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Almost Regular Sequences and
the Monomial Conjecture

Paul Roberts

To Mel Hochster on his 65th birthday

The monomial conjecture of Mel Hochster has been one of the most important open
problems in commutative algebra for many years. The conjecture is as follows.

Conjecture. Let R be a Noetherian local ring of dimension d, and suppose that
x1, x2, . . . , xd is a system of parameters for R. Then for all integers t ≥ 0 we have

x t
1x

t
2 · · · x t

d /∈ (x t+1
1 , . . . , x t+1

d ),

where (x t+1
1 , . . . , x t+1

d ) denotes the ideal generated by x t+1
1 , . . . , x t+1

d .

This conjecture has assumed a central role because it is simply stated and it implies
several other important conjectures, notably the canonical element conjecture, for
rings of positive or mixed characteristic. In fact, when this conjecture was first an-
nounced it had numerous further consequences, some of which (such as the new
intersection conjecture) were later proved by different means. We refer to Hochster
[6; 8] for descriptions of these conjectures and their status at various times.

The monomial conjecture is almost trivial for rings that contain the rational num-
bers and is not difficult for rings of positive charateristic, but it remains an open
problem for rings of mixed characteristic. The most recent advance was made by
Heitmann [5], who proved it in mixed characteristic in dimension 3.

One traditional method for approaching this and other conjectures has been to
construct Cohen–Macaulay modules for which a system of parameters for the ring
becomes a regular sequence. It is unknown whether one can find finitely generated
modules with this property, but Hochster showed many years ago that for equi-
characteristic rings one can find infinitely generated modules (and even algebras)
with this property (see [6]).

In the course of Heitmann’s proof, he shows that a weaker condition than being
a regular sequence suffices to prove these conjectures. We call a sequence of ele-
ments with this property an almost regular sequence and we give a precise defini-
tion in Section 1.

In this paper we first review some of the known facts about almost regular se-
quences and then discuss some related questions in the equicharacteristic case.
Finally, we discuss a variation on this concept for rings of mixed characteristic
and its relation to the monomial conjecture.
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1. Almost Regular Sequences

The inspiration for the concept of almost regular sequence that we use came from
two sources. The first was Heitmann’s proof of the monomial conjecture in di-
mension 3 mentioned previously. The second was the work of Faltings on p-adic
Hodge theory in [1] and the resulting work of Gabber and Ramero [2]. This the-
ory was developed to give a firm foundation to the results of Faltings, and these
ideas have their origins in a classic work of Tate on p-divisible groups [14]. Our
use of this concept is comparatively simple, but it illustrates the main questions in
looking at certain homological conjectures, as we shall explain.

Let A be an integral domain, and let v be a valuation on A with values in the
abelian group of rational numbers. That is, v is a function from A to Q ∪ {∞}
such that

(1) v(a) = ∞ if and only if a = 0,
(2) v(ab) = v(a)v(b) for all a, b ∈A, and
(3) v(a + b) ≥ inf{v(a), v(b)} for all a, b ∈A.

We will also assume that v(a) ≥ 0 for a ∈A. Later in this work we will also con-
sider more general functions that do not satisfy the first condition.

We note that the following definitions depend on the choice of a valuation, so the
concept of being almost zero depends on this choice. However, we usually assume
that we have fixed a valuation and the definitions are in terms of this valuation.

Definition 1. Let A be a ring with a valuation v as in (1)–(3), and let M be an
A-module. We say that M is almost zero with respect to v if, for every m∈M and
for every ε > 0, there is an a ∈A with v(a) < ε and am = 0.

Definition 2. We say that a sequence x1, . . . , xd is an almost regular sequence
with respect to v if, for each i = 1, . . . , d, the module

((x1, . . . , xi−1) : xi)/(x1, . . . , xi−1)

is almost zero. If a system of parameters is an almost regular sequence with re-
spect to v, then we say that A is almost Cohen–Macaulay with respect to v.

Observe that if we require these modules to be zero rather than almost zero then
we have the usual definitions of a regular sequence and a Cohen–Macaulay ring.

Although this definition was inspired in part by the work of Gabber and Ramero
[2], it is not quite the same as their definition. They define a module to be almost
zero if it is annihilated by a given ideal m for which m = m2. The correspond-
ing definition of almost regular would be that ((x1, . . . , xi−1) : xi)/(x1, . . . , xi−1)

is annihilated by m. In many situations their condition is stronger than ours.
We remark also that Hochster and Huneke [9] defined a closure operation using

this idea, which they call “dagger closure”, and showed that it agrees with tight
closure in positive characteristic.

The situation we consider is when A is an integral extension of a Noetherian
ring. Let R be a complete regular local ring of dimension d, and let x1, . . . , xd be
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a system of parameters for R. Let R+ denote the integral closure of R in the alge-
braic closure of its fraction field; R+ is called the absolute integral closure of R.

The ring A will denote a ring between R and R+, and in many cases we take A to
be R+ itself.

2. Almost Cohen–Macaulay Rings in the
Equicharacteristic Case

The main question we consider is whether R+ is almost Cohen–Macaulay with
respect to some valuation v. This is easy to prove if R has positive characteristic;
in fact, if S is a normal Noetherian domain of positive characteristic and if S∞
denotes the extension of S obtained by adjoining all (pn)th roots of elements of
S, then S∞ is almost Cohen–Macaulay with respect to any valuation. A proof of
this can be found in [13], and we shall give a brief outline of it. As do virtually all
results of this type, it uses some version of the following theorem (which we use
again later as well).

Theorem 1. Let R be a complete local ring of dimension d. Then there is an
ideal I of R such that the following statements hold.

(1) The support of I is the set of prime ideals p for which Rp is not Cohen–
Macaulay.

(2) For every system of parameters x1, . . . , xd of R and every element a of R with
axi ∈ (x1, . . . , xi−1) for some i between 1 and d, we have ca ∈ (x1, . . . , xi−1)

for all c ∈ I.

(3) I annihilates the local cohomology H i
m(R) for i = 0,1, . . . , d − 1.

For a proof of this or a similar fact, refer to Roberts [12] or Hochster and Huneke
(see discussion at beginning of Sec. 3 in [10]).

In the case we are considering, we use that if axi ∈ (x1, . . . , xi−1) then applying
the Frobenius map yields ap

n

x
pn

i ∈ (x
pn

1 , . . . , xp
n

i−1), so cap
n ∈ (x

pn

1 , . . . , xp
n

i−1) for
some nonzero element c inS. Taking (pn)th roots, we have c1/pn

a ∈ (x1, . . . , xi−1).

Since v(c1/pn

) = (1/pn)v(c) goes to zero as n goes to infinity, this proves the re-
sult for any valuation v.

In [10] Hochster and Huneke proved the considerably deeper fact that, for an ex-
cellent local domain R of positive characteristic, the ring R+ is Cohen–Macaulay
(see also [11]). We remark that the subring S∞ may not be Cohen–Macaulay in
general.

If R is a local domain containing a field of characteristic 0, then R+ is a big
Cohen–Macaulay algebra only if the dimension of R is at most 2. In fact, if R is
a normal ring of characteristic 0 that is not Cohen–Macaulay, then the field trace
map shows that R is a direct summand of any finite extension of R. Consequently,
a nontrivial relation on a system of parameters for R remains nontrivial in finite
extensions and hence also in R+. However, it is not known whether R+ is almost
Cohen–Macaulay with respect to some valuation v when R is a ring of character-
istic 0.
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In [13] we showed that, for certain graded rings in characteristic 0, the image of
local cohomology group H 2

m(R) in H 2
m(R

+) is almost zero. In addition, we com-
pute how this works for two examples in detail. We discuss here some properties
of these examples and of the further questions that they suggest.

First of all, both examples are graded integrally closed non-Cohen–Macaulay
domains of dimension 3. The valuation used is the one given by the grading. We
describe the second of these examples in detail.

The simplest way to define this ring is as a Segre product. Let k be an alge-
braically closed field, let A = k[X,Y,Z]/(X3 + Y 3 +Z3), and let B = k[U,V ],
where both A and B have the usual gradings. Let R be the Segre product

R = A # B =
⊕

n

(An ⊗k Bn).

ThenR is a standard graded ring of dimension 3 generated over k by the six degree-
1 elements X ⊗U, Y ⊗U, Z ⊗U, X ⊗ V, Y ⊗ V, and Z ⊗ V. By a result of Goto
and Watanabe [3, Thm. 4.1.5], the local cohomology module H 2

m(R) is

H 2
m(A) # B =

⊕

n

(H 2
m(A))n ⊗ Bn.

SinceB only has nonzero components in nonnegative degrees, the only component
of H 2

m(A) in nonnegative degree is in degree 0, and this component is isomorphic
to k, it follows that H 2

m(R)
∼= k. We do not go into the computation of the local

cohomology of R, but we do use the facts that it suffices to consider the corre-
sponding element of H 2

m(A) of degree 0 and that this element is given by Z2/XY,
the homology of the Čech complex

0 → A → AX ⊕ AY → AXY → 0.

This element is not zero in H 2
m(A) because Z2 /∈ (X,Y ). It seems relevant to the

computations in [13] (although not used explicitly) that Z2 is integral not only over
(X,Y ) but also over (X,Y )2, and the same holds for the other example from that
paper. Furthermore, one of the few families of examples of non-Cohen–Macaulay
normal domains is in the last section of Heitmann [4], and the dimension-3 exam-
ples given there also have the property that, for the system of parameters x, y, z,
the given elements a /∈ (x, y) with za ∈ (x, y) are integral over (x, y)2. However,
the following example (shown to me by A. Singh) shows that this is not necessar-
ily true in general.

Let A = k[X,Y,Z]/(X2 + Y 3 + Z7), where X, Y, and Z have degrees 21, 14,
and 6, respectively. Then the element Z 6/XY defines a nonzero element of H 2

m(A)

of degree equal to 6 × 6 − 21 − 14 = 1, so by the formula of Goto and Watanabe
it defines a nonzero element H 2

m(R), where R = A # k[U,V ] as in the previous
example. However, Z 6 is not integral over (X,Y )2: if we divide by the ideal gen-
erated by Y, the image of Z 6 is not integral over (X2). Taking the Segre product,
this produces an example in which (x, y, z) is a system of parameters, a /∈ (x, y)
with za ∈ (x, y), and no representative of a modulo (x, y) is integral over (x, y)2.

However, for local cohomology coming from Segre products as in these exam-
ples, we can state the following theorem.
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Theorem 2. Let R be a graded integral domain that is a finite extension of the
polynomial ring k[X,Y ], where X and Y have positive degrees. Let w/XY be an
element of H 2

m(R) of nonnegative degree. Then there exists a nonzero constant
c ∈R such that

cwn ∈ (Xn,Y n)

for all n ≥ 0.

To prove this we let X and Y have degrees i and j, respectively, and let w have
degree d; then the fact that w/XY has nonnegative degree implies d ≥ i + j. We
note that w is integral over k[X,Y ], so there is an integer k such that every power
wn of w can be expressed as

wn = wkfk(X,Y ) + wk−1fk−1(X,Y ) + · · · + f0(X,Y ),

where each fm(X,Y ) is a homogeneous polynomial. The degree of fm(X,Y ) is the
degree of wn minus the degree of wm, which is d(n−m). Let c be any monomial
in X and Y of degree at least dk. We claim that c satisfies the required property.

Given our preceding expression forwn, it suffices to show that each cfm(X,Y ) is
in (Xn,Y n). Now, since fm(X,Y ) has degree d(n−m), it follows that cfm(X,Y )
has degree d(n − m) + dk ≥ dn. Let XrY s be a monomial with nonzero coeffi-
cient in cfm(X,Y ). Then its degree, which is ri + sj, satisfies

ri + sj ≥ dn.

Since d ≥ i + j, this gives

ri + sj ≥ ni + nj,

so we have r ≥ n or s ≥ n. Thus cwn ∈ (Xn,Y n).

An interesting consequence is the existence of an ideal I ofR with I +(X,Y ) =
{a ∈R | aZ ∈ (X,Y )} such that, for every element a of I, there is a c with can ∈
(Xn,Y n) even though certain elements of (X,Y ) itself, such as X+Y, do not have
this property.

Theorem 2 applies only to Segre products. We observe, however, that if R is a
graded domain that is the coordinate ring of a smooth projective variety (of char-
acteristic 0) then the related fact that the local cohomology has no elements of
negative degree follows from the Kodaira vanishing theorem.

3. A Variant on Almost Regular Sequences

In this section we consider another version of almost regular sequences for rings
of mixed characteristic.

Let R = Ẑp[[X2, . . . ,Xd ]], a regular local ring of mixed characteristic p of di-
mension d, and let S be a ring between R and R+. We will assume that d ≥ 3
throughout this section.

We first introduce a function similar to a valuation but not satisfying the con-
dition that v(a) = ∞ only if a = 0. Let v0 be the m-adic valuation defined by
the maximal ideal of R/pR, extended to a function on R by defining it to be infin-
ity on pR. Let p be an extension of pR to R+; that is, p is a minimal prime ideal
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over pR and p ∩ R = pR. Then the valuation v0 on R/pR extends to a valuation
on R+/p. We let v be this function, extended to R+ by setting it equal to infinity
on p.

The next proposition shows that, if we choose the correct convention in defining
0 ·∞, then this function v has the properties of a valuation except for the property
of taking the value ∞ only at 0.

Proposition 1. Given the prime ideal p and the function v as before, and mak-
ing the convention that ∞ · 0 = ∞, we have:

(1) v(ab) = v(a)v(b) for all a, b ∈R+; and
(2) v(a + b) ≥ inf{v(a), v(b)} for all a, b ∈R+.

Proof. If a and b are not in p, then these properties follow from the fact that v
defines a valuation on R+/p. If a ∈ p and b /∈ p, then

v(ab) = ∞ = ∞ · v(b) = v(a)v(b)

and
v(a + b) = v(b) = inf{∞, v(b)} = inf{v(a), v(b)}.

If both a and b are in p, then both sides of both equations are infinite.

We will use the expression “there exists a small element c” to mean “for every
ε > 0 there is an element c with v(c) < ε”, where v is defined as before. With
this terminology, we say that a module M is almost zero if every element of M is
annihilated by a small element.

We prove the following two theorems.

Theorem 3. Let S be a ring between R and R+ as before. Suppose these two
conditions hold for every system of parameters of the form p, x2, . . . , xd of the
ring S:

(1) for each i = 2, . . . , d and any rational number α > 0, if axi is in the ideal
(pα, x2, . . . , xi−1) then there exists a small element c in R+ and a rational
number α ′ > 0 such that ca ∈ (pα ′

, x2, . . . , xi−1);
(2) if ap ∈ (x2, . . . , xd), then there exists a small element c such that we have ca ∈

(x2, . . . , xd).

Then the monomial conjecture holds for S.

Theorem 4. The first condition of Theorem 3 always holds.

Proof of Theorem 3. We first recall that, in mixed characteristic, it suffices to prove
the monomial conjecture for systems of parameters of the form p, x2, . . . , xd (see
[7, Sec. 6]).

We next show that condition (2) implies the corresponding condition for powers
of p in place of p. Suppose that condition (2) holds, and suppose we have

apm ∈ (x2, . . . , xd)

for some positive integer m. Let ε > 0. By condition (2), since (apm−1)p ∈
(x2, . . . , xd) we can find a c1 with v(c1) < ε/m and c1ap

m−1 ∈ (x2, . . . , xd). We
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can then find c2 with v(c2) < ε/m and c2c1ap
m−2 ∈ (x2, . . . , xd). Continuing,

we find c1, . . . , cm with v(ci) < ε/m and cm · · · c1a ∈ (x2, . . . , xd). Letting c =
cm · · · c1, we then have v(c) < ε and ca ∈ (x2, . . . , xd).

We now prove that conditions (1) and (2) imply the monomial conjecture. Sup-
pose we have a counterexample to the monomial conjecture with ring S and system
of parameters p, x2, . . . , xd. This means that for some t we have

ptx t
2 · · · x t

d ∈ (pt+1, x t+1
2 , . . . , x t+1

d ).

Write this in the form

ptx t
2 · · · x t

d = a1p
t+1 + a2x

t+1
2 + · · · + ad x

t+1
d .

Moving a1p
t+1 to the other side and factoring out pt, we obtain

pt(x t
2 · · · x t

d − a1p)∈ (x t+1
2 , . . . , x t+1

d ).

By condition (2) extended to powers as here and then applied to the system of pa-
rameters p, x t+1

2 , . . . , x t+1
d , there exists a small element c such that

cx t
2 · · · x t

d ∈ (p, x t+1
2 , . . . , x t+1

d ).

We now carry out one more step in detail. Write

cx t
2 · · · x t

d = b1p + b2x
t+1
2 + · · · + bd x

t+1
d .

Moving b2x
t+1
2 to the left-hand side of the equation and factoring out x t

2, we obtain

x t
2(cx

t
3 · · · x t

d − b2x2) = b1p + b3x
t+1
3 + · · · + bd x

t+1
d .

We now apply condition (1) to the system of parameters p, x t+1
2 , . . . , x t+1

d to con-
clude that there is a rational number α2 > 0 and a small element c2 with

c2(cx
t
3 · · · x t

d − b2x2)∈ (pα2, x t+1
3 , . . . , x t+1

d ),

and from this we have that

c2cx
t
3 · · · x t

d ∈ (pα2, x2, x t+1
3 , . . . , x t+1

d ).

Repeating this step for x3, . . . , xd , we finally show that there exist small elements
c, c2, c3, . . . , cd and an αd > 0 with

cc2c3 · · · cd ∈ (pαd, x2, . . . , xd).

Thus we can write

cc2c3 · · · cd = e1p
αd + e2x2 + · · · + ed xd .

However, we can make v(cc2c3 · · · cd) arbitrarily small, and by Proposition 1
we have

v(cc2c3 · · · cd) = v(e1p
αd + e2x2 + · · · + ed xd)

≥ inf{v(pαd ), v(x2), . . . , v(xd)} = inf{v(x2), . . . , v(xd)} > 0.

This contradiction proves the theorem.

Before proving Theorem 4, we establish the following lemma.
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Lemma 1. Let b be an element of R+ such that bp divides p. Then the Frobenius
map induces an isomorphism

R+/bR+ → R+/bpR+.

Proof. Since bp divides p, it is clear thatR+/bpR+ has characteristic p; hence the
Frobenius map defines a ring homomorphism f from R+/bpR+ to itself. Since
f(b) = bp = 0, it follows that f induces a map (which we also denote f ) from
R+/bR+ to R+/bpR+. Furthermore, since R+ is closed under taking pth roots, f
is surjective.

To prove that f is injective, let r ∈R+, let s be the image of r in R+/bR+, and
assume that f(s) = 0 in R+/bpR+. This means that rp = abp for some a ∈R+.
Let c be a pth root of a. Then (bc)p = bpcp = bpa = rp. Hence r = ζbc, where
ζ is a pth root of 1. Thus r ∈ bR+, so f is injective.

Proof of Theorem 4. Let p, x2, . . . , xd be a system of parameters for R+, and as-
sume that

axi ∈ (pα, x2, . . . , xi−1)

for some α > 0 and i between 2 and d. We may assume that α ≤ 1. Because this
relation involves a finite number of elements of R+, it will hold in some subring
S that is finite over R; we can also assume that S is integrally closed. As a result,
the ideal I of Theorem 1 in S will have height 2, so there is an element c in I that
is not in any prime ideal minimal over pαS. The element c will have the following
property: For any system of parameters y1, . . . , yd of S, if

byi ∈ (y1, . . . , yi−1)S

for some b ∈ S and i between 1 and d, then

cb ∈ (y1, . . . , yi−1)S.

We now consider the previous expression in S/pαS, denoting the image of an
element s in S/pαS by s̄. We have

āx̄i ∈ (x̄2, . . . , x̄i−1).

Since S/pαS has characteristic p, we can apply the Frobenius map and obtain

āp
n

x̄
pn

i ∈ (x̄
pn

2 , . . . , x̄p
n

i−1)

for all positive integers n. In terms of S, this translates to

ap
n

x
pn

i ∈ (pα, xp
n

2 , . . . , xp
n

i−1);
since pα, xp

n

2 , . . . , xp
n

d is a system of parameters for S, this implies that

cap
n ∈ (pα, xp

n

2 , . . . , xp
n

i−1).

Hence we can write

cap
n = a1p

α + a2x
pn

2 + · · · + ai−1x
pn

i−1 (∗)
for some elements a1, . . . , ai−1 in S.
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Note that c is in no prime ideal minimal over pαS and so is not, in particular, in
p ∩ S, where p is the prime ideal in the definition of v. Thus v(c) < ∞.

We now apply Lemma 1, which implies that the nth power of the Frobenius
map induces an isomorphism f : R+/pα/pn

R+ → R+/pαR+. Lifting the elements
c, a2, . . . , ai−1 in equation (∗) to elements d, b2, . . . , bi−1 yields the existence of an
element b1 ∈R+ with

da = b1p
α/pn + b2x2 + · · · + bi−1xi−1.

Since dpn − c ∈pαR+, we have v(dpn

) = v(c) and so v(d ) = v(c)/pn. Letting n

go to infinity, we obtain elements with v(d ) arbitrarily small with

da ∈ (pα ′
, x2, . . . , xd),

where α ′ = α/pn.
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