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On Points at Infinity of Real Spectra
of Polynomial Rings
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1. Introduction

LetR be a real closed field and let z0, . . . , zn be independent variables. A basic fact
in mathematics is the way the n-dimensional projective space ProjR[z0, . . . , zn]
and other rational projective schemes such as (P1

R)
n are glued together from

affine charts of the form SpecR[x1, . . . , xn]. Given two such coordinate charts
SpecR[x1, . . . , xn] and SpecR[y1, . . . , yn], it is often easy to write down formu-
las describing the coordinate transformation from the x to the y coordinates. The
subject of this paper is a part of the analogous story for real spectra (see Defini-
tion 1.1), which is more interesting because the real spectrum SperR[x1, . . . , xn]
already contains much information “at infinity”.

To explain this in more detail, we first recall the definition of real spectrum and
other related objects studied in this paper.

Notation and Conventions. All the rings we consider will be commutative
with 1. “Order” will always mean “total order”. Throughout this paper, A will
stand for R[x1, . . . , xn].

Let B be a ring. A point α in the real spectrum of B is, by definition, the data of
a real prime ideal pα of B (i.e., such that the quotient ring B/pα admits an order-
ing) and an ordering ≤α of the ring B/pα or, equivalently, of the field of fractions
of B/pα.

Another way of defining the point α is as a homomorphism from B to a real
closed field, where two homomorphisms are identified if they have the same ker-
nel p and induce the same total ordering on B/p.

The ideal pα is called the support of α. The ordered quotient ring (B/pα ,≤α) is
denoted by B[α] and its ordered field of fractions by B(α). Sometimes we write
α = (pα ,≤α).

Definition 1.1. The real spectrum of B, denoted by SperB, is the collection of
all pairs α = (pα ,≤α), where pα is a prime ideal of B and ≤α is a total ordering
of B/pα.

For an element f ∈ B, we use f(α) to denote the natural image of f in B[α].
When an order-theoretic statement involving f(α) is made, the reference is to the
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order ≤α . For example, the inequality f(α) > 0 really means f(α) >α 0. The
notation |f(α)| will mean f(α) if f(α) ≥α 0 and−f(α) if f(α) ≤α 0. If B is an
R-algebra then B[α] contains an order-isomorphic copy of R.

Two kinds of points occur in SperB: finite points and points at infinity.

Definition 1.2. Let B be an R-algebra and α a point of SperB. We say that α
is finite if for each f ∈B there exists an N ∈R such that |f(α)| < N. Otherwise,
we say that α is a point at infinity.

Notation. The subset of SperB consisting of all the finite points will be de-
noted by Sper∗B.

Given any ordered domain D, let D̄ denote the convex hull of D in its field of
fractions D(0):

D̄ := {f ∈D(0) | d > |f | for some d ∈D}.
The ring D̄ is a valuation ring because, for any element f ∈ D(0), either f ∈ D̄

or f −1 ∈ D̄. We define Rα := B[α]. In this way, to every point α ∈ SperB we
can canonically associate a valuation να of B(α) determined by the valuation ring
Rα (see Section 2 for more details). In other words, we have a canonical map
SperB → ⋃

p∈SpecB Sp, where Sp denotes the Zariski–Riemann surface of the
residue field κ(p).

The real spectrum SperB is endowed with the spectral (or Harrison) topology.
By definition, this topology has basic open sets of the form

U(f1, . . . , fk) = {α | f1(α) > 0, . . . , fk(α) > 0}
with f1, . . . , fk ∈B.

The purpose of this paper is to study the analogue of projectivization of the
affine space SpecA by adding a divisor at infinity in the framework of real spec-
tra. Unlike the Zariski spectrum, SperA intrinsically contains much information
at infinity, embodied precisely in its points at infinity. For example, SperR[x]
has two points at infinity, δ+ and δ−. Thus SperR[x] naturally contains the two-
point compactification R∪{δ+ , δ−} of R. The points δ+ and δ− can also be viewed
as finite points of SperR[1/x]. More generally, take a point δ ∈ SperA at infin-
ity. Then there exists a (nonunique) set T ⊂ {1, . . . , n} with the following prop-
erty. Let

yj = xj if j ∈ {1, . . . , n} \ T, (1)

yj = 1/xj if j ∈ T. (2)

We require that |yj(δ)| < N for some N ∈R. Let B = R[y1, . . . , yn]. In Section 3
we will associate to δ a point δ∗ in Sper∗(B). Furthermore, we will define a com-
binatorial invariant tδ of points δ ∈ SperA—that is, a mapping from SperA to a
certain finite set. This defines a partition

Sper(A) =
∐
t

Ut (3)
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of SperA into a finite disjoint union of sets Ut , where each Ut is defined to be the
set of points δ of SperA on which tδ has constant value t. The first result, Propo-
sition 3.1, describes a homeomorphism between each Ut and a certain subspace
U ∗
t ⊂ Sper∗(B). Let δ be a point in Ut and δ∗ its image in U ∗

t . The main theo-
rems, Theorems 3.1 and 3.2, describe in detail the relation between the associated
valuations νδ and νδ∗ . Geometrically, a finite point in SperA can be interpreted
as a semicurvette (see Definition 2.2) centered at a point of Rn. The homeomor-
phism Ut

∼= U ∗
t allows us to interpret points at infinity as semicurvettes centered

at infinity.
This paper originally grew out of the authors’ joint work with Madden [7] on

the Pierce–Birkhoff conjecture. Certain definitions and constructions worked only
for finite points of SperA, so a need naturally arose to cover SperA by subspaces,
each of which is homeomorphic to a subspace of Sper∗B for some other polyno-
mial ring B. Eventually, we found another way of getting around this difficulty
and were able to deal in a uniform way with all points of SperA whether finite or
infinite. However, we hope that the decomposition (3) will later prove useful to
someone who is faced with finiteness problems similar to ours.

2. The Valuation Associated to a Point in the Real Spectrum

Convention. Given a valuation ν of a field K, we adopt the usual convention
that ν(0) = ∞, which is taken to be greater than any element of the value group
of ν.

For a point α in SperB, we have defined the valuation να of B(α) to be the one
whose valuation ring is

Rα = {x ∈B(α) | ∃z∈B[α], |x| ≤α z}.
The maximal ideal of Rα is Mα = {x ∈ B(α) | |x| < 1/|z| ∀z ∈ B[α] \ {0}};
its residue field kα comes equipped with a total ordering induced by ≤α . We will
denote by �α the value group of να.

By definition, we have a natural ring homomorphism

B → Rα (4)

whose kernel is pα. The valuation να has the following properties:

• να(B[α]) ≥ 0; and
• if B is an R-algebra then, for any positive elements y, z∈B(α),

να(y) < να(z) �⇒ y > Nz ∀N ∈R. (5)

(An example at the end of the paper shows that the converse of (5) is not true in
general.)

When B is an R-algebra, we have another valuation ring Nα that is naturally
associated to α—namely, the convex hull of R in B(α):

Nα = {x ∈B(α) | ∃N ∈R, |x| ≤α N}. (6)



590 F. Lucas , D. Schaub, & M. Spivakovsky

We will call the corresponding valuation the natural valuation associated to α. If
nα is the maximal ideal of Nα , then

Mα ⊂ nα ⊂ Nα ⊂ Rα ⊂ B(α). (7)

Remark 2.1. Let B be an R-algebra and take a point α ∈ Sper∗B (see Defini-
tion 1.2). Then Rα = Nα. Thus, for points α ∈ Sper∗B, the valuation να of B(α)
depends on the ordering ≤α but not on the ring B[α].

Points of SperB admit the following geometric interpretation. (We refer the reader
to [3; 4; 8, p. 89; 9] for the construction and properties of generalized power series
rings and fields.)

Definition 2.1. Let k be a field and let � be an ordered abelian group. The gen-
eralized formal power series ring k[[u�]] is the ring formed by elements of the
form

∑
γ aγ u

γ (aγ ∈ k) such that the set {γ | aγ �= 0} is well-ordered.

The ring k[[u�]] is equipped with the natural u-adic valuation v with values in
� defined by v(f ) = inf{γ | aγ �= 0} for f = ∑

γ aγ u
γ ∈ k[[u�]]. Specifying

both a total ordering on k and dimF2(�/2�) sign conditions defines a total order-
ing on k[[u�]]. In this ordering, |u| is smaller than any positive element of k. For
example, if uγ > 0 for all γ ∈� then f > 0 if and only if av(f ) > 0.

Definition 2.2. Let k be an ordered field. A k-curvette on Sper(B) is a mor-
phism of the form

α : B → k[[u�]],

where � is an ordered group. A k-semicurvette is a k-curvette α together with a
choice of the sign data sgn x1, . . . , sgn xr , where x1, . . . , xr are elements ofB whose
t-adic values induce an F2-basis of �/2�.

Given an ordered field k, a k-semicurvette α determines a prime ideal pα (the ideal
of all the elements of B that vanish identically on α) and a total ordering on B/pα
induced by the ordering of the ring k[[u�]] of formal power series.

Remark 2.2. Conversely, by using [9, Satz 21, p. 62] one can show that every
finite point of Sper(A) can be represented by a semicurvette in this way.

We will sometimes describe points in the real spectrum by specifying the corre-
sponding semicurvettes.

For a certain number p ∈ {0,1, . . . , n − 1} and two points δ, δ∗ living in dif-
ferent spaces, we shall need to compare (n − p)-tuples of elements such as
(νδ(xp+1(δ)), . . . , νδ(xn(δ))) ∈ �

n−p
δ and (νδ∗(yp+1(δ

∗)), . . . , νδ∗(yn(δ∗))) ∈ �
n−p
δ∗

and also be able to say that they are in some sense “equivalent”. To do this, we
must embed �δ in some “universal” ordered group.

Notation and Convention. Denote by � the ordered group Rn
lex. This means

that elements of � are compared as words in a dictionary: we say that (a1, . . . , an) <
(a ′1, . . . , a ′n) if and only if there exists a j ∈ {1, . . . , n} such that aq = a ′q for all q <

j and aj < a ′j .
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The reason for introducing � is that, by Abhyankar’s inequality, rank νδ ≤
dimA = n for all δ ∈ SperA and so the value group �δ of νδ can be embedded into
� as an ordered subgroup (of course, this embedding is far from being unique).
Let �+ be the semigroup of nonnegative elements of �.

Fix a strictly positive integer &. In order to deal rigorously with &-tuples of ele-
ments of �δ despite the nonuniqueness of the embedding �δ ⊂ �, we introduce the
category OGM(&) as follows. An object in OGM(&) is an ordered abelian group
G together with a fixed &-tuple of generators (a1, . . . , a&); such an object will be de-
noted by (G, (a1, . . . , a&)). A morphism from (G, (a1, . . . , a&)) to (G′, (a ′1, . . . , a ′& ))
is a homomorphism G→ G′ of ordered groups that maps aj to a ′j for each j.

Given (G, (a1, . . . , a&)), (G′, (a ′1, . . . , a ′& ))∈Ob(OGM(&)), the notation

(a1, . . . , a&) ∼◦ (a ′1, . . . , a ′& ) (8)

will mean that (G, (a1, . . . , a&)) and (G′, (a ′1, . . . , a ′& )) are isomorphic in OGM(&).

Take an &-tuple
a = (a1, . . . , a&)∈�&

+.

Let G ⊂ � be the ordered group generated by a1, . . . , a&. Then (G, (a1, . . . , a&))∈
Ob(OGM(&)). For each δ ∈ Sper(A), let �δ denote the value group of the
associated valuation νδ and �∗δ the subgroup of �δ generated by νδ(x1(δ)), . . . ,
νδ(xn(δ)). In this way, we associate to δ an object (�∗δ , νδ(x1(δ)), . . . , νδ(xn(δ)))∈
Ob(OGM(n)).

Notation. Let � be an ordered group. Consider an &-tuple a = (a1, . . . , a&) ∈
�&. We denote by Rel(a) the set

Rel(a) =
{
(m1, . . . ,m&,m&+1, . . . ,m2&)∈Z2&

∣∣∣∣
&∑

j=1

mj aj > 0 and
2&∑

j=&+1

mj aj−& = 0

}
.

Remark 2.3. Let a be as above and let G be the group generated by a1, . . . , a&, so
that (G, a)∈Ob(OGM(&)). There is a surjective group morphism πa : Z& → G,
εi �→ ai. If m ∈ Z&, then πa(m) = m · a. The data Rel(a) = {z(a),p(a)}, with
z(a) = {m∈Z& | m · a = 0} and p(a) = {m∈Z& | m · a > 0}, determine the ker-
nel of πa and tell us what elements of Z& have positive images in G. Thus Rel(a)
determines the isomorphism class of (G, a) in OGM(&) and vice versa; the set
Rel(a) and the isomorphism class of (G, (a1, . . . , a&)) are equivalent sets of data.

3. Points at Infinity of Sper(A)

In this section, we study the structure of the set of points at infinity in Sper(A).
We express SperA as a finite disjoint union of subsets, each of which is homeo-
morphic to a subset of the set Sper∗B of bounded points of another polynomial
ring B. For a point δ ∈ SperA, let δ∗ denote the image of δ in Sper∗B; by con-
struction, we will then have A(δ) = B(δ∗). We shall study in detail the relation
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between the valuations νδ∗ and νδ of A(δ). Among other things, we show that Rδ

is the localization of Rδ∗ at a suitable prime ideal.

Definition 3.1. Let B = R[y1, . . . , yn]. For T ∈ {0,1}n, let

AT = R[xi | T(i) = 0][x±1
i | T(i) = 1].

Let bT : B → AT be defined by bT (yi) = x−1
i if T(i) = 1 and by bT (yi) = xi if

T(i) = 0.

We have localization morphisms B
bT−→ AT

aT←− A (where aT is the natural em-
bedding), and these morphisms induce injective maps of the real spectrum of AT

into the real spectra of A and of B in the following way: a point of the real spec-
trum of AT is a homomorphism of AT to an ordered field and, by composition,
this induces points of the real spectra of A and B.

Definition 3.2. Let a#
T : SperAT → SperA denote the embedding induced by

aT . Its image is denoted by

(SperA)T = {α ∈ SperA | xi(α) �= 0 whenever T(i) = 1}. (9)

Similarly, b#
T : SperAT → SperB will denote the embedding induced by bT . Its

image is denoted by

(SperB)T = {β ∈ SperB | yi(β) �= 0 whenever T(i) = 1}. (10)

Let γ = b#
T � a#

T : (SperA)T → (SperB)T be the induced homeomorphism.

Suppose R is a real closed field and S is any R-algebra. For any δ ∈ Sper S, let Mδ

be the maximal ideal of Rδ. Let Nδ be the natural valuation ring of S(δ) and let nδ

be the maximal ideal of Nδ. Recall the inclusions (7). Consider the four-element
set consisting of formal symbols {ε,1/∞,1,∞}.
Definition 3.3. For a ∈ S, define

τδ(a) =




ε if a(δ)∈Mδ ,

1/∞ if a(δ)∈ nδ \Mδ ,

1 if a(δ)∈Nδ \ nδ ,

∞ if a(δ)∈Rδ \Nδ.

In other words, τδ(a) is ε, 1/∞, 1, or ∞ according as a(δ) is a nonunit, an infi-
nitely small unit, a unit comparable with an element of R, or an infinitely large
unit in Rδ , respectively. Note that

δ is finite ⇐⇒ Rδ = Nδ ⇐⇒ Mδ = nδ ⇐⇒ {τδ(a) | a ∈A} ⊆ {ε,1}.
In what follows, we will work with elements t ∈ {ε,1/∞,1,∞}n, which we con-

sider as maps t : {1, . . . , n} → {ε,1/∞,1,∞}n.
Definition 3.4. For a point δ ∈ SperA, let tδ : {1, . . . , n} → {ε,1/∞,1,∞}n
be the map defined by tδ(i) = τδ(xi). If t ∈ {ε,1/∞,1,∞}n, we let Ut =
{δ ∈ SperA | tδ(i) = t(i)}.
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Let V ⊂ {ε,1/∞,1,∞}n be given by

V = {t ∈ {ε,1/∞,1,∞}n | t−1(1/∞) �= ∅ ⇒ t−1(∞) �= ∅}.
Remark 3.1. In Theorem 3.1(3) we will see that Ut �= ∅ if and only if t ∈ V.

Therefore,
SperA =

∐
t∈V

Ut . (11)

Take an element t ∈V. We shall consider subsets T ∈ {0,1}n satisfying the follow-
ing conditions:

T(i) = 1 if t(i) = ∞, (12)

T(i) = 0 if t(i) ∈ {ε,1/∞}. (13)

Proposition 3.1. Assume that T satisfies (12) and (13). Then:

(i) Ut ⊆ (SperA)T ;
(ii) γ (Ut) ⊂ Sper∗B.

Proof. (i) Take a point δ ∈ Ut . By (13), whenever T(i) = 1 we have τδ(xi) =
t(i) �= ε. Hence xi(δ) �= 0 and so δ ∈ (SperA)T by (9).

(ii) This is equivalent to saying that there exists an N ∈ R such that |yi(δ)| <
N for all i ∈ {1, . . . , n}—in other words, that yi ∈Nδ.

If T(i) = 0, then t(i) �= ∞ by (12); hence yi(δ) = xi(δ) ∈ Nδ. If T(i) = 1
then, by (13), t(i)∈ {1,∞} and so yi(δ) = 1/xi(δ)∈Nδ. This proves that yi ∈Nδ ,
as desired.

Take a point δ ∈Ut . Take T ∈ {0,1}n satisfying (12) and (13), so that δ ∈ (SperA)T
by Proposition 3.1(i). Let B be as in Definition 3.1 and let δ∗ = γ (δ). Then the
localization morphisms aT and bT induce a canonical isomorphism

φ : A(δ) ∼= B(δ∗) (14)

of ordered fields.
Renumbering the coordinates if necessary, we may assume the existence of a p

(0 ≤ p ≤ n) such that

νδ(xj(δ)) = 0 for 1≤ i ≤ p and

νδ(xj(δ)) > 0 for j > p.
(15)

In other words,

{1, . . . ,p} = t−1
δ ({1/∞,1,∞}) and (16)

{p + 1, . . . , n} = t−1
δ (ε). (17)

We use R>0 to denote the set of strictly positive elements of R.

Theorem 3.1. The valuation νδ∗ of B(δ∗) associated to δ∗ has the following
properties.

(1) νδ∗(yj(δ
∗)) = 0 for j ∈ t−1

δ (1).
(2) νδ∗(yj(δ

∗)) > 0 for j ∈ t−1
δ ({1/∞,∞}).
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(3) Assume that t−1
δ (1/∞) �= ∅. Then there exist a q ∈ t−1

δ (∞) and a strictly pos-
itive integer N such that, for all j ∈ t−1

δ (1/∞),

Nνδ∗(yq(δ
∗)) > νδ∗(yj(δ

∗)). (18)

In particular, if t−1
δ (1/∞) �= ∅ then t−1

δ (∞) �= ∅.
(4) The valuation ring Rδ is the localization of Rδ∗ at a prime ideal; this gives

rise to a surjective order-preserving homomorphism φ̃ : �δ∗ → �δ of value
groups whose kernel is an isolated subgroup.

(5) For all j ∈ {1, . . . , n}, φ̃(νδ∗(yj(δ∗))) = νδ(xj(δ)).

(6) For j ∈ {1, . . . ,p},νδ∗(yj(δ∗))∈ ker(φ̃). In particular : given any j∈{1, . . . ,p},
t ∈ {p + 1, . . . , n}, and N ′ ∈N, we have N ′νδ∗(yj(δ∗)) < νδ∗(yt(δ

∗)).
(7) Assume that νδ(xp+1(δ)), . . . , νδ(xn(δ)) are Q-linearly independent. Then

(νδ∗(yp+1(δ
∗)), . . . , νδ∗(yn(δ∗)))∼◦ (νδ(xp+1(δ)), . . . , νδ(xn(δ))) (19)

in OGM(n− p).

Proof. (1) Take j ∈ t−1
δ (1). By definition this means that τδ(xj ) ∈ Nδ \ nδ , so

1/|yj(δ∗)| < c for some c ∈R. Hence 1/yj(δ∗)∈Rδ∗ and the result follows.
(2) Take j ∈ t−1

δ ({1/∞,∞}). First, we show that

|yj(δ∗)| < c ∀c ∈R>0. (20)

Indeed, if tδ(j) = 1/∞ then T(j) = 0 by (13), so yj(δ
∗) = xj(δ) ∈ nδ and (20)

follows. If tδ(j) = ∞ then T(j) = 1 by (12) and so yj(δ
∗) = 1/xj(δ)∈ nδ; again,

(20) follows. By (20), 1/|yj(δ∗)| > N for every N ∈ R. By the boundedness of
δ∗, for each f ∈B(δ∗) we have |f | < N ′ for some N ′ ∈R. Hence 1/|yj(δ∗)| > f

for each f ∈B(δ∗), so 1/yj(δ∗) /∈Rδ∗ . This proves that νδ∗(yj(δ∗)) > 0.
(3) Take j ∈ t−1

δ (1/∞). Since xj(δ) ∈ nδ \ Mδ , it follows that 1/xj(δ) ∈ Rδ.

Since Rδ = {w ∈A(δ) | ∃z∈A[δ], |w| ≤δ z} and since each z∈A[δ] is a sum of
monomials in the xi(δ), we can write Rδ as a union of intervals in A(δ):

Rδ =
⋃

r∈R>0,m∈N, i=1,...,n

[−r|xi(δ)|m, r|xi(δ)|m]. (21)

Hence there exists a q ∈ {1, . . . , n} such that∣∣∣∣ 1

xj(δ)

∣∣∣∣ < r|xq(δ)|N for all j ∈ t−1
δ (1/∞). (22)

Because j ∈ t−1
δ (1/∞), we have |1/xj(δ)| > c for all c ∈R. For l∈ t−1

δ ({ε,1/∞,1)},
we have |xl(δ)| < C for some C ∈R. Thus q ∈ t−1

δ (∞) in (22).
By (12) and (13), T(j) = 0 and T(q) = 1. Thus (22) becomes |yj(δ∗)| >

(1/r)|yq(δ∗)|N. Then Nνδ∗(yq(δ
∗)) ≥ νδ∗(yj(δ

∗)) by (5). Replacing N by N + 1,
we can make the inequality (18) strict.

(4) Since δ∗ is finite, we have Rδ∗ = Nδ∗ = Nδ ⊂ Rδ. It is well known that
every homomorphism between two valuation rings having the same field of frac-
tions is a localization at a prime ideal.

The last statement of (4) follows from the general theory of composition of val-
uations [10, Chap. VI, Sec. 10, p. 43]. Recall that �δ ∼= (A(δ) \ {0})/U(Rδ) and
that the valuation νδ can be identified with the natural homomorphism
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A(δ) \ {0} → A(δ) \ {0}
U(Rδ)

.

Similarly, νδ∗ can be thought of as

B(δ∗) \ {0} → B(δ∗) \ {0}
U(Rδ∗)

∼= �δ∗ .

From the isomorphism φ and the inclusion Rδ∗ ↪→ Rδ , we obtain a natural sur-
jective homomorphism of ordered groups,

φ̃ :
B(δ∗) \ {0}
U(Rδ∗)

→ A(δ) \ {0}
U(Rδ)

. (23)

(5) If T(j) = 0, then φ(xj(δ)) = yj(δ
∗) implies that

φ̃(yj(δ
∗) mod U(Rδ∗)) = xj(δ) mod U(Rδ).

If T(j) = 1 then φ(xj(δ)) = 1/yj(δ∗); hence

φ̃(νδ∗(yj(δ
∗))) = νδ(1/xj(δ)) = 0 = νδ(xj(δ)).

(6) This is an immediate consequence of (5) and the fact that νδ(x1(δ)) = · · · =
νδ(xp(δ)) = 0.

(7) By Remark 2.3, it suffices to prove that

Rel(νδ∗(yp+1(δ
∗)), . . . , νδ∗(yn(δ∗))) = Rel(νδ(xp+1(δ)), . . . , νδ(xn(δ))). (24)

Part (5) and the fact that νδ(xp+1(δ)), . . . , νδ(xn(δ)) are Q-linearly independent
imply that so are νδ∗(yp+1(δ

∗)), . . . , νδ∗(yn(δ∗)). Hence, using Theorem 3.1(5)
again, for any (n− p)-tuple (mp+1, . . . ,mn)∈Zn−p we have

n∑
i=p+1

mjνδ(xj(δ)) > 0 ⇐⇒
n∑

j=p+1

mjνδ∗(yj(δ
∗)) > 0.

This, together with the linear independence of νδ(xp+1(δ)), . . . , νδ(xn(δ)) and of
νδ∗(yp+1(δ

∗)), . . . , νδ∗(yn(δ∗)), proves the desired equality (24).

Let G be an ordered group of rank r and let & be a positive integer. Take & ele-
ments a1, . . . , a& ∈ G. Let (0) = 7r � 7r−1 � · · · � 70 = G be the isolated
subgroups of G.

Definition 3.5. We say that a1, . . . , a& are scalewise Q-linearly independent if,
for each q ∈ {0, . . . , r −1}, the images in 7q/7q+1 of those ai lying in 7q \7q+1

are Q-linearly independent.

Remark 3.2. With notation as before, assume that a1, . . . , a& are scalewise Q-
linearly independent. Let λ : G → G′ be a homomorphism of ordered groups.
Then λ(a1), . . . , λ(a&) are scalewise Q-linearly independent if and only if they are
Q-linearly independent if and only if all of them are nonzero. This is precisely the
form in which we will use scalewise Q-linear independence hereafter.
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Take elements t ∈V and T ∈ {0,1}n satisfying (12) and (13). Let the notation be as
before. Renumbering the variables if necessary, we may assume that there exists
a p ∈ {0, . . . , n} such that

{1, . . . ,p} = t−1({1/∞,1,∞}) and (25)

{p + 1, . . . , n} = t−1({ε}). (26)

Next, we prove a partial converse to Theorem 3.1 as follows.

Theorem 3.2. Take a point δ∗ ∈ Sper∗B∩ (SperB)T . Assume that the following
conditions hold.

(1) For each j ∈ t−1(1), there exists a c ∈R such that |yj(δ∗)| > c.

(2) νδ∗(yj(δ
∗)) > 0 for all j ∈ t−1({1/∞,∞}).

(3) If t−1(1/∞) �= ∅, there exist q ∈ t−1(∞) and N ∈N such that Nνδ∗(yq(δ
∗)) >

νδ∗(yj(δ
∗)) for all j ∈ t−1(1/∞).

(4) For all j ∈ {1, . . . ,p}, l∈ {p+1, . . . , n}, and N ′ ∈N, we have N ′νδ∗(yj(δ∗)) <
νδ∗(yl(δ

∗)).
Then δ∗ ∈ γ (Ut). If, in addition, νδ∗(yp+1(δ

∗)), . . . , νδ∗(yn(δ∗)) are scalewise Q-
linearly independent, then we have the isomorphism (19).

Proof. Let δ = γ−1(δ∗). We must show that δ ∈Ut—in other words, that

τδ(xi) = t(i) for all i ∈ {1, . . . , n}. (27)

We check (27) case by case for all possible values of t(i).
First of all, assumption (2) implies that

|yi(δ∗)| < c for all c ∈R>0 and i ∈ t−1({1/∞,∞}). (28)

Now, if t(i) = ∞ then by (12) we have xj(δ) = 1/yj(δ∗), so

|xi(δ)| > N for all N ∈R, (29)

which proves (27) for t(i) = ∞.

If t(i) = 1, then xi(δ) = yi(δ
∗) or xi(δ) = 1/yi(δ∗). In either case, assump-

tion (1) together with the boundedness of δ∗ implies the existence of c1, c2 ∈R>0

such that
c1 < |xi(δ)| < c2, (30)

which proves (27) for t(i) = 1.
If t(i) = 1/∞ then, by (13), we have xi(δ) = yi(δ

∗). Then (28) yields

|xi(δ)| < c for all c ∈R>0. (31)

It remains to prove that

νδ(xi(δ)) = 0 if t(i) = 1/∞ (32)
and

νδ(xi(δ)) > 0 if t(i) = ε. (33)

Equation (32) is equivalent to saying that

1/xi(δ)∈Rδ if t(i) = 1/∞. (34)
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To see this, we use assumption (3). The existence of q ∈ t−1(∞) and a positiveN ∈
N such that Nνδ∗(yq(δ

∗)) > νδ∗(yi(δ
∗)) implies that |yi(δ∗)| > |yq(δ∗)|N by the

implication (5); in other words, |xi(δ)| > 1/|xq(δ)|N or, equivalently, 1/|xi(δ)| <
|xq(δ)|N. This proves (34) and hence (27) for i ∈ t−1(1/∞).

Next, assume t(i) = ε. To prove (33), it suffices to show that

1/xi(δ) /∈Rδ. (35)

By (21), this is equivalent to saying that 1/|xi(δ)| is not bounded above by any ele-
ment of the form cxNj with j ∈ {1, . . . , n}, N ∈ N, and c ∈ R. We prove this last
statement by contradiction. Suppose there were an inequality of the form

1/|xi(δ)| < cxNj (36)

with N ∈N, c ∈R, and j ∈ {1, . . . , n}. Since νδ∗(yi(δ∗)) > 0 by conditions (2) and
(4) of Theorem 3.2, we have |yi(δ∗)| < c for all positive c ∈ R. Since xi(δ) =
yi(δ

∗) by (13), it follows that |xi(δ)| < c and 1/|xi(δ)| > 1/c for all positive c ∈R.
On the other hand, if t(j) ∈ {ε,1/∞} we have νδ∗(yj(δ

∗)) > 0. Hence |xj(δ)| =
|yj(δ∗)| < θ for all positive θ ∈R and, if t(j) = 1, then |xj(δ)| is bounded above
by a constant from R by (30). This proves that t(j) = ∞ in (36).

Assumption (4) now implies that, for any constant d ∈ R and any N ′ ∈ N, we
have d|yj(δ∗)|N ′

> |yi(δ∗)| and so d/|xj(δ)|N ′
> |xi(δ)|, which contradicts (36).

This completes the proof of (35), (33), and (27).
Assume that νδ∗(yp+1(δ

∗)), . . . , νδ∗(yn(δ∗)) are scalewise Q-linearly indepen-
dent. It remains to prove the isomorphism

(νδ(xp+1(δ)), . . . , νδ(xn(δ)))∼◦ (νδ∗(yp+1(δ
∗)), . . . , νδ∗(yn(δ∗))). (37)

By Theorem 3.1(5), inequality (33), the assumed scalewise Q-linear independence
of νδ∗(yp+1(δ

∗)), . . . , νδ∗(yn(δ∗)), and Remark 3.2, it follows that νδ(xp+1(δ)), . . . ,
νδ(xn(δ)) are also scalewise Q-linearly independent. Now (37) is a consequence
of Theorem 3.1(7), and the theorem is proved.

Remark 3.3. Although at first glance the assumption of (scalewise) Q-linear in-
dependence seems rather restrictive, we remark that any point δ ∈ SperA can be
transformed into one for which this assumption holds by a sequence of blow-ups.
For details we refer the reader to [7, Cor. 6.2], which shows how to achieve the usual
Q-linear independence of νδ(xp+1(δ)), . . . , νδ(xp+1(δ))—but it also works (after
some minor and obvious modifications) for scalewise Q-linear independence.

Example. Let n = 5, and let δ ∈ SperA be the point given by the following
semicurvette. We let � = Z2

lex and kδ = R(z,w), where z and w are independent
variables. Let the order on kδ be given by the following inequalities:

0 < w < c < z for all c ∈R>0;
1/wN < z for all N ∈N.

As usual, we define the order on kδ((u
�)) by declaring u to be positive. Define the

map δ : A→ kδ((u
�)) as follows:
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δ(x1) = w,

δ(x2) = 1+ u(0,1),

δ(x3) = z,

δ(x4) = u(1,0),

δ(x5) = zu(1,0).

Then νδ(x1) = νδ(x2) = νδ(x3) = 0 and

νδ(x4) = νδ(x5) = (1, 0) > 0. (38)

We have t−1
δ (1/∞) = {1}, t−1

δ (1) = {2}, and t−1
δ (∞) = {3}. Let T(i) = 1 when-

ever i ∈ t−1
δ (∞) and T(i) = 0 otherwise. Let δ∗ = ψ(δ) ∈ Sper∗B. Then �δ∗ =

Z4
lex and kδ∗ = R. The semicurvette δ∗ can be defined by the following map:

δ∗(y1) = u(0,0,0,1),

δ∗(y2) = 1+ u(0,1,0,0),

δ∗(y3) = u(0,0,1,0),

δ∗(y4) = u(1,0,0,0),

δ∗(y5) = u(1,0,1,0).

In this example,νδ(x4(δ)) and νδ(x5(δ)) are not Q-linearly independent (cf. (38))
and the conclusion of Theorem 3.1 does not hold: we do not have an isomorphism

(νδ∗(y4(δ
∗)), νδ∗(y5(δ

∗)))∼◦ (νδ(x4(δ)), νδ(x5(δ))).

In fact, every point δ ∈ SperA can be transformed—after a sequence SperA′ →
SperA of affine monomial blow-ups with respect to δ—into a point δ ′ ∈ SperA′
such that the nonzero elements of the set {νδ ′(x1), . . . , νδ ′(xn)} are (scalewise) Q-
linearly independent [7, Cor. 6.2].

Let A′ = R[x ′1, x ′2, x ′3, x ′4, x ′5], and consider the map π : A→ A′ defined by:

π(xj ) = x ′j for j ∈ {1, 2, 3, 4};
π(x5) = x ′4x

′
5.

Let δ ′ be the unique preimage of δ under the natural map π∗ : SperA′ → SperA
of the real spectra induced by π. (In the terminology of [7], π is an affine mono-
mial blow-up along the ideal (x4, x5) with respect to δ, and δ ′ is the transform of
δ by π.) In particular: �δ ′ = Z2

lex; kδ ′ = R(z,w), as before; and δ is given by the
following semicurvette:

δ(x1) = w,

δ(x2) = 1+ u(0,1),

δ(x3) = z,

δ(x4) = u(1,0),

δ(x5) = z.
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