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0. Introduction

Unless explicitly stated otherwise, throughout this paper we assume that R is a
Noetherian ring of prime characteristic p and that M is a finitely generated R-
module. By (R, m, k) we indicate that R is local with its maximal ideal m and its
residue field k = R/m. We always denote q := pe for varying e ∈ N.

For every e ∈ N, there exists a Frobenius map (which is a ring homomorphism)
F e : R → R defined byF e(r) = r q = rp

e

for any r ∈R. Thus, givenM, there is a
derived R-module structure, denoted by eM, on the same abelian group M but with
its scalar multiplication determined by r · x = r qx = rp

e

x for r ∈ R and x ∈ M.

It is routine to verify that Ann(M) ⊆ Ann(eM) ⊆ √
Ann(M) and that Ass(M) =

Ass(eM) for all e ∈ N.

When R is reduced it is clear that eR and R1/q := {r1/pe | r ∈R} are isomorphic
as R-modules for every e. Using this terminology, a result of Kunz [K1, Thm. 2.1]
states that R is regular if and only if eR is flat over R for some e ≥ 1 or, equiva-
lently, for all e ∈ N.

We say that R is F-finite if 1R is finitely generated over R or, equivalently, if eR

is finitely generated over R for all e ∈ N. By a result of Kunz [K2], every F-finite
ring is excellent. If R is F-finite and if M is a finitely generated R-module, then
it is easy to see that eM remains finitely generated over R for every e ∈ N.

Similarly, if 1M is finitely generated over R then so is 1(R/Ann(M)). This
means that R/Ann(M) is an F-finite ring. In other words, e(R/Ann(M)) is finite
over R/Ann(M) (or, equivalently, over R) for all e, which forces eM to be finitely
generated over R for all e ∈ N.

For any e ∈ N, the derived R-module eM can be roughly identified as the mod-
ule structure of M over the subring Rq := {r q = rp

e | r ∈ R}. Thus, in general,
the “size” of eM should increase as e → ∞. Assuming that eM is finite over R for
all e ∈ N, we are interested in whether it is possible for the derived R-modules eM

to remain indecomposable (i.e., not writable as a direct sum of two nontrivial sub-
modules) for all e ∈ N. Since we can always replace R by R/Ann(M), we may
simply assume that R is F-finite.
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Here is a case where eM remain indecomposable for all e ∈ N. Suppose R has
a maximal ideal m such that k = R/m is a perfect field, and let M = k. Then it is
easy to see that eM ∼= M = k and hence is indecomposable for all e ∈ N. Another
(trivial) case of nonsplitting is when M = 0.

Hochster [H] showed the eventual splitting of eM for e � 0 in many cases.
In particular, he proved that eM decomposes for all e � 0 if dim(M) ≤ 1 (ex-
cept for the cases mentioned in the previous paragraph). Indeed, if dim(M) = 0
then the eventual splitting reduces to a local case in which we see that AnnR(M)

is an m-primary ideal of (R, m, k). Then m[pe0] ⊆ Ann(M) for some e0 ∈ N,
where m[pe0] denotes the ideal of R generated by {rpe0 | r ∈ m}. Thus the derived
R-modules eM become vector spaces over k = R/m for all e ≥ e0, since m · eM =
m[pe]M = 0. As for the 1-dimensional case, we quote what was essentially proved
in [H, Thm. 5.16(2)] as follows.

Theorem 0.1. Let (R, m, k) be an F-finite local Noetherian ring of characteris-
tic p, and let M be a finitely generated R-module with dim(M) = 1. Fix any P ∈
Ass(M) with dim(R/P ) = 1 and let A = R/P be the integral closure of R/P in
its fraction field (R/P )P . Then, for any n∈ N, there exists an e0 ∈ N such that eM

has a direct summand isomorphic to An for all e ≥ e0.

One of the main ideas in the proof of this theorem is [H, Lemma 5.17], which also
plays an important role in this paper. Because we will need a stronger result than
the original version of [H, Lemma 5.17], we state the following lemma.

Lemma 0.2 (cf. [H, Lemma 5.17]). Consider the short exact sequence

0 −→ Dr+1 ⊕ B −→ M −→ N −→ 0

of finitely generated modules over a Noetherian ring R (not necessarily of char-
acteristic p). Assume that µ(E) ≤ r for all submodules E ⊆ Ext1R(N,D), where
µ(E) denotes the least number of generators of E. Then M has a direct summand
that is isomorphic to D.

Proof. This can be derived from the proof of [H, Lemma 5.17]. We omit the
details.

In [H, Fact 5.14] it was also observed that, ifM is a graded module over anF-finite
N-graded Noetherian ring R with R0 a field of characteristic p and dim(M) ≥ 1,
then for any n ∈ N there exists an e such that eM splits as a direct sum of more
than n nonzero R-modules. This splitting property was then used to prove the ex-
istence of small Cohen–Macaulay modules (see [H, Prop. 5.11]).

In this paper we study the direct sum decomposability of eM when dim(M) ≥
2. Our approach is similar to that of [H, Thm. 5.16(2)]. We now state the main
result, which is proved in Section 1.

Main Theorem (see Theorem 1.8). Let (R, m, k) be an F-finite Noetherian
local ring of characteristic p, and let M be a finitely generated R-module with
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dim(M) = 2. Let A be the integral closure of R/P in some finite algebraic exten-
sion field of (R/P )P for some P ∈ Ass(M) with dim(R/P ) = 2. If A is strongly
F-regular then, for any n ∈ N, An is isomorphic to a direct summand of eM for
every e � 0.

Recall that an F-finite ring R is said to be strongly F-regular [HHu2, Def. 5.1] if,
for any c ∈R◦ := R \ ⋃

P∈min(R) P, the R-linear map R → eR defined by 1 �→ c

splits for some e > 0 (or, equivalently, for all e � 0). Strong F-regularity can be
equivalently defined in terms of tight closure (cf. [HHu1]): (R, m, k) is strongly
F-regular if and only if 0 is tightly closed in the injective hull of k. For example,
if (R, m, k) is an F-finite regular local ring, then eR is free over R for all e by [K1,
Thm. 2.1]. Thus, for any c �= 0 ∈ R, the R-linear map R → eR sending 1 to c

splits as long as e is large enough that c /∈ m[pe] = m · eR. This shows that every
F-finite regular ring is strongly F-regular.

In Hochster’s result (our Theorem 0.1), R/P is a domain with dim(R/P ) ≤
1 and so its integral closure A = R/P is regular (and hence strongly F-regular)
automatically. However, when dim(R/P ) = 2, its integral closure may not be
regular. Nevertheless, Theorem 1.8(1) states that if there is a module-finite domain
extension of R/P that is strongly F-regular, then the same splitting result for eM

still holds. In this sense, Theorem 1.8(1) may be regarded as a generalization of
Theorem 0.1.

1. The Eventual Splitting of eM in Dimension 2

We begin this section with an easy remark.

Remark 1.1. Let R be a ring, and let M1 → M → M2 be an exact sequence.
Then

sup{µ(E) | E ⊆ M} ≤ sup{µ(E1) | E1 ⊆ M1} + sup{µ(E2) | E2 ⊆ M2}.
Throughout this paper, µ(E) denotes the minimal number of generators for any
R-module E.

Let us next recall a familiar and useful fact about 1-dimensional R-modules. We
use λR(·) to denote the length of an R-module.

Lemma 1.2. Let M be a finitely generated module over a local ring (R, m, k) (not
necessarily of characteristic p) with dim(M) ≤ 1. Then

sup{µ(E) | E ⊆ M} ≤ λ(H0
m(M)) + e(M) < ∞,

where H0
m(M) := ⋃

n∈N(0 :M mn) and e(M) := limn→∞ λ(M/mnM)/n, the
Hilbert multiplicity of M (as a module of dimension 1).

Proof. We sketch a proof. Let E be an arbitrary submodule of M; then

H0
m(E) = H0

m(M) ∩ E
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and so there exists an exact sequence 0 → E/H0
m(E) → M/H0

m(M). Notice that
E/H0

m(E) is either zero or Cohen–Macaulay of dimension 1. Thus, by Remark 1.1
(and other considerations) we have

µ(E) ≤ µ(H0
m(E)) + µ(E/H0

m(E)) ≤ λ(H0
m(E)) + e(E/H0

m(E))

≤ λ(H0
m(M)) + e(M/H0

m(M)) = λ(H0
m(M)) + e(M).

Here we have used thatµ(E/H0
m(E)) ≤ e(E/H0

m(E)), which holds becauseN :=
E/H0

m(E) is a 1-dimensional Cohen–Macaulay R-module. To prove this, we as-
sume without loss of generality that dim(R) = 1 and |k| = ∞. Then there exists
an x ∈ m such that x is N -regular and xR is a reduction of m. Consequently,

e(N ) = lim
n→∞

λ(N/mnN )

n
= lim

n→∞
λ(N/xnN )

n
= λR(N/xN ) ≥ µ(N ).

The next result plays an important role in the proof of our main theorem. Before
stating the result, we first explain some notation and terminology that we shall use.

Notation 1.3. Let L,D �= 0 be finitely generated modules over an F-finite
ring R.

(1) We denote by #R(L,D), or by #(L,D) if the ring R is clearly understood, the
maximal integer n such that L ∼= Dn ⊕ N for some R-module N.

(2) When (R, m, k) is local, we denote α(R) = logp[k : kp] (i.e., pα(R) is the
rank of 1k as a k-vector space).

(3) Assuming that the ring (R, m, k) is local, we say that D is an F-contributor
of L if lim supe→∞ #(eL,D)/qα(R)+dim(L) > 0, where q = pe. (See [Y1] for
some properties of F-contributors.)

(4) Given functions f , g : N → N, we say that f(e) = O(g(e)) if there exists an
a ∈ N such that f(e) ≤ ag(e) for all e ∈ N.

Recall that, for any P ∈ Spec(R) and e ∈ N, the derived module e(R/P ) has
torsion-free rank qα(R)+dim(R/P ) over R/P [K2, Prop. 2.3]. The next lemma gives
a criterion for when the eventual splitting of eM occurs.

Lemma 1.4. Let (R, m, k) be an F-finite local Noetherian ring of prime charac-
teristic p, and let M be a finitely generated R-module. For some e0 ≥ 0, suppose
there exists a short exact sequence

0 −→ L −→ e0M −→ N −→ 0

such that dim(N ) = d ≤ 1 and lim supe→∞ #(eL,D)/qα(R)+d = ∞ for some
finitely generated R-module D �= 0 (e.g., dim(L) > d and D is a F-contributor of
L). Then, for any n∈ N, there exists an e ∈ N such that eM has a direct summand
isomorphic to Dn.

Proof. Because the assumption implies also that lim supe→∞ #(eL,Dn)/qα(R)+d =
∞ for any n ∈ N, we need only prove the lemma for the case n = 1. Also, since
e(e0M) = e+e0M for all e ∈ N, we may relabel e0M as M and thus assume e0 = 0
without loss of generality.
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We can filter N by finitely many submodules such that successive quotients are
isomorphic to either k = R/m or R/P with P ∈ Spec(R) and dim(R/P ) = 1. For
each such P, denote by R/P the integral closure of R/P in its fraction field. Then
R/P is regular and finitely generated over R/P since R is excellent. Hence there
exists an exact sequence 0 → R/P → R/P → U → 0 with λR(U) < ∞. This
shows that N may be filtered by finitely many submodules with successive quo-
tients isomorphic to either k = R/m or R/P with P ∈ Spec(R) and dim(R/P ) =
1. Fix such a filtration, say

0 = N0 � N1 � · · · � Nr = N,

and let "0 ⊆ {1, 2, . . . , r} and "1 = {1, 2, . . . , r} \ "0 such that Ni/Ni−1
∼= k =

R/m when i ∈ "0 and Ni/Ni−1
∼= R/Pi with Pi ∈ Spec(R) and dim(R/Pi) = 1

when i ∈"1. Since the integral closure R/Pi is a 1-dimensional regular semilocal
domain for each i ∈"1, we have e(R/Pi) ∼= (R/Pi)

qα(R)+1
(cf. [K2, Prop. 2.3] and

Lemma 1.10). Hence, for any e ∈ N, the derived R-module eN may be filtered cor-
respondingly as

0 = eN0 � eN1 � · · · � eNr = eN,

where
eNi/

eNi−1
∼=

{
ek ∼= kqα(R) if i ∈"0,
e(R/Pi) ∼= (R/Pi)

qα(R)+1
if i ∈"1.

Thus, by induction on r (we omit the details) and iteration of Remark 1.1, for all
e ∈ N we have

sup{µ(E) | E ⊆ Ext1R(
eN,D)}

≤
r∑

i=1

sup{µ(E) | E ⊆ Ext1R(
eNi/

eNi−1,D)}

= qα(R)
∑
i∈"0

sup{µ(E) | E ⊆ Ext1R(k,D)}

+ qα(R)+1
∑
i∈"1

sup{µ(E) | E ⊆ Ext1R(R/Pi ,D)}.

We therefore conclude that sup{µ(E) | E ⊆ Ext1R(
eN,D)} = O(qα(R)+d). Ob-

serve that if dim(N ) = d = 0 then "1 = ∅.
Put µ(e) = sup{µ(E) | E ⊆ Ext1R(

eN,D)} for every e ∈ N. Because µ(e) =
O(qα(R)+d) and lim supe→∞ #(eL,D)/qα(R)+d = ∞, there exists a large enough
e such that #(eL,D) ≥ µ(e) + 1. That is, eL ∼= Dµ(e)+1 ⊕ B for some R-module
B, and hence we have the exact sequence

0 −→ Dµ(e)+1 ⊕ B −→ eM −→ eN −→ 0.

By Lemma 0.2, we see that D is isomorphic to a direct summand of eM.

Remark 1.5. We may sketch another proof of Lemma 1.4; again, it suffices to
prove the case where n = 1. The assumption lim supe→∞ #(eL,D)/qα(R)+d =
∞ implies that D has depth at least d + 1 = dim(N ) + 1 (see the proof of [Y1,
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Lemma 2.2]). Hence there exists an x ∈ Ann(N ) ⊆ Ann(eN ) for all e ∈ N such
that x is D-regular. Let R = R/AnnR(N ) and D = D/xD. Then, for all e ∈ N,

Ext1R(
eN,D) ∼= HomR(

eN,D/xD) ⊆ HomR(R
µ(eN ),D) ∼= HomR(R,D)µ(

eN ).

Because HomR(R,D) has dimension at most 1, Remark 1.1 and Lemma 1.2 im-
ply that

sup{µ(E) | E ⊆ Ext1R(
eN,D)} ≤ sup{µ(E) | E ⊆ HomR(R,D)µ(

eN )}
≤ µ(eN ) sup{µ(E) | E ⊆ HomR(R,D)}
= O(µ(eN )).

On the other hand, µ(eN ) = λ(eN/m · eN ) = qα(R)λ(N/m[q]N) = O(qα(R)+d)

by the existence of Hilbert–Kunz multiplicity (see [Mo]), where d = dim(N ).

Hence sup{µ(E) | E ⊆ Ext1R(
eN,D)} = O(qα(R)+d), and from this point the

proof proceeds as in the original proof of Lemma 1.4.

Remark 1.6. By Lemma 1.4 we see that if lime→∞ #(eL,D)/qα(R)+d = ∞ then,
for any given n ∈ N, there exists an e1 ∈ N such that eM has a direct summand
isomorphic to Dn for all e ≥ e1.

Next, we use the criterion of Lemma 1.4 to produce a situation where eM splits for
e � 0. For any finitely generated R-module M, set

Assh(M) = {P ∈Ass(M) | dim(R/P ) = dim(M)},
which is the same as {P ∈ min(M) | dim(R/P ) = dim(M)}. We remark that
some of the arguments in the proof of the following proposition are similar to
those outlined in the proof of [H, Thm. 5.16(2)].

Proposition 1.7. Let (R, m, k) be an F-finite local Noetherian ring of char-
acteristic p, and let M,L,D be finitely generated nonzero R-modules such that
dim(M)= 2, Ass(L)⊆Assh(M) (so that dim(L)= 2), and lim supe→∞ #(eL,D)/

qα(R)+1 = ∞ (e.g., D is an F-contributor of L). Then, for any n∈ N, there exists
an e ∈ N such that Dn is isomorphic to a direct summand of eM.

Proof. Choose a primary decomposition of 0 in M, say

0 = Q1 ∩ Q2 ∩ · · · ∩ Qs ,

such that Ass(M/Qi) = {Pi}. Assume the primary decomposition is minimal so
that Ass(M) = {P1,P2, . . . ,Ps}. Let Assh(M) = {P1,P2, . . . ,Pr} for some 1 ≤
r ≤ s and let S = R \ ⋃r

i=1Pi. Then, over the localization ring S−1R, we obtain
a primary decomposition of 0 in S−1M,

0 = S−1Q1 ∩ S−1Q2 ∩ · · · ∩ S−1Qr ,

which shows that S−1
(⊕r

i=1M/Qi

) ∼= S−1M by the Chinese remainder theorem.
Lifting the isomorphism back to R, we have the short exact sequence
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0 −→
r⊕

i=1

M/Qi −→ M −→ N −→ 0

for some finitely generated R-module N with dim(N ) ≤ 1. Then, for every e ∈
N, there is a short exact sequence

0 −→
r⊕

i=1

e(M/Qi) −→ eM −→ eN −→ 0 (1.7.1)

with dim(eN )= dim(N )≤ 1. Since Ass(M/Qi)= {Pi}, it follows that e(M/Qi) �=
0 are finitely generated torsion-free (R/Pi)-modules for all e � 0. (Indeed, be-
cause

√
AnnR(M/Qi) = Pi, there exists an e0 ∈ N such that (AnnR(M/Qi))

[pe0] ⊆
Pi, which implies that e(M/Qi) is annihilated by Pi for every e ≥ e0; moreover,
for any x ∈ R \ Pi, x is a nonzero divisor on M/Qi and thus it remains so on
e(M/Qi) for every e ≥ 0.) For any e ≥ e0 and any i = 1, . . . , r, let n(e, i) denote
the torsion-free rank of e(M/Qi) over R/Pi. Then n(e, i) > 0 and there exists a
short exact sequence

0 −→ (R/Pi)
n(e,i) −→ e(M/Qi) −→ N(e,i) −→ 0 (1.7.2)

such that N(e,i) is finitely generated over R/Pi with dim(N(e,i)) < dim(M/Qi) =
2 for every i = 1, . . . , r. Combining (1.7.1) and (1.7.2), we obtain the short exact
sequence

0 −→
r⊕

i=1

(R/Pi)
n(e,i) −→ eM −→ Ne −→ 0 (∗e)

for each e ≥ e0, where Ne is a finitely generated R-module with dim(Ne) ≤ 1.
Notice that n(e + 1, i) = pα(R)+2n(e, i) for each e ≥ e0 and each i ∈ {1, 2, . . . , r}
(cf. [K2, Prop. 2.3]). In particular, we see that n(e, i) → ∞ as e → ∞.

Now we carry out a similar procedure on L. Let Ass(L) = {P1,P2, . . . ,Pt } for
some1 ≤ t ≤ r. Fix a primary decomposition of 0 inL, say 0 = Q′

1∩Q′
2∩· · ·∩Q′

t

with Ass(L/Q′
i ) = {Pi}. Let U = R \ ⋃t

i=1Pi. Then U−1
(⊕t

i=1L/Q
′
i

) ∼= U−1L,
which gives the short exact sequence

0 −→ L −→
t⊕

i=1

L/Q′
i −→ N ′ −→ 0 (1.7.3)

for some finitely generated R-module N ′ with dim(N ′) ≤ 1. Similarly, we can
find a large enough e ′ ∈ N such that, for each i = 1, 2, . . . , t, e ′

(L/Q′
i ) is torsion-

free over R/Pi (say, with torsion-free rank n(i)); hence there exists a short exact
sequence

0 −→ e ′
(L/Q′

i ) −→ (R/Pi)
n(i) −→ N ′

i −→ 0 (1.7.4)

for some finitely generated (R/Pi)-moduleN ′
i with dim(N ′

i ) ≤ 1. Together, (1.7.3)
and (1.7.4) produce the short exact sequence

0 −→ e ′
L −→

t⊕
i=1

(R/Pi)
n(i) −→ N ′′ −→ 0 (∗∗)

for some finitely generated R-module N ′′ with dim(N ′′) ≤ 1.
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Now fix a sufficiently large e1 ∈ N such that n(e1, i) ≥ n(i) for all i = 1, . . . , t.
Then the exact sequences (∗e1) and (∗∗) generate the short exact sequence

0 −→ e ′
L ⊕ B −→ e1M −→ N ′′′ −→ 0,

where

B =
( t⊕

i=1

(R/Pi)
n(e1,i)−n(i)

)
⊕

( r⊕
i=t+1

(R/Pi)
n(e1,i)

)

and N ′′′ is a finitely generated R-module with dim(N ′′′) ≤ 1. Moreover, it is
clear that

lim sup
e→∞

#(eL,D)

qα(R)+1
= ∞ �⇒ lim sup

e→∞
#(e(e

′
L ⊕ B),D)

qα(R)+1
= ∞.

Now the desired result follows from Lemma 1.4.

Proposition 1.7 can be applied to the following case, which proves our main the-
orem. First, recall that Aberbach and Leuschke [AL] have proved the following
result concerning strong F-regularity: An F-finite local ring (R, m) is strongly
F-regular if and only if lim infe→∞ #(eR,R)/qα(R)+dim(R) > 0. See [SV; Y1] for
the definition and properties of modules of finite F-representation type (abbrevi-
ated FFRT).

Theorem 1.8. Let (R, m, k) be an F-finite local Noetherian ring of characteris-
tic p, and let M be a finitely generated R-module with dim(M) = 2. Let A be a
domain that is a module-finite extension of R/P for some P ∈Assh(M).

(1) If A is strongly F-regular then, for any n∈ N, there exists an e1 ∈ N such that
eM has a direct summand isomorphic to An for all e ≥ e1.

(2) If there is a finitely generated torsion-free A-module L �= 0 that has FFRT,
then there exists an R-module D �= 0 such that, for any n ∈ N, there is an
e1 ∈ N such that e1M has a direct summand isomorphic to Dn.

Proof. (1) Evidently dim(A) = 2, AssR(A) = {P }, and A is a semilocal F-
finite ring, say with maximal ideals m1, m2, . . . , mc. Observe that dim(Ami

) =
dim(A) = 2 and α(Ami

) = α(R) for each i = 1, 2, . . . , c. Indeed, the equa-
tion α(Ami

) = α(R) holds because A/mi is a finite field extension of R/m; then
dim(Ami

) = dim(R) follows from [K2, Prop. 2.3]. It also follows from Ratliff ’s
dimension formula (see [M, Thm. 15.6]).

We must show that lim infe→∞ #R(
eA,A)/qα(R)+dim(A) > 0 in order to apply

Proposition 1.7 and Remark 1.6. It suffices to show lim infe→∞ #A(eA,A)/
qα(R)+dim(A) > 0 by considering A as an A-module. Because A is strongly F-
regular, so isAmi

for each i = 1, 2, . . . , c. Therefore, lim infe→∞ #Ami
(eAmi

,Ami
)/

qα(Ami )+dim(Ami ) > 0 for each i = 1, 2, . . . , c (see [AL]). Finally, by Lemma 1.10
(to follow) we have

lim inf
e→∞

#A(eA,A)

qα(R)+dim(A)
= min

{
lim inf
e→∞

#Ami
(eAmi

,Ami
)

qα(R)+dim(A)

∣∣ 1 ≤ i ≤ c

}
> 0,

which finishes the proof of part (1).
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(2) Clearly, we have AssR(L) = {P } ⊆ AsshR(M) and so dim(L) = 2. Also,
our assumption that L has FFRT as an A-module implies that L has FFRT as an
R-module by definition. By [Y1, Lemma 2.1], there is a nonzero F-contributor D
of L over R. Now Proposition 1.7 applies.

Remark 1.9. Because every strongly F-regular ring A is normal, we see that if
A is a module-finite extension of R/P (as in Theorem 1.8) then A is the integral
closure of R/P in some finite field extension of (R/P )P .

In general, for any (F-finite) local ring (R, m, k) of prime characteristicp, the in-
variant s(R) = lime→∞ #(eR,R)/qα(R)+dim(R), if it exists, is called theF-signature
of R, which was first defined and studied in [HuL]. For related work on the F-
signature, see for example [AE1; AE2; AL; Si; SV; Y1; Y2].

Although Lemma 1.10 may be well known, we state and prove it for the complete-
ness of the proof of Theorem 1.8. (Lemma 1.10 was also referred to in the proof of
Lemma 1.4.) Before stating the lemma we remark that, for any Noetherian local
ring (R, m) and any finitely generated R-modules N,D �= 0,

#R(N ⊕ Dn,D) = #R(N,D) + n (†)

for everyn∈ N, which follows from #R̂(M̂, D̂) = #R(M,D) and the Krull–Schmidt
property of R̂, the m-adic completion of R.

Lemma 1.10. Let A be a semilocal Noetherian ring (not necessarily with prime
characteristic p) with maximal ideals m1, m2, . . . , mc exactly and with M,D �= 0
finitely generated A-modules. Then

#A(M,D) = min{#Ami
(Mmi

,Dmi
) | 1 ≤ i ≤ c}.

Proof. One could prove this lemma by using that (a) #A(M,D) = #Â(M̂, D̂),
where ˆ = ˆm denotes the completion with respect to the m-adic topology for m =⋂c

i=1 mi the Jacobson radical, and (b) Â = ∏c
i=1(Âmi

)mi , where ( ·̂)mi denotes
the (miAmi

)-adic completion.
For an alternative proof, let #A(M,D) = n and M ∼= N⊕Dn. Then #A(N,D) =

0 and, by (†), we have

min{#Ami
(Mmi

,Dmi
) | 1 ≤ i ≤ c} = n + min{#Ami

(Nmi
,Dmi

) | 1 ≤ i ≤ c}.
It suffices to prove that min{#Ami

(Nmi
,Dmi

) | 1 ≤ i ≤ c} = 0. Suppose, to the
contrary, that min{#Ami

(Nmi
,Dmi

) | 1 ≤ i ≤ c} > 0. Then, for each 1 ≤ i ≤ c,
there exist homomorphisms

φi/si ∈ (HomA(N,D))mi
= HomAmi

(Nmi
,Dmi

),

ψi/si ∈ (HomA(D,N))mi
= HomAmi

(Dmi
,Nmi

)

such that (φi/si) � (ψi/si) = 1Dmi
, where φi ∈ HomA(N,D), ψi ∈ HomA(D,N),

and si ∈ A \ mi . Choose ri ∈ ⋂
j �=i mj \ mi for each i = 1, 2, . . . , c. Then it is

routine to verify that( c∑
i=1

riφi

)
�

( c∑
i=1

riψi

)
∈ HomA(D,D)
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is surjective (by Nakayama’s lemma) and hence is an isomorphism, which implies
that N has a direct summand isomorphic to D—a contradiction.

Note that Proposition 1.7 and Theorem 1.8 apply only to 2-dimensional cases. For
higher dimensions we have the following result, which was obtained during a dis-
cussion with Melvin Hochster.

Theorem 1.11. Let (R, m, k) be an F-finite local domain of prime characteris-
tic p with dim(R) ≥ 2 such that RP is integrally closed in its fraction field for all
P ∈ Spec(R) with dim(R/P ) ≥ 2. Let A := R be the integral closure of R in its
fraction field. If A is strongly F-regular then, for any finitely generated faithful
R-module M and any n∈ N, there exists an e1 such that eM has a direct summand
isomorphic to An (as an R-module) for all e ≥ e1.

Proof. Let C = {r ∈R | rA ⊆ R} be the conductor, which is the largest common
ideal of R and A. Then we see dim(R/C) ≤ 1 by assumption. Consider the short
exact sequence

0 −→ CM −→ M −→ M/CM −→ 0,

where dim(M/CM) ≤ 1 and CM is a finitely generated faithful A-module. Thus
there exist h∈ HomA(CM,A) and x ∈ CM such that h(x) = c ∈A◦. Then, sinceA
is strongly F-regular, there exist e0 ∈ N and g ∈ HomA(

e0A,A) such that g(c) = 1.
Consequently, we obtain an A-linear homomorphism g �h : e0(CM) → e0A → A

that maps x to 1, showing that A is a direct summand of e0(CM) as an A-module.
The strong F-regularity of A also implies lim infe→∞ #A(eA,A)/qα(R)+dim(A) >

0 (cf. [AL] and the proof of Theorem 1.8(1)). As a result,

lim inf
e→∞

#R(
e(CM),A)

qα(R)+dim(R)
≥ lim inf

e→∞
#A(e(CM),A)

qα(R)+dim(A)
> 0.

Now the claim follows from Lemma 1.4 and Remark 1.6.
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