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Rationality of Hilbert–Kunz Multiplicities:
A Likely Counterexample

Paul Monsky

1. A Conjecture

At a 2004 Banff workshop, I gave a talk to demonstrate that, in many cases of
interest, the Hilbert–Kunz multiplicity of a hypersurface is a rational number.
(Mel Hochster, in the audience, told me a curious general fact: the set of possible
Hilbert–Kunz multiplicities is countable.)

At the time I suspected that Hilbert–Kunz multiplicities must be rational. But
soon after the workshop I found reason to change my opinion, and in this paper I
suggest that a certain hypersurface defined by a 5-variable polynomial has 4

3 + 5
14

√
7

as its Hilbert–Kunz multiplicity.
Throughout, q will denote a power 2n of 2 with n ≥ 0, and H will be the ele-

ment x3 +y3 +xyz of Z/2[x, y, z]; en(Hj ) is the colength, deg(x q, y q, zq,Hj), of

the ideal (x q, y q, zq,Hj). It is known [1, Thm. 3] that en(H ) is 7q2−q−3
3 or 7q2−q−5

3
according as q ≡ 1 or 2 modulo 3. I’ll present conjectured formulas of similar type
for en(Hj ), with j arbitrary, that are strongly supported by computer calculation.
I show that if these hold then the Hilbert–Kunz multiplicity of uv + H(x, y, z) is
4
3 + 5

14
√

7
.

Explicitly, I define numbers uj and vj and conjecture that, if q ≥ j, then
en(H

j ) = jq(7q−j)

3 + uj or jq(7q−j)

3 + vj according as q ≡ 1 or 2 modulo 3. The
definition of uj and vj is complicated and may appear to be unmotivated. In fact,
it is related to ideas from [2], and the reader will find a somewhat less mysterious
form of our conjecture, connected to these ideas, in Section 3 of this paper.

To define uj and vj , I introduce some notation.

Definition 1.1. � is the free abelian group on symbols [0], [1], [2], . . . and E.

σ0 and σ1 are the endomorphisms of � that satisfy the following statements.

(1) σ0([i]) = [i + 1] for even i and [i − 1] + E for odd i; σ0(E) = 2E.

(2) σ1([i]) = [i − 1] + E for even i �= 0 and [i + 1] for odd i; σ1([0]) = [0] and
σ1(E) = 2E.

Definition 1.2. If 0 ≤ j < q then we define an element f(q, j) of � induc-
tively as follows:

f(1, 0) = [0], f(2q, 2k) = σ0f(q, k), f(2q, 2k + 1) = σ1f(q, k).
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Note that, by induction, f(q, j) = [i] + mE for some i and m ≥ 0.

Lemma 1.3. f(4q, j) − f(q, j) = qE.

Proof. We argue by induction on q. If q = 1, then j = 0 and we have f(4, 0) =
σ0σ0([0]) = f(1, 0) + E. Given that the result holds for a given q, we show that
f(8q, j) − f(2q, j) = 2qE. Set k = ⌊ j

2

⌋
. Then f(4q, k) − f(q, k) = qE, and

we obtain the result by applying σ0 or σ1 according as j = 2k or 2k + 1.

Definition 1.4. If f(q, j) = [i] + mE, then 〈q, j〉 is the integer 2m + 4i + 3.

Our conjecture is simply stated using the 〈q, k〉.
Conjecture 1.5. If 0 ≤ k < q, then

en+1(H
2k+1) − 1

2 (en+1(H
2k ) + en+1(H

2k+2)) = 〈q, k〉.
Throughout the paper we shall use that en+1(H

2j ) = 8en(Hj ). This follows di-
rectly from the observation that Z/2[x, y, z] is free of rank 8 over Z/2[x 2, y2, z2].

Observe that, if 0 ≤ j ≤ q, then

en+1(H
q+j ) = deg(x 2q, y2q, z2q, (xyz)qHj )

= 8q3 − deg((x 2q, y2q, z2q) : (xyz)qHj )

= 8q3 − deg((x q, y q, zq) : Hj) = en(H
j ) + 7q3.

Hence the left-hand side of Conjecture 1.5 is unchanged when k and n are replaced
by k + q and n + 1. Also, an induction shows that f(q, k) = f(2q, q + k). Thus,
if Conjecture 1.5 holds for a given q and k, then it also holds for 2q and q + k.

Remarks. When k = 0, Conjecture 1.5 states that en+1(H ) − 4en(H ) = 2q+7
3

or 2q+17
3 according as q ≡ 1 or 2 modulo 3. This is true because en(H ) = 7q2−q−3

3

(resp. 7q2−q−5
3 ). When k > 0, computer calculations using Macaulay 2 strongly

support the conjecture. We have verified it for k < q ≤ 256. This is tedious when
q = 256, as the program must be exited frequently to avoid computer overflow.
To avoid overflow when 128 ≤ k < 256, we made use of the final sentence of the
previous paragraph, taking q = 128. Teixeira has checked the conjecture in some
other cases: when q = 512 and k ≤ 101, when q = 1024 and k ≤ 41, when q =
2048 and k ≤ 9, and when q = 4096 and k ≤ 4.

Definition 1.6. rj = 〈q, j〉 − 2q
3 , where q is a power of 2 with q > j and

q ≡ 1 mod 3; sj is defined similarly but taking q ≡ 2 mod 3. (By Lemma 1.3,
〈4q, j〉 − 8q

3 = 〈q, j〉 − 2q
3 ; hence rj and sj do not depend on q.)

Example 1.7. For 0 ≤ j ≤ 7, the rj are 7
3 , 25

3 , 13
3 , 1

3 , 7
3 , 25

3 , − 5
3 , 13

3 and the sj are
17
3 , 5

3 , 29
3 , 11

3 , − 1
3 , 17

3 , 5
3 , − 7

3 .

We can now introduce the uj and vj mentioned previously. We give an alternative
version of Conjecture 1.5 expressing en(H

j ) in terms of uj or vj according as q ≡
1 or 2 modulo 3.
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Definition 1.8.

(1) u1 = −1, v1 = − 5
3 ;

(2) If j = 2k, uj = 8vk , vj = 8uk;
(3) If j = 2k + 1, uj = 4vk + 4vk+1 + sk , vj = 4uk + 4uk+1 + rk.

For example, u2 = − 40
3 and v2 = −8. So u3 = 4

(− 5
3 − 8

) + s1 = −37, while
v3 = 4

(−1 − 40
3

) + r1 = −49. Similarly, u5 = 4(−8 − 49) + s2 = − 655
3 , while

v5 = 4
(− 40

3 − 37
) + r2 = −197.

Theorem 1.9. Suppose Conjecture 1.5 holds, and let q ≥ j. Then, with uj and
vj as before, en(Hj ) = jq(7q − j)/3 + uj or jq(7q − j)/3 + vj according as
q ≡ 1 or 2 modulo 3.

Proof. Suppose first that j = 1. We’ve seen that Conjecture 1.5 for k = 0 implies

en(H ) = 7q2−q−3
3 or 7q2−q−5

3 according as q ≡ 1 or 2 modulo 3. Because u1 and
v1 are defined to be −1 and − 5

3 , this is the conclusion of Theorem 1.9.
Next suppose that j > 1, and let δq,j = en(H

j ) − 7jq2

3 + j2q

3 . We’ll show by
induction that δ2q,j = uj or vj according as 2q ≡ 1 or 2 modulo 3. Set k = ⌊ j

2

⌋
.

If j = 2k then δ2q,j = 8δq,k. If 2q ≡ 1 mod 3 then q ≡ 2 mod 3, and the in-
duction hypothesis tells us that δq,k = vk. So δ2q,j = 8vk = uj , and the argument
when 2q ≡ 2 mod 3 is the same. If j = 2k +1 then δ2q,j − 1

2 (δ2q,2k + δ2q,2k+2)

is, by Conjecture 1.5, equal to 〈q, k〉 + 2q
3 ((2k + 1)2 − 2k2 − (2k2 + 4k + 2));

this is sk or rk according as 2q ≡ 1 or 2 modulo 3. Also, the induction assump-
tion tells us that 1

2δ2q,2k = 4δq,k = 4vk or 4uk; similarly, 1
2δ2q,2k+2 is 4vk+1

or 4uk+1. In the first case, δ2q,j = 4vk + 4vk+1 + sk = uj ; in the second case,
δ2q,j = 4uk + 4uk+1 + rk = vj .

For example, when n ≥ 2, Conjecture1.5 predicts that en(H 3) = q(7q−3)−37 or
q(7q −3)−49 according as q ≡ 1 or 2 modulo 3. As already noted, a Macaulay 2
calculation verifies these formulas for 2 ≤ n ≤ 13 as well as the corresponding
formulas for en(H 5) and en(H

7) with 3 ≤ n ≤ 13 and for en(H 9) with 4 ≤ n ≤
13. One should note that, if the formulas for the en(H

j ) given in Theorem 1.9 hold,
then Conjecture 1.5 is true.

The rest of this section is devoted to the study of the power series
∑∞

0 dnw
n,

where dn = ∑q−1
0 〈q, k〉. The result we derive is key to the (conjectural) calcula-

tion of the Hilbert–Kunz multiplicity of H ∗ = uv + H(x, y, z).

Definitions 1.10.

• σ is the endomorphism σ0 + σ1 of �.

• δn is the element
∑q−1

0 f(q, j) of �.

• an is the coefficient of [0] in δn.

• bn is the image of δn under the homomorphism ρ : � → Z taking [i] to i and E

to 0.
• cn is the coefficient of E in δn.

Definition 1.4 shows that dn = 2cn + 4bn + 3q. Observe that σ([0]) = [0] + [1],
that σ([i]) = [i − 1] + [i + 1] + E if i �= 0, and that σ(E) = 4E.
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Lemma 1.11. δn+1 = σ(δn).

Proof. We have δn+1 = ∑
k<q f(2q, 2k) + ∑

k<q f(2q, 2k + 1). The first sum is
σ0(δn), and the second is σ1(δn).

Lemma 1.12. 2w
∑∞

0 anw
n = (1 + 2w)(1 − 4w2)−1/2 − 1.

Proof. For each n, let β0 ≥ β1 ≥ · · · ≥ βn be the binomial coefficients
(n
k

)
,

0 ≤ k ≤ n, in order of nonincreasing size. An induction on n using Lemma 1.11
shows that δn = ∑n

i=0 βi · [i] + a multiple of E. Hence a2n = (
2n
n

)
and a2n−1 =(

2n−1
n−1

) = 1
2

(
2n
n

)
. Then 2w

∑∞
0 a2nw

2n = 2w
∑∞

0

(
2n
n

)
w2n = 2w(1 − 4w2)−1/2

and 2w
∑∞

1 a2n−1w
2n−1 = ∑∞

1

(
2n
n

)
w2n = (1 − 4w2)−1/2 − 1.

Lemma 1.13. (1 − 2w)
∑∞

0 2bnw
n = (1 + 2w)(1 − 4w2)−1/2 − 1.

Proof. If i �= 0 then ρ(σ([i])) = (i − 1) + (i + 1) = 2ρ([i]). Furthermore,
ρ(σ([0])) = 1. Since δn is an[0] + a linear combination of [1], [2], . . . and E, it
follows that ρσ(δn) = 2ρ(δn)+an. So bn+1−2bn = an; moreover, b0 = 0. Then
(1 − 2w)

∑∞
0 2bnw

n = 2w
∑∞

0 anw
n, and we can now use Lemma 1.12.

Lemma 1.14. (1 − 2w)(1 − 4w)
∑∞

0 2cnwn = 1 − (1 − 4w2)(1 − 4w2)−1/2.

Proof. If i �= 0 then the coefficient of E in σ([i]) − 4[i] is 1. Furthermore,
σ([0]) − 4[0] = [1] − 3[0], while σ(E) − 4E is 0. It follows that the coefficient
of E in σ(δn) − 4δn is the sum of the coefficients of [1], [2], . . . in δn. In other
words, cn+1 −4cn = 2n −an. Arguing as in the proof of Lemma 1.13, we find that
(1−4w)

∑∞
0 2cnwn = (

2w
∑∞

0 2nwn
)+1−(1+2w)(1−4w2)−1/2. Multiplying

by 1−2w yields (1−2w)(1−4w)
∑∞

0 2cnwn = 1− (1−4w2)(1−4w2)−1/2.

Theorem 1.15.

(1 − 2w)(1 − 4w)

∞∑

0

dnw
n = (2 − 4w) + (1 − 4w − 12w2)(1 − 4w2)−1/2.

Proof. We have dn = 2cn + 4bn + 3 · 2n. Lemmas 1.13 and 1.14 then show that

(1 − 2w)(1 − 4w)

∞∑

0

dnw
n = 1 − (1 − 4w2)(1 − 4w2)−1/2

+ (1 − 4w)((2 + 4w)(1 − 4w2)−1/2 − 2)

+ 3(1 − 4w),
giving the desired result.

Corollary 1.16. In the disc |w| < 1
4 ,

∑∞
0 dnw

n converges to the function (1−
2w)−1(1 − 4w)−1((2 − 4w) + (1 − 4w − 12w2)(1 − 4w2)−1/2).

Proof. The function is holomorphic in the disc, and Theorem 1.15 tells us that∑∞
0 dnw

n is its Taylor expansion at the origin.

Corollary 1.17.
∑∞

0 dn

(
1
16

)n
is the irrational number

(
8
7

)(
4
3

)(
7
4 + 45

64 · 8
3
√

7

) =
8
3 + 20

7
√

7
.
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2. The Conjecture’s Consequence

Definition 2.1. H ∗ is the 5-variable polynomial uv + H(x, y, z).

We begin the study of en(H
∗) by expressing it in terms of the en(H

j ), j ≤ q.

(More general results of a similar nature are found in [3] but, because this case is
simple, we give a self-contained argument.)

Theorem 2.2. en(H
∗) = 2

∑
j<q en(H

j ) + en(H
q).

The following lemmas lead to the proof of Theorem 2.2. Let L be a field and let U
be the vector space L[u, v]/(uq, vq). We give U the structure of an L[T ]-module
with T acting by multiplication by uv.

Lemma 2.3. U is a direct sum of two copies of L[T ]/T, two copies of L[T ]/T 2,
. . . , two copies of L[T ]/T q−1, and one copy of L[T ]/T q.

Proof. U is the direct sum of cyclic submodules generated by uq−1, vq−1, uq−2,
vq−2, . . . ,u,v, and 1.

If U1 and U2 are L[T ]-modules, and if T1 and T2 denote the action of T on U1 and
on U2 (respectively), then we may give U1 ⊗L U2 an L[T ]-module structure with
T acting by (T1 ⊗ 1) + (1 ⊗ T2).

Lemma 2.4. Let V be an L[T ]-module, and let Vs = V ⊗L L[T ]/T s with the
L[T ]-module structure defined previously. Then the vector spaces Vs/TVs and
V/T sV are isomorphic.

Proof. An element of Vs has the form us ⊗1+us−1⊗T +· · ·+u1⊗T s−1 with the
ui inV, and v → v⊗1 imbedsV inVs. Because u⊗T k ≡ −Tu⊗T k−1 mod TVs ,
the map V → Vs/TVs is onto. Hence we need only show that V ∩ TVs = T sV.

Abbreviate us ⊗ 1 + · · · + u1T
s−1 as (us , . . . , u1). Then T1 ⊗ 1 takes this element

to (Tus , . . . , Tu1) while 1 ⊗ T2 takes it to (0, us , . . . , u2). Thus, if (v, 0, . . . , 0) =
T(us , . . . , u1), then v = T(us), us = −T(us−1), . . . , u2 = −T(u1), and v lies in
T s(V ). Similarly, we see that if v = T s(u) then (v, 0, . . . , 0) is in the image of
T = (T1 ⊗ 1) + (1 ⊗ T2).

Lemma 2.5. Let V be an L[T ]-module and let U be the L[T ]-module L[u, v]/
(uq, vq) of Lemma 2.3. Set V ∗ = V ⊗L U and give V ∗ the product L[T ]-module
structure. Then V ∗/TV ∗ is a direct sum of two copies of each of V/TV, . . . ,
V/T q−1V and one copy of V/T qV.

Proof. Decompose U as in Lemma 2.3 and then apply Lemma 2.4.

The proof of Theorem 2.2 is now easy. Let L = Z/2, and let V be Z/2[x, y, z]/
(xq, y q, zq) with T acting by multiplication by H. Then V ∗ = V ⊗L U identifies
with Z/2[x, y, z, u, v]/(xq, y q, zq, uq, vq) with T acting by multiplication by H ∗.
By Lemma 2.5, en(H ∗) = dimV ∗/TV ∗ = 2

∑
j<q dimV/T jV + dimV/T qV =

2
∑

j<q en(H
j ) + en(H

q).
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Theorem 2.6. If Conjecture 1.5 holds, then en+1(H
∗) − 16en(H ∗) = 2dn.

Proof. Suppose Conjecture 1.5 holds. Then

2
∑

j odd
j<2q

en+1(H
j ) = (en+1(H

2) + 2〈q, 0〉) + (en+1(H
2) + en+1(H

4) + 2〈q,1〉)
+ · · · + (en+1(H

2q−2) + en+1(H
2q) + 2〈q, q − 1〉).

This is equal to
2

∑

j even
j<2q

en+1(H
j ) + en+1(H

2q) + 2dn.

Theorem 2.2 then shows that

en+1(H
∗) = 4

∑

j even
j<2q

en+1(H
j ) + 2en+1(H

2q) + 2dn.

This is just 32
∑

k<q en(H
k) + 16en(H q) + 2dn, and we use Theorem 2.2 once

again.

Corollary 2.7. Suppose Conjecture 1.5 holds. Then µ, the Hilbert–Kunz mul-
tiplicity of H ∗, is the irrational number 4

3 + 5
14

√
7
.

Proof. Since en(H
∗) = µ · 16n + O(8n), it follows that

∑∞
0 en(H

∗)wn has a
meromorphic extension to the disc |w| < 1

8 and that the principal part at w = 1
16

is µ/(1 − 16w). Therefore, µ = limw→1/16(1 − 16w)
∑∞

0 en(H
∗)wn. By Theo-

rem 2.6 this is limw→1/16 1 + 2w
∑∞

0 dnw
n, so we can now apply Corollary 1.17.

By the Hilbert–Kunz series of H ∗ we mean the function
∑∞

0 en(H
∗)wn that is

holomorphic in the disc |w| < 1
16 . By Corollary 2.7 we (conjecturally) have

(1 − 2w)(1 − 4w)(1 − 16w) (Hilbert–Kunz series)

= (1 − 2w)(1 − 4w) + (4w − 8w2) + 2w(1 − 4w − 12w2)(1 − 4w2)−1/2

= (1 − 2w) + 2w(1 − 4w − 12w2)(1 − 4w2)−1/2.

Thus the Hilbert–Kunz series has (conjecturally) a meromorphic extension to
|w| < 1

2 but no meromorphic extension to any region containing 1
2 or − 1

2 . In
all previous cases where one has been able to determine the Hilbert–Kunz series
explicitly, it has been shown to be a rational function.

We next give a (conjectural) calculation of a related Hilbert–Kunz function.
The alternative formulation of Conjecture 1.5 given in Section 3 will involve this
function.

Lemma 2.8.
〈
q,

⌊ q

3

⌋〉 = 4n + 3.

Proof. Induction on n shows that f
(
q,

⌊ q

3

⌋) = [n].

Theorem 2.9. Suppose Conjecture 1.5 holds, and let H1 = u3 +H(x, y, z). Then

(a) en+1(H1) − 8en(H1) = 8n + 6 and
(b) en(H1) = 99

49q
3 − 8n

7 − 50
49 .
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Proof. Part (b) follows from (a) by induction, since the case n = 0 is trivial. To
establish (a), let U be the Z/2[T ]-module Z/2[u]/uq with T acting by multipli-
cation by u3. Writing U as a direct sum of submodules generated by u2, u, and 1,
we find that if q = 3m + 1 then U is isomorphic to

Z/2[T ]/T m ⊕ Z/2[T ]/T m ⊕ Z/2[T ]/T m+1,

and if q = 3m + 2, to

Z/2[T ]/T m ⊕ Z/2[T ]/T m+1 ⊕ Z/2[T ]/T m+1.

As in the proof of Theorem 2.2, it follows that en(H1) = 2en(Hm) + en(H
m+1)

in the first case and is en(H
m) + 2en(Hm+1) in the second case.

Suppose now that q = 3m+1. Then en+1(H1) = en+1(H
2m)+ 2en+1(H

2m+1).

By Conjecture 1.5, this is 2en+1(H
2m) + en+1(H

2m+2) + 2〈q,m〉. Lemma 2.8
and the result of the previous paragraph show that this is 8en(H1) + 8n + 6. The
argument when q = 3m + 2 is similar. It would be of interest to establish (a)
unconditionally.

3. Remarks on the Conjecture, and an
Alternative Formulation

Conjecture 1.5 as presented here seems mysterious. Its motivation is contained in
ideas from [2] that allow one to calculate all the en(G

j ) when G is a 2-variable
polynomial (or power series) with constant term 0. (The argument leading from
Conjecture 1.5 to the calculation of the Hilbert–Kunz series of H ∗ has its genesis
in [3].)

We summarize some results from [2]. Let X be the space of continuous real-
valued functions on [0,1]. Call two elements of X linearly equivalent if their dif-
ference is a linear combination of 1 and the identity function t. Suppose now that
k is a finite field of characteristic p and that G∈ k[x, y] is separable with constant
term 0. Let Ui (0 ≤ i < p) be the “magnification operators” f → p2f

(
t+i

p

)
on

X. Let ϕG be the unique element of X with ϕG

(
a
q

) = q−2 deg(x q, y q,Ga) when-
ever q is a power of p. Teixeira and I prove the following statement.

The elements of X obtained from ϕG by applying a finite sequence of
operators, each of which is some Ui with 0 ≤ i < p, lie in finitely many
linear equivalence classes.

Conjecture 1.5 arose when I attempted to find an analogue to this result for the
3-variable polynomial H. One may define ϕH so that ϕH

(
a
q

) = q−3 deg(x q, y q,
zq,Ha). Also, there are operators U0 and U1 with U0(f ) = 8f

(
t
2

)
and U1(f ) =

8f
(
t+1

2

)
. If we set ε = t − t 2, then U0(ε) = 2ε + 2t and U1(ε) = 2ε + 2(1− t). I

investigated functions obtained from ϕH , making use of U0 and U1 as before, and
found that two functions obtained in this way often appeared to differ by a linear
combination of 1, t, and ε.

For example, the relation en+1(H
q+j ) = en(H

j )+ 7q3 of Section 1 tells us that
U1(ϕH ) = ϕH + 7.
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Definition 3.1.

(a) ψ0,ψ1,ψ2,ψ3, . . . are the functions ϕH ,U0(ϕH ),U1U0(ϕH ),U0U1U0(ϕH ), . . .
obtained by the alternate application of U0 and U1.

(b) If 0 ≤ l < q, then ψq, l is the function t → q3ϕH

(
t+l
q

)
, [0,1] → R.

Remarks.

(1) U0 and U1 take ψq, l to ψ2q,2 l and ψ2q,2 l+1, respectively. Hence the ψq, l are
just the functions obtained from ϕH by applying a sequence of operators, each
of which is U0 or U1.

(2) An induction shows that ψn = ψq,�q/3�.
(3) The values of 8ψq,k at 0 and 1 are 8en(H k) and 8en(H k+1), respectively, while

the value at 1
2 is en+1(H

2k+1).

(4) Let L be the linear functional F → 8F
(

1
2

) − 4(F(0)+F(1)). Then L takes 1
and t to 0 and takes ε to 2. By (3), L(ψq,k) = en+1(H

2k+1)− 1
2 (en+1(H

2k )+
en+1(H

2k+2)). As a result, Conjecture 1.5 may be rephrased as stating that
L(ψq,k) = 〈q, k〉.

(5) Using (2), (4), and calculations made in the proof of Theorem 2.9, we find
that L(ψi) = 1

2 (ei+1(H1) − 8ei(H1)) with H1 as in Theorem 2.9.

We shall use the symbol ∼ to denote linear equivalence of functions.

Lemma 3.2. If Conjecture 1.5 holds and if f(q∗, j ∗) − f(q, j) = rE, then we
have ψq∗,j∗ − ψq,j − rε ∼ 0.

Proof. Let h be the function ∼ to ψq∗,j∗ − ψq,j − rε with h(0) = h(1) = 0. We
shall show that h = 0 by proving that h vanishes at all rationals in [0,1] with de-
nominator a power of 2. By Remark (4), L(h) = 〈q∗, j ∗〉 − 〈q, j〉 − 2r = 0.
Hence h

(
1
2

) = 0 and U0(h) and U1(h) vanish at 0 and 1, respectively.
Now f(2q∗, 2j ∗) − f(2q, 2j) = 2rE. Furthermore, U0(h) ∼ ψ2q∗,2j∗ −

ψ2q,2j − 2rε. We also have f(2q∗, 2j ∗ +1)− f(2q, 2j +1) = 2rE and U1(h) ∼
ψ2q∗,2j∗+1 −ψ2q,2j+1 −2rε. The result of the previous paragraph then tells us that
U0(h) and U1(h) each vanish at 1

2 , so h
(

1
4

) = h
(

3
4

) = 0. Continuing in this way
yields the result.

Theorem 3.3. Suppose Conjecture 1.5 holds. Then:

(a) U1(ψi) ∼ ψi−1 + ε when i is even and i �= 0;
(b) U0(ψi) ∼ ψi−1 + ε when i is odd ;
(c) L(ψi) = 4i + 3 for all i.

In view of Remark (5), Theorem 3.3(c) is the same as ei+1(H1)−8ei(H1) = 8i+6
for all i. An induction shows that this is equivalent to en(H1) = 99

49q
3 − 8n

7 − 50
49

for all n; see Theorem 2.9.

Proof of Theorem 3.3. If Conjecture 1.5 holds then L(ψi) = 〈
2i,

⌊
2i

3

⌋〉
. Since

f
(
2i,

⌊
2i

3

⌋) = [i], it follows that L(ψi) = 4i + 3, giving (c). Parts (a) and
(b) are easy consequences of Lemma 3.2. Rather than writing out the proof, we
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illustrate by example: f(32,11) = σ1f(16, 5) = σ1([4]) = [3]+E = f(8, 2)+E.

Hence, by Lemma 3.2, ψ32,11 ∼ ψ8,2 + ε. But ψ32,11 = U1(ψ4) while ψ8,2 = ψ3.

Similarly, f(64, 20) = σ0f(32,10) = σ0([5]) = [4] + E = f(16, 5) + E and
so, by Lemma 3.2, ψ64,20 ∼ ψ16,5 + ε. But ψ64,20 and ψ16,5 are U0(ψ5) and ψ4,
respectively.

We next establish a converse to Theorem 3.3 as follows.

Lemma 3.4. Suppose (a) and (b) of Theorem 3.3 hold and that 0 ≤ j < q. Then,
if f(q, j) = [i] + mE, we have ψq,j ∼ ψi + mε.

Proof. We argue by induction on q, since q = 1 is easy. Suppose that, for a fixed
q and j, we have f(q, j) = [i] + mE and ψq,j ∼ ψi + mε. First assume i = 0.
Applying σ0 and σ1 to the first relation we find that f(2q, 2j) and f(2q, 2j + 1)
are [1] + 2mE and [0] + 2mE, respectively. Applying U0 and U1 to the second
relation and noting that U0(ψ0) and U1(ψ0) are ψ1 and ψ0 + 7 (respectively), we
find that ψ2q,2j ∼ ψ1 + 2mε and ψ2q,2j+1 ∼ ψ0 + 2mε, as desired.

Next assume i �= 0 is even. Applying σ0 and σ1 to the first relation, we find that
f(2q, 2j) and f(2q, 2j + 1) are [i + 1] + 2mE and [i − 1] + (2m + 1)E, respec-
tively. Applying U0 and U1 to the second relation and using Theorem 3.3(a), we
find that ψ2q,2j ∼ ψi+1 + 2mε and ψ2q,2j+1 ∼ ψi−1 + ε+ 2mε, as desired. When
i is odd we argue similarly but using Theorem 3.3(b).

Theorem 3.5. With ψi as in Definition 3.1, Conjecture 1.5 is equivalent to (a),
(b), and (c) of Theorem 3.3 all holding.

Proof. Suppose (a), (b), and (c) of Theorem 3.3 hold and that 0 ≤ j < q. Write
f(q, j) = [i] + mE. By Lemma 3.4, ψq,j ∼ ψi + mε. Applying L yields
L(ψq,j ) = L(ψi) + 2m, which by (c) is 〈q, j〉. Now use the last sentence of
Remark 4 to obtain Conjecture 1.5. We have already seen that (a), (b), and (c) all
follow from Conjecture 1.5.

The new version of Conjecture 1.5, recast as (a), (b), and (c) of Theorem 3.3,
has advantages over the old. It avoids the complicated function 〈q, k〉, displays
connections with [2], and emphasizes the importance of establishing the formula
for en(H1).
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