! cnJn(t)+ dnNn(t).

This equation easily yields dn = 0 if we examine the singularity at t = 0. Thus
we obtain the expansion (3).

To prove (4), we next study the limit

λ(t) = lim sup
n→∞

(n! |cnJn(t)|)1/n.
By using the Poisson formula

Jn(t) = 2√
π+

(
n+ 1

2

)
(
t

2

)n ∫ π/2

0
cos(t cos x) sin2n x dx

and the Stirling formula

+(z) = e−zzz−1/2
√

2π

{
1 +O

(
1

z

)}
, |arg z| < π,

it is easy to show
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λ(t) ≤ κ

2
|t |,

where
κ = lim sup

n→∞
|cn|1/n.

Note that, when t = 1,∫ π/2

0
cos(t cos x) sin2n x dx ≥ cos1

∫ π/2

0
sin2n x dx = π(2n)!

2(2nn!)2
cos1.

We obtain easily

λ(1) ≥ κ

2
.

Therefore,
lim sup
n→∞

(n! |cnJn(1)zn|)1/n = λ(1)|z| = κ

2
|z|.

Since f(t, z) is an entire function (i.e., the series (3) converges for all (t, z)∈ C
2),

it follows that κ = 0 and hence (4) is proved.
Conversely, if f(t, z) is an entire function of the form (3) satisfying (4) then it

is trivial to check that it also satisfies the partial differential equation (2), since

t 2 ∂
2f

∂t 2
− z2 ∂

2f

∂z2
+ t

∂f

∂t
− z

∂f

∂z
+ t 2f

=
∞∑
n=0

n! cn

(
t 2 d

2Jn

dt 2
+ t

dJn

dt
+ (t 2 − n2)Jn

)
zn = 0

if we recall that Jn is a solution of (8).
Finally, we prove ρ ≤ ord(f ) ≤ max{1, ρ}.We first show ρ ≤ ord(f ).Without

loss of generality, we may assume 0 < ρ ≤ ∞. Take ε with 0 < ε < ρ, and set

k =
{
ρ − ε if ρ < ∞,

1/ε if ρ = ∞.

Then there exists a sequence nj → ∞ such that

2nj log nj ≥ k log|cnj |−1.

Note that

Jn(t) =
(
t

2

)n ∞∑
m=0

(−1)m

m! (n+m)!

(
t

2

)2m

and so
∂ 2nf

∂t n∂zn
(0, 0) = cn(n!)

2J (n)n (0) = (n!)2

2n
cn.

By using Cauchy’s inequality∣∣∣∣ ∂
2nf

∂t n∂zn
(0, 0)

∣∣∣∣ ≤ (n!)2r−2nM(r, f ),

which is equivalent to
2−n|cn| ≤ r−2nM(r, f ), (9)
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we find that
logM(r, f ) ≥ log|cn| + 2n log r − n log 2.

Then, when j is large, we have

logM(r, f ) ≥ log|cnj | + 2nj log r − nj log 2

> 2nj

(
log r − 1

k
log nj − 1

2
log 2

)
.

Now take
rj = √

2(enj )
1/k.

If j is large, then

logM(rj , f ) >
21−k/2

ek
r kj ,

which means that

ord(f ) ≥ lim sup
j→∞

log+ log+M(rj , f )
log rj

≥ k;

hence, if we let ε → 0 then ord(f ) ≥ ρ follows.
Next we show another inequality, ord(f ) ≤ max{1, ρ}. Toward this end, we may

assume ρ < ∞. For any ε > 0 there exists an n0 > 1 such that, when n ≥ n0,

0 ≤ 2 log n

log(1/|cn|1/n) < ρ + ε;
that is,

|cn| < n−2n/(ρ+ε).

By using the Poisson formula and noting that

|cos(t cos x)| ≤ er,

where r = |t |, we can obtain the inequality

n! |Jn(t)| ≤
√
π(2n)!

22n+
(
n+ 1

2

)
n!

(
r

2

)n
er. (10)

Since the Stirling formula easily implies that

lim
n→∞

√
π(2n)!

22n+
(
n+ 1

2

)
n!

= 1,

we can choose n0 sufficiently large so that when n ≥ n0 we have

n! |Jn(t)| ≤ 2

(
r

2

)n
er, (11)

where r = |t |. However, when |t | = r,

M(r, f ) ≤
n0−1∑
n=0

n! |cnJn(t)|r n + 2er
∞∑
n=n0

2−nn−2n/(ρ+ε)r 2n

≤ 2er
{
Ar 2n0−2 +

∞∑
n=n0

n−2n/(ρ+ε)
(
r 2

2

)n}
.



Global Solutions of Homogeneous Linear Second-Order PDEs 815

Put m(r) = (2r)ρ+ε. Then

∑
n≥m(r)

n−2n/(ρ+ε)
(
r 2

2

)n
≤

∞∑
n=0

1

8n
= 8

7
.

We also have

∑
n0≤n<m(r)

n−2n/(ρ+ε)
(
r 2

2

)n
≤

(
r 2

2

)m(r) ∞∑
n=1

n−2n/(ρ+ε) = B

(
r 2

2

)m(r)
.

Therefore,

M(r, f ) ≤ 2er
{
Ar 2n0−2 + B

(
r 2

2

)m(r)
+ 8

7

}
, (12)

which means that

ord(f ) = lim sup
r→∞

log+ log+M(r, f )
log r

≤ max{1, ρ} + ε.

Hence, if we let ε → 0 then ord(f ) ≤ max{1, ρ} follows.

3. Proof of Theorem 1.2

Set
1 = 2−λ/2 lim sup

n→∞
2n|cn|λ/(2n).

We first show 1 ≥ eλσ. To do this, we may assume that 1 < ∞. Then for any
ε > 0 there exists an n0 > 1 such that, when n ≥ n0,

2−λ/2 2n|cn|λ/(2n) < 1 + ε

or, equivalently,

2−n|cn| <
(
1 + ε

2n

)2n/λ

.

Therefore, when |t | = r,

M(r, f ) ≤ 2er
{
Ar 2n0−2 +

∑
n≥n0

(
1 + ε

2n

)2n/λ

r 2n

}
.

Note that, for a > 0 and b > 0,

max
x>0

(
a

x

)x/b
= exp

(
a

eb

)
.

Then ∑
n0≤n<(1+ε)rλ

(
1 + ε

2n

)2n/λ

r 2n ≤ (1 + ε)r λ exp

(
(1 + ε)r λ

eλ

)
,

whereas ∑
n≥(1+ε)rλ

(
1 + ε

2n

)2n/λ

r 2n ≤
∞∑
n=0

1

4n/λ
= 41/λ

41/λ − 1
= C.

Therefore,
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M(r, f ) ≤ 2er
{
Ar 2n0−2 + (1 + ε)r λ exp

(
(1 + ε)r λ

eλ

)
+ C

}
,

which easily yields

σ ≤ 1 + ε

eλ
;

that is, eλσ ≤ 1 if we let ε → 0.
Finally, we show the converse inequality eλσ ≥ 1. Now we may assume 1 > 0.

Take ε with 0 < ε < 1 and set

κ =
{
1 − ε if 1 < ∞,

1/ε if 1 = ∞.

Then there exists a sequence nj → ∞ satisfying

2−λ/2 2nj |cnj |λ/(2nj ) > κ
or, equivalently,

2−nj |cnj | >
(
κ

2nj

)2nj/λ

.

Using Cauchy’s inequality (9),

2−n|cn| ≤ r−2nM(r, f ),

for large j we find that

M(r, f ) ≥
(
κ

2nj
r λ

)2nj/λ

.

Take

r λj = 2enj
κ
.

We obtain

M(rj , f ) ≥ exp

(
κ

eλ
rλj

)
,

which yields

σ ≥ lim sup
j→∞

log+M(rj , f )
rλj

≥ κ

eλ
.

Hence eλσ ≥ 1 follows if we let ε → 0.

4. Proof of Theorem 1.3

By [16, Prop. 6.2], there exist two polynomials α,β satisfying

f

g
= eα,

f − 1

g − 1
= eβ. (13)

If eα = eβ, then
f

g
= f − 1

g − 1

and so g = f follows. Conversely, if g = f , then eα = 1 = eβ follows from (13).
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Next we study the case

eα �= eβ, g �= f. (14)

It is easy to obtain the expressions

f = eβ − 1

eγ − 1
and g = eγ

eγ − 1
(1 − e−β), (15)

where γ = β − α. Note that

ft = (e−α − e−β)−2{αte−α − βte
−β + γte

−α−β},
ftt = (e−α − e−β)−3{(αtt + α2

t )e
−2α + (βtt + β2

t )e
−2β

+ (γtt − γ 2
t )e

−2α−β − (γtt + γ 2
t )e

−α−2β

− (αtt + βtt + 2αtβt − γ 2
t )e

−α−β},
ftz = (e−α − e−β)−3{(αtz + αtαz)e

−2α + (βtz + βtβz)e
−2β

+ (γtz − γtγz)e
−2α−β − (γtz + γtγz)e

−α−2β

− (αtz + βtz + αtβz + αzβt − γtγz)e
−α−β}.

Symmetrically, we can obtain derivatives of f with respect to z. Substituting
into the differential equation (1) yields

0 = (Lα +Dα + a6)e
−2α + (Lβ +Dβ + a6)e

−2β

+ (Lγ −Dγ − a6)e
−2α−β − (Lγ +Dγ − 2a6)e

−α−2β

− {Lα + Lβ + 2D(α,β)−Dγ + 2a6}e−α−β − a6e
−3β, (16)

where
D(α,β) = a0αtβt + a1(αtβz + αzβt )+ a2αzβz.

We further distinguish several cases in our study of (14).

Case 1: We claim that the polynomial α is not constant. Otherwise, if α is a
constant c, then equation (16) becomes

0 = −a6e
−3β + {L1β − e−c(L1β − 3a6)}e−2β

− e−c{L2β + 5a6 − e−c(L2β + 2a6)}e−β + a6e
−2c, (17)

where
L1β = Lβ +Dβ + a6, L2β = Lβ −Dβ − 3a6.

Observe that β is not a constant in this case, for otherwise we could deduce from
(15) that f is a constant. If we apply a generalized Borel–Nevanlinna theorem to
(17) (cf. [8, Thm. 3.4]), then it follows that the coefficients of exponential func-
tions in (17) all are zero; that is,

a6 = 0, (1 − e−c)L1β = 0, (1 − e−c)L2β = 0.

Note that ec �= 1; otherwise, g = f follows from (13), which contradicts (14).
Hence we must have

L1β = 0 and L2β = 0,
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which means that

Lβ − a6 = 0 and Dβ + 2a6 = 0. (18)

This is a contradiction, so the claim is proved.

Case 2: We claim that the polynomial β is not constant. Otherwise, if β is a
constant c, then equation (16) becomes

(1 − e−c)(L1α)e
−2α − e−c(1 − e−c)(L2α + 5a6)e

−α + e−2c(1 − e−c)a6 = 0,
(19)

where
L1α = Lα +Dα + a6, L2α = Lα −Dα − 3a6.

Observe that α is not a constant in this case, for otherwise we could deduce from
(15) that f is a constant. If we apply a generalized Borel–Nevanlinna theorem to
(19) (cf. [8, Thm. 3.4]), then it follows that the coefficients of exponential func-
tions in (19) all are zero; that is,

(1 − e−c)a6 = 0, (1 − e−c)L1α = 0, (1 − e−c)(L2α + 5a6) = 0.

Note that ec �= 1; otherwise, g = f follows from (13), which contradicts (14).
Hence we must have

a6 = 0, L1α = 0, L2α = 0,

which means that

Lα − a6 = 0 and Dα + 2a6 = 0. (20)

This is a contradiction, so the claim is proved.

Case 3: The polynomial γ = β − α is a constant c. Now (16) becomes

0 = {L1α + e−2cL1α − 2e−cL1α}e−2α

− e−c(1 − 2e−c + e−2c)a6e
−3α. (21)

Note that α is not a constant in this case, for otherwise we could deduce from (15)
that f is a constant. It follows from (21) that

(1 − e−c)2a6 = 0 and (1 − e−c)2L1α = 0.

Since eα �= eβ, we have b = ec �= 1 and hence

a6 = 0 and Lα +Dα = 0.

Thus Theorem 1.3(d) follows from (15).

Case 4: The polynomial α − 2β is a constant c. Now equation (16) becomes

0 = (L1β)e
−2β − {e−c(3L1β − a6)+ a6}e−3β − e−2c(L1β)e

−5β

+ e−c{(2L1β + 2Dβ − a6)e
−c + L2β + 5a6}e−4β. (22)

Note that β is not a constant in this case, for otherwise we could deduce from
(15) that f is a constant. If we apply a generalized Borel–Nevanlinna theorem to
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equation (22) (cf. [8, Thm. 3.4), then it follows that the coefficients of exponential
functions in (22) all are zero; that is,

L1β = 0, (1 − e−c)a6 = 0, (1 − e−c)(2Dβ − a6) = 0. (23)

If ec �= 1, then (23) implies

L1β = 0, a6 = 0, 2Dβ − a6 = 0;
hence

Lβ = 0, Dβ = 0.

This is in contradiction to (A). It follows that ec = 1; that is, eα−2β = 1. Thus we
obtain

f

g

(
g − 1

f − 1

)2

= 1

or, equivalently,
gf(g − f ) = g − f ;

hence gf = 1 follows since g �= f. This is Theorem 1.3(b).

Case 5: The polynomial β − 2α is a constant c. Now (16) becomes

0 = (L1α)e
−2α − e−c(3L1α − a6)e

−3α − e−2c(L1α − 3a6)e
−5α

+ e−c{(2L1α + 2Dα − a6)e
−c + L2α + 2a6}e−4α − e−3ca6e

−6α. (24)

Note that α is not a constant in this case, for otherwise we could deduce from (15)
that f is a constant. If we apply a generalized Borel–Nevanlinna theorem to (24)
(cf. [8, Thm. 3.4]), then it follows that the coefficients of exponential functions in
(24) all are zero; that is,

a6 = 0, L1α = 0, (1 − e−c)Dα = 0.

As in Case 4, we can show that eβ−2α = ec = 1. Therefore,(
g

f

)2
f − 1

g − 1
= eβ−2α = 1

or, equivalently,
gf(g − f ) = (g − f )(g + f );

hence gf = f + g follows since g �= f. This is Theorem 1.3(c).

Case 6: The polynomial 3β − 2α is a constant c. Now equation (16) becomes

0 = e−3c(Lγ −Dγ − a6)e
8γ − e−3c(Lγ +Dγ − 2a6)e

7γ

− e−2c{3Lγ − 9Dγ − a6 + e−ca6}e6γ

+ e−2c(5Lγ − 11Dγ − 2a6)e
5γ − e−2c(2Lγ − 4Dγ − a6)e

4γ. (25)

Observe that γ is not a constant in this case, for otherwise we could deduce from
(15) that f is a constant. If we apply a generalized Borel–Nevanlinna theorem to
equation (25) (cf. [8, Thm. 3.4]), then it follows that the coefficients of exponen-
tial functions in (25) all are zero; that is,
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Lγ +Dγ − 2a6 = 0, Lγ −Dγ − a6 = 0, 2Lγ − 4Dγ − a6 = 0,

5Lγ − 11Dγ 2a6 = 0, 3Lγ − 9Dγ + (e−c − 1)a6 = 0.

This means that
a6 = 0, Lγ = 0, Dγ = 0

when ec �= 1 or a6 = 0, which is a contradiction.
We thus have ec = 1, a6 = 0, and hence(

f − 1

g − 1

)3(
g

f

)2

= 1,

which yields Theorem 1.3(e) because f �= g.

Case 7: We rule out the case that α, β, β − α, α − 2β, 2α − β, and 3β − 2α
all are not constant. Otherwise, if we apply a generalized Borel–Nevanlinna the-
orem to equation (16) (cf. [8, Thm. 3.4]), then it follows that the coefficients of
exponential functions in (16) all are zero. In particular, we have

a6 = 0, Lγ +Dγ = 0, Lγ −Dγ = 0,

which implies that
a6 = 0, Lγ = 0, Dγ = 0. (26)

This is a contradiction.

5. Proof of Theorem 1.5

Let f be defined by (3) and write

g(t, z) =
∞∑
n=0

n! bnJn(t)z
n. (27)

Note that
J0(0) = 1, J (n)n (0) = 2−n.

By the assumptions of Theorem 1.5, we have

cj = bj , j = 0,1, . . . , q; (a, c0) �= (0, 0). (28)

Since f and g share a counting multiplicity (i.e., the zero divisors of both f − a

and g − a are the same), it follows that [16, Prop. 6.2] implies the existence of a
polynomial P(t, z) on C

2 satisfying

f(t, z)− a

g(t, z)− a
= eP(t,z). (29)

Moreover, either P(t, z) ≡ 0 or

deg(P ) ≤ max{ord(f ), ord(g)}.
If P = 0, then f = g follows immediately.

If P �= 0, we claim that P is independent of z. In fact, if we write generally

∂P

∂z
= ρ0 + ρ1z+ · · · + ρλ−1z

λ−1,
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where λ = deg(P ) ≤ q and ρi = ρi(t) are polynomials of t but ρλ−1 is a constant,
then by differentiating (29) on z we easily obtain

g
∂f

∂z
− f

∂g

∂z
− a

(
∂f

∂z
− ∂g

∂z

)
= {fg − a(f + g)+ a2}∂P

∂z
.

Write

g
∂f

∂z
− f

∂g

∂z
=

∞∑
n=0

αn(t)z
n,

∂f

∂z
− ∂g

∂z
=

∞∑
n=0

βn(t)z
n,

f(t, z)g(t, z) =
∞∑
n=0

γn(t)z
n,

f(t, z)+ g(t, z) =
∞∑
n=0

δn(t)z
n;

here αn,βn, γn, δn are entire functions of t that satisfy the relations

α0 − aβ0 = ρ0(γ0 − aδ0 + a2),

α1 − aβ1 = ρ0(γ1 − aδ1)+ ρ1(γ0 − aδ0 + a2),
...

αλ−1 − aβλ−1 = ρ0(γλ−1 − aδλ−1)+ · · · + ρλ−1(γ0 − aδ0 + a2),

and

αk − aβk = ρ0(γk − aδk)+ · · · + ρλ−1(γk−λ+1 − aδk−λ+1), k ≥ λ.

Combining these with (28), we obtain

αj = 0, j = 0,1, . . . , q − 1,

βj = 0, j = 0,1, . . . , q − 1,

γ0 = c0b0J
2
0 = c2

0J
2
0 ,

δ0 = c0J0 + b0J0 = 2c0J0;
hence

γ0 − aδ0 + a2 = (c0J0 − a)2 �= 0.

Therefore,
ρ0 = ρ1 = · · · = ρλ−1 = 0;

that is, P(t, z) = P(t) is independent of z.
Setting z = 0 in (29), we find

eP(t) = c0J0(t)− a

b0J0(t)− a
= 1

and hence
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f(t, z)− a

g(t, z)− a
= 1.

Thus we obtain f(t, z) ≡ g(t, z).

6. Proof of Theorem 1.6

We will use standard notation and terminologies in value distribution theory (see
[8; 10]).

Definition 6.1. A meromorphic function g is said to grow more slowly than an-
other meromorphic function f if their Navanlinna characteristic functions satisfy

‖ T(r, g) = o(T (r, f )),

where the symbol ‖ to the left of an expression denotes that the expression holds
as r → ∞ outside of a possible exceptional set E with

∫
E
dr/r < ∞.

Let’s prove Theorem 1.6. Take a nonzero complex number a. Let f be a mero-
morphic solution of the equation (1) such that all ak grow more slowly than f , and
note that

1

f − a
= −1

a
− 1

aa6(f − a)

(
a0
∂ 2f

∂t 2
+ 2a1

∂ 2f

∂t∂z
+ a2

∂ 2f

∂z2
+ a3

∂f

∂t
+ a4

∂f

∂z

)
.

Then, using the lemma of logarithmic derivative (see [8; 10]), it is easy to show
that the proximity function satisfies

‖ m

(
r,

1

f − a

)
= o(T (r, f )).

Therefore, the defect of f for a is just

δf (a) = lim inf
r→∞

m
(
r, 1
f−a

)
T(r, f )

= 0.

This completes the proof of Theorem 1.6.

Remark. Simple calculations show that a nonconstant meromorphic function f
on C

2 satisfies the estimates

‖ T

(
r,
∂f

∂t

)
≤ (2 + o(1))T (r, f ) (30)

and

‖ T

(
r,
∂f

∂z

)
≤ (2 + o(1))T (r, f ). (31)

Conversely, we can prove the following statement.

Theorem 6.2. Assume that all ak in equation (1) are entire functions on C
2. If

a6 �≡ 0, then each nonconstant meromorphic solution f of (1) satisfies

‖ T(r, f ) ≤ T

(
r,
∂f

∂t

)
+ T

(
r,
∂f

∂z

)
+

∑
k

T (r, ak)+ o(T (r, f )).
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Proof. Without loss of generality, we may assume that

∂f

∂t
�≡ 0 and

∂f

∂z
�≡ 0.

Now f satisfies

f = −a−1
6

∂f

∂t

(
a0
∂ 2f

∂t 2

/
∂f

∂t
+ 2a1

∂ 2f

∂t∂z

/
∂f

∂t
+ a3

)

− a−1
6

∂f

∂z

(
a2
∂ 2f

∂z2

/
∂f

∂z
+ a4

)
.

By using the lemma of logarithmic derivative, we easily obtain

‖ m(r, f ) ≤ m

(
r,
∂f

∂t

)
+m

(
r,
∂f

∂z

)
+

∑
k

T (r, ak)

+ o

{
T

(
r,
∂f

∂t

)}
+ o

{
T

(
r,
∂f

∂z

)}
+O(1).

Combining this with (30) and (31) yields

‖ m(r, f ) ≤ m

(
r,
∂f

∂t

)
+m

(
r,
∂f

∂z

)
+

∑
k

T (r, ak)+ o(T (r, f )).

Since

N(r, f ) ≤ N

(
r,
∂f

∂t

)
and N(r, f ) ≤ N

(
r,
∂f

∂z

)
,

the proof of Theorem 6.2 is complete.

7. Factorization of Meromorphic Solutions

Given the results due to Valiron [17] and Brownawell [5], we can derive the fol-
lowing theorem.

Theorem 7.1. Assume that all ak in equation (1) are polynomials on C
2. Let f

be a nonconstant meromorphic function on C, and let g be a nonconstant entire
function on C

2 such that u = f � g is a solution of (1). Then g satisfies a nontriv-
ial algebraic differential equation of the form

0 = a0P00(g)
∂ 2g

∂t 2
+ 2a1P01(g)

∂ 2g

∂t∂z
+ a2P02(g)

∂ 2g

∂z2

+ a0P10(g)

(
∂g

∂t

)2

+ 2a1P11(g)
∂g

∂t

∂g

∂z
+ a2P12(g)

(
∂g

∂z

)2

+ a3P20(g)
∂g

∂t
+ a4P21(g)

∂g

∂z
+ a6P22(g), (32)

where the Pij are polynomials.
However, supppose one of the following conditions holds:

(a) a6 �≡ 0;
(b) g is not a solution of the equation
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a0
∂ 2u

∂t 2
+ 2a1

∂ 2u

∂t∂z
+ a2

∂ 2u

∂z2
+ a3

∂u

∂t
+ a4

∂u

∂z
= 0;

(c) g is not a solution of the equation

a0

(
∂u

∂t

)2

+ 2a1
∂u

∂t

∂u

∂z
+ a2

(
∂u

∂z

)2

= 0.

Then f satisfies a nontrivial differential equation of the form

Q0(ζ)f
′′(ζ)+Q1(ζ)f

′(ζ)+Q2(ζ)f(ζ) = 0, (33)

where theQk(ζ) are polynomials on C. In particular, f is of finite order. Further,
if f is a transcendental entire function then the order of f is a positive rational
number.

Proof. Because u = f � g is a solution of (1), we have

B0f
′′ � g + B1f

′ � g + a6f � g = 0, (34)
where

B0 = a0

(
∂g

∂t

)2

+ 2a1
∂g

∂t

∂g

∂z
+ a2

(
∂g

∂z

)2

and

B1 = a0
∂ 2g

∂t 2
+ 2a1

∂ 2g

∂t∂z
+ a2

∂ 2g

∂z2
+ a3

∂g

∂t
+ a4

∂g

∂z
.

The assumptions of Theorem 7.1 make equation (34) nontrivial. By [5, Thm. 1], g
and f satisfy a nontrivial differential equation of the form (32) and (33), respec-
tively. Then, according to a result due to Von Koch-Perron (or see [6]), f is of
finite order. Furthermore, if f is a transcendental entire function, then it follows
from Valiron’s theorem [17] that the order of f is a positive rational number. This
completes the proof of Theorem 7.1.

A result due to Steinmetz [15] claims that each meromorphic solution of a linear
ordinary differential equation with rational coefficients is pseudo-prime—that is,
one of factors in each factorization of the function is not transcendental. How-
ever, the functions f and g in Theorem 7.1 may be transcendental. For example,
the function u(t, z) = exp(2tez − e2z) with f(ζ) = eζ and g(t, z) = 2tez − e2z

satisfies the equation
∂ 2u

∂t 2
− 2t

∂u

∂t
+ 2

∂u

∂z
= 0, (35)

but u(t, z) is not pseudo-prime. Hence Steinmetz’s theorem cannot be directly ex-
tended to the partial differential equations (1). Observe that g(t, z) satisfies the
nonlinear differential equation

∂ 2u

∂t 2
+

(
∂u

∂t

)2

− 2t
∂u

∂t
+ 2

∂u

∂z
= 0.

On the other hand, g(t, z) satisfies condition (b) in Theorem 7.1; that is, g is not a
solution of (35), and f is of order 1. Therefore, u(t, z) satisfies the conclusions of
Theorem 7.1.
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8. Existence of Entire Solutions

Generally, by Cauchy’s existence theorem (or the Cauchy–Kowalewski theorem)
we can find local holomorphic solutions of equation (1) (see Section 9), but this
theorem does not tell us how to confirm completely the domains of holomorphic
solutions. If � is of the form D × C for a domain D ⊆ C, then the following
result gives definite domains of holomorphic solutions for a class of differential
equations.

Theorem 8.1. LetD be a domain in C, and take t0 ∈D. Assume that a0 = a0(t)

is independent of z and has no zeros in a disc

: = :ρ = {t ∈ C | |t − t0| < ρ} ⊂ D.

Suppose one of the following conditions holds:

(i) equation (1) has the form

a0
∂ 2u

∂t 2
+ 2A1z

∂ 2u

∂t∂z
+ A2z

2 ∂
2u

∂z2
+ A3

∂u

∂t
+ A4z

∂u

∂z
+ A6u = 0, (36)

where all Ak = Ak(t) are holomorphic functions for one variable t ∈D;
(ii) the holomorphic functions ak on � = D × C are independent of the vari-

able z.

Then equation (1) has nonconstant holomorphic solutions on :× C that satisfy

dim Shol(:× C) = ∞.

In particular, we have the following statement.

Corollary 8.2. Under the conditions of Theorem 8.1 with D = C and a0 = 1,
equation (1) has nonconstant entire solutions u(t, z) on C

2.

For example, Laplace’s equation

∂ 2u

∂t 2
+ ∂ 2u

∂z2
= 0,

Helmholtz’s equation
∂ 2u

∂t 2
+ ∂ 2u

∂z2
+ k2u = 0,

the telegraph equation

∂ 2u

∂t 2
− c2 ∂

2u

∂z2
+ 2α

∂u

∂t
+ 2β

∂u

∂z
+ γu = 0,

and Čaplygin’s equation
∂ 2u

∂t 2
−K(t)

∂ 2u

∂z2
= 0

with entire K(t) all have nonconstant entire solutions u(t, z) on C
2.
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We will first consider the condition (i) in Theorem 8.1. We shall seek analytic
solutions to (36) of the form w(t)zn for each integer n ∈ Z. In other words, we
wish to solve w(t) from the associated differential equations

a0
d 2w

dt 2
+ {2nA1 + A3}dw

dt
+ {n(n− 1)A2 + nA4 + A6}w = 0, n∈ Z , (37)

or (equivalently)
d 2w

dt 2
+ pn

dw

dt
+ qnw = 0, n∈ Z , (38)

where

pn = 1

a0
{2nA1 + A3}, qn = 1

a0
{n(n− 1)A2 + nA4 + A6}

are meromorphic functions on D but are holomorphic on :. We have the follow-
ing basic fact.

Lemma 8.3 (cf. [18]). Equation (38) has a unique solutionwn(t) inside the disc
:. This solution satisfies the initial conditions

wn(t0) = bn and
dwn

dt
(t0) = b ′

n,

where bn, b ′
n are arbitrary constants and wn(t) is single-valued and holomorphic

in the disc :.

In particular, for any nonnegative integer n taking nonzero constants bn and b ′
n,

we obtain nonconstant holomorphic solutions wn(t)zn on :× C. Obviously, the
family {wn(t)zn}n≥0 is linearly independent, so

dim Shol(:× C) = ∞.

For condition (ii) of Theorem 8.1, we may try to find analytic solutions to (36)
of the form w(t)enz for each integer n∈ Z; that is, to solve w(t) from the associ-
ated differential equations

a0
d 2w

dt 2
+ {2na1 + a3}dw

dt
+ {n2a2 + na4 + a6}w = 0, n∈ Z. (39)

Using a similar argument as before, we can obtain nonconstant holomorphic so-
lutions wn(t)enz on :× C. The proof of Theorem 8.1 is now complete.

According to the proof of Theorem 8.1, for each n∈ Z equation (36) has solutions
wn(t)z

n, where wn(t) are analytic solutions of equation (37) on :. Take a real
number r with 0 < r < ρ. Obviously, we may choose constants cn = cn(r) such
that, for any compact set E ⊂ C∗ = C − {0}, the series

u(t, z) =
∞∑

n=−∞
cnwn(t)z

n (40)

is uniformly convergent for t ∈:r and z∈E, so it expresses a holomorphic func-
tion on :r × C∗. Now it is trivial to check that u(t, z) satisfies equation (36).
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Near a zero of a0, we may construct two analytic solutions wn1(t)zn and
wn2(t)z

n of (36) by using the following fact.

Lemma 8.4 (cf. [18]). If t0 is a singular point of equation (38) (i.e., if t0 is a zero
of a0), then the two linearly independent solutions of (38) in 0 < |t − t0| < ρ

(where ρ is sufficiently small so that there are no zeros of a0 in the annular do-
main) are

wn1(t) = (t − t0)
τ1

∞∑
k=−∞

αk(t − t0)
k and

wn2(t) = βwn1(t) log(t − t0)+ (t − t0)
τ2

∞∑
k=−∞

βk(t − t0)
k,

where τ1 − τ2 ∈ Z.

If we make a transform z = ew, then equation (36) becomes

a0
∂ 2u

∂t 2
+ 2A1

∂ 2u

∂t∂w
+ A2

(
∂ 2u

∂w2
− ∂u

∂w

)
+ A3

∂u

∂t
+ A4

∂u

∂w
+ A6u = 0. (41)

Thus a solution wn(t)zn of (36) becomes a solution wn(t)enw of (41).
Assume in general that all Ak in (36) are entire functions on C

2 with a0 = 1, so
we may write

Ak(t, z) =
∞∑
n=0

Akn(t)z
n.

Next we try to find solutions to (36) of the form

u(t, z) =
∞∑
n=0

wn(t)z
n.

Recall that equation (36) has the following form:

0 =
∞∑
n=0

w ′′
n z

n + 2
∞∑
n=0

( n∑
k=0

kA1,n−kw ′
k

)
zn +

∞∑
n=0

( n∑
k=0

k(k − 1)A2,n−kwk
)
zn

+
∞∑
n=0

( n∑
k=0

A3,n−kw ′
k

)
zn +

∞∑
n=0

( n∑
k=0

kA4,n−kwk
)
zn

+
∞∑
n=0

( n∑
k=0

A6,n−kwk
)
zn;

hence, it is enough to solve the equations

w ′′
n +

n∑
k=0

(2kA1,n−k + A3,n−k)w ′
k

+
n∑
k=0

(k(k − 1)A2,n−k + kA4,n−k + A6,n−k)wk = 0



828 Pei -Chu Hu & Chung-Chun Yang

for all n ≥ 0. Inductively, we can find entire solutions wn(t) satisfying conditions

wn(0) = bn and
dwn

dt
(0) = b ′

n,

where bn and b ′
n are arbitrary constants (see Lemma 9.4). Moreover, by choosing

proper constants bn and b ′
n, we may obtain holomorphic solutions u(t, z).

9. Final Notes

Generally, we consider partial differential equations of order n in two independent
complex variables

F(t, z, u, u10, u01, . . . , un0, . . . , u0n) = 0, (42)

where

ujk = ∂ j+ku
∂t j∂zk

and u00 = u.

With regard to this equation, Cauchy’s problem may be stated as follows: Find a
solution u = u(t, z) of (43) such that, for t = t(λ) and z = z(λ), one has (depend-
ing on a parameter λ)

∂ j+ku(t, z)
∂t j∂zk

= ujk(λ), j + k ≤ n− 1.

Theorem 9.1 (Cauchy’s existence theorem). Take a point

Z0 = (t 0, z0, u0, u0
10, u0

01, . . . , u
0
n0, . . . , u0

0n)∈ C
2+(n+1)(n+2)/2.

Assume that F is holomorphic at the point Z0 with F(Z0) = 0, and assume that
t(λ), z(λ), and ujk(λ) are holomorphic at λ = 0 and satisfy

t(0) = t 0, z(0) = z0, ujk(0) = u0
jk.

If the function F satisfies(
∂F

∂un0
dzn − ∂F

∂un−1,1
dtdzn−1 + · · · + (−1)n

∂F

∂u0n
dt n

)
Z0

�= 0, (43)

then Cauchy’s problem has a unique holomorphic solution near (t 0, z0).

If equation (42) can be written in the form

∂nu

∂t n
= F(t, z, u, u10, u01, . . . , un0, . . . , u0n) (44)

such that the function F is independent of un0, then Cauchy’s problem consists of
finding the solution of equation (44) that for t = 0 satisfies the conditions

∂ ju

∂t j
= uj(z), j = 0,1, . . . , n− 1. (45)

The following theorem of Kowalewski is fundamental in this connection.
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Theorem 9.2 (Cauchy–Kowalewski theorem). Assume that F in equation (44)
is independent of un0, and assume that F is holomorphic with respect to all its
arguments in a neighborhood of some fixed values (which, for the sake of simplic-
ity, we shall assume to be zero). Let the functions uj as well as all their derivatives
up to the nth order vanish when z = 0. Then Cauchy’s problem (44) with (45) has
one and only one holomorphic solution in a certain neighborhood of the origin.

By using Cauchy’s existence theorem (or the Cauchy–Kowalewski theorem), we
may study local holomorphic solutions of the homogeneous linear partial differ-
ential equations of order n in two independent complex variables

∑
j+k≤n

ajk
∂ j+ku
∂t j∂zk

= 0, (46)

where ajk = ajk(t, z) are holomorphic functions for t ∈ D and z ∈ ? and where
D ⊆ C and ? ⊆ C are domains. For this case, condition (43) becomes

(an0dz
n − an−1,1dtdz

n−1 + · · · + (−1)na0ndt
n)(t0,z0 ) �= 0. (47)

It is evident that, by the methods and arguments used previously, one can use
(46) to derive results similar to Theorems 8.1, 7.1, and 1.6. Their analogues can be
stated as follows.

Theorem 9.3. Take t0 ∈ D. Assume that an0 = an0(t) is independent of z and
has no zeros in a disc

: = :ρ = {t ∈ C | |t − t0| < ρ} ⊂ D.

Suppose one of the following conditions holds:

(i) the coefficients of equation (46) have the form

ajk(t, z) = Ajk(t)z
k,

where all Ajk = Ajk(t) are holomorphic functions for one variable t ∈D;
(ii) all ajk are independent of the variable z.

Then equation (46) has nonconstant holomorphic solutions u(t, z) on :× C.

Theorem 9.3 can be proved similarly by using the following result for ordinary
differential equations of higher orders.

Lemma 9.4 (cf. [6]). Let p1(t), . . . ,pn(t) and q(t) be holomorphic functions on
a domainD ⊂ C. Then, for each t0 ∈D and (b, b ′, . . . , b(n−1))∈ C

n, the ordinary
differential equation of order n,

d nw

dt n
+ p1(t)

d n−1w

dt n−1
+ · · · + pn(t)w = q(t),

has a unique holomorphic solution w = w(t) on D satisfying

w(t0) = b, w ′(t0) = b ′, . . . , w(n−1) = b(n−1).
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Theorem 9.5. Assume that all ajk in (46) are polynomials on C
2. Let f be a

nonconstant meromorphic function on C, and let g be a nonconstant entire func-
tion on C

2 such that u = f � g is a solution of (46). Suppose one of the following
conditions holds:

(a) a00 �≡ 0;
(b) g is not a solution of the equation

∑
j+k≤n

ajk
∂ j+ku
∂t j∂zk

= a00u;

(c) g is not a solution of the equation

∑
j+k=n

ajk

(
∂u

∂t

)j(
∂u

∂z

)k
= 0.

Then f satisfies a nontrivial differential equation of the form

Q0(ζ)f
(n)(ζ)+Q1(ζ)f

(n−1)(ζ)+ · · · +Qn(ζ)f(ζ) = 0, (48)

where the Qk(ζ) are polynomials on C. In particular, f is of finite order. Fur-
thermore, if f is a transcendental entire function, then the order of f is a positive
rational number.

Moreover, under the conditions of Theorem 9.5, one can prove that g satisfies a
rather complicated algebraic differential equation (see e.g. [5]). Finally, we would
like to point out that the arguments used in this paper’s proofs can easily lead to
the following result.

Theorem 9.6. Assume that all ajk in (46) are entire functions on C
2 that grow

more slowly than a meromorphic solution of equations (46) on C
2. If a00 �≡ 0,

then the deficiency of the solution for each nonzero complex number is zero.
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