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1. Introduction

Let R be a commutative ring with identity. A filtration on R is a decreasing se-
quence {In}∞n=0 of ideals of R. Associated to a filtration is a well-defined comple-
tion R∗ = lim←−n R/In and a canonical homomorphism ψ : R→ R∗ [13, Chap. 9].
If

⋂∞
n=0 In = (0), then ψ is injective and R may be regarded as a subring of R∗

[13, p. 401]. In the terminology of Northcott, a filtration {In}∞n=0 is multiplicative
if I0 = R and InIm ⊆ In+m for all m ≥ 0 and n ≥ 0 [13, p. 408]. A well-known
example of a multiplicative filtration on R is the I -adic filtration {I n}∞n=0, where
I is a fixed ideal of R.

In this paper we consider filtrations of ideals of R that are not multiplicative
and examine the completions associated to these filtrations. We assume the ring R

is Noetherian. Instead of successive powers of a fixed ideal I, we use a filtration
formed from a more general descending sequence {In}∞n=0 of ideals. We require,
for each n > 0, that the nth ideal In be contained in the nth power of the Jacobson
radical of R and that Ink ⊆ I k

n for all k, n ≥ 0. We call the associated comple-
tion a multi-adic completion and denote it by R∗. The basics of the multi-adic
construction and the relationship between this completion and certain ideal-adic
completions are considered in Section 2. In Section 3 we prove, for {In} as just
described, that R∗ is Noetherian. Let (R, m) be a Noetherian local ring. If R is
excellent, Henselian, or universally catenary, we prove in Section 4 that R∗ has
the same property.

We were inspired to pursue this project partly because of our continuing interest
in exploring completions and power series. In our previous work we constructed
various examples of rings inside relatively well-understood rings such as the (x)-
adic completion k[y][[x]] of a polynomial ring k[x, y] in two variables x and y

over a field k [4; 5]. The examples we obtained demonstrate that certain proper-
ties of a ring may fail to extend to its m-adic completion, where m is a maximal
ideal [6].

The process of passing to completion gives an analytic flavor to algebra. Often
we view completions in terms of power series or in terms of coherent sequences, as
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in [1, pp. 103–104]. Sometimes results are established by demonstrating for each
n that they hold at the nth stage in the inverse limit.

Multi-adic completions are interesting from another point of view. In commuta-
tive algebra, many counterexamples can be considered as subrings of R∗/J, where
R∗ is a multi-adic completion of a localized polynomial ring R over a countable
ground field and J is an ideal ofR∗. In particular, certain counterexamples of Brod-
mann and Rotthaus, Heitmann, Nishimura, Ogoma, Rotthaus, and Weston can be
interpreted in this way (cf. [2; 3; 7; 11; 12; 14; 15; 17; 18; 20]). For most of these
examples, a particular enumeration {p1,p2, . . . } of countably many nonassociate
prime elements is chosen, and the ideals In are defined to be In := (p1p2 · · ·pn)

n.

The Noetherian property in these examples is a trivial consequence of the fact that
every ideal of R∗ that contains one of the ideals In, or a power of In, is extended
from R. In general, an advantage of R∗ over the In-adic completion R̂n is that an
ideal of R∗ is more likely to be extended from R than is an ideal of R̂n.

All rings we consider are assumed to be commutative with identity. A general
reference for our notation and terminology is [9].

2. Basic Mechanics for the Multi-adic Construction

Setting 2.1. Let R be a Noetherian ring with Jacobson radical J, and let N de-
note the set of positive integers. For each n∈N, let Qn be an ideal of R. Assume
that the sequence {Qn} is descending (i.e., Qn+1 ⊆ Qn) and that Qn ⊆ J n for
each n∈N. Also assume, for each pair of integers k, n∈N, that Qnk ⊆ Qk

n.

Let F = {Qk}k≥0 be the filtration

R = Q0 ⊇ Q1 ⊇ · · · ⊇ Qk ⊇ Qk+1⊇ · · ·
of R, and define

R∗ := lim←−
k

R/Qk (2.1)

to be the completion of R with respect to F.

Let R̂ := lim←−k R/J k denote the completion of R with respect to the powers of
the Jacobson radical J of R, and for each n∈N let

R̂n := lim←−
k

R/Qk
n (2.2)

denote the completion of R with respect to the powers of Qn.

Remark 2.2. Assume notation as in Setting 2.1. For each fixed n∈N, we have

R∗ = lim←−
k

R/Qk = lim←−
k

R/Qnk ,

where k ∈N varies. This holds because the limit of a subsequence is the same as
the limit of the original sequence.

Next we establish canonical inclusion relations among R̂ and the completions de-
fined in (2.1) and (2.2).
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Proposition 2.3. Let the notation be as in Setting 2.1. For each n∈N, we have
canonical inclusions

R ⊆ R∗ ⊆ R̂n ⊆ R̂n−1 ⊆ · · · ⊆ R̂1 ⊆ R̂.

Proof. The inclusion R ⊆ R∗ is clear because the intersection of the ideals Qk

is zero. For the inclusion R∗ ⊆ R̂n, by Remark 2.2 we have R∗ = lim←−k R/Qnk.

Observe that
Qnk ⊆ Qk

n ⊆ Qk
n−1⊆ · · · ⊆ J k.

Now Lemma 2.4 completes the proof of the proposition.

The following lemma establishes injectivity in more generality for completions
with respect to ideal filtrations (see also [13, Sec. 9.5]). Here the respective com-
pletions are defined using coherent sequences as in [1, pp. 103–104].

Lemma 2.4. LetR be a Noetherian ring with Jacobson radical J, and let {Hk}k∈N,
{Ik}k∈N, and {Lk}k∈N be descending sequences of ideals of R such that, for each
k ∈N,

Lk ⊆ Ik ⊆ Hk ⊆ J k.

We denote the families of natural surjections arising from these inclusions as

δk : R/Lk → R/Ik , λk : R/Ik → R/Hk , θk : R/Hk → R/J k;
the completions with respect to these families are

R̂L := lim←−
k

R/Lk , R̂I := lim←−
k

R/Ik ,

R̂H := lim←−
k

R/Hk , R̂ := lim←−
k

R/J k.

Then the following statements hold.

(1) These families of surjections induce canonical injective maps �, �, and �

among the completions, as shown in the diagram in (2).
(2) For each positive integer k we have the following commutative diagram, where

the vertical maps are the natural surjections:

R/Lk

δk �� R/Ik
λk �� R/Hk

θk �� R/J k

R̂L

� ��

��

R̂I

� ��

��

R̂H

� ��

��

R̂ .

��

(3) The composition � · � is the canonical map induced by the natural surjec-
tions λk · δk : R/Lk → R/Hk. Similarly, the other compositions in the bottom
row are the canonical maps induced by the appropriate natural surjections.

Proof. In each case there is a unique homomorphism of the completions. For ex-
ample, the family of homomorphisms {δk}k∈N induces a unique homomorphism
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R̂L

� �� R̂I . (2.3)

To define �, let x = (xk)k∈N ∈ R̂L, where each xk ∈ R/Lk. Then δk(xk) ∈ R/Ik
and we define �(x) := (δk(xk))k∈N ∈ R̂I .

To show that maps on the completions are injective, consider for example the
map �. Suppose x = (xk)k∈N ∈ lim←−k R/Lk with �(x) = 0. Then δk(xk) = 0 in
R/Ik; that is, xk ∈ Ik/Lk = Ik(R/Lk) for every k ∈ N. For v ∈ N, consider the
commutative diagram

R/Lk

δk �� R/Ik

R/Lkv

δkv ��

βk,kv

��

R/Ikv ,

αk,kv

��

(2.4)

where βk,kv and αk,kv are the canonical surjections associated with the inverse lim-
its. We have xkv ∈ Ikv/Lkv = Ikv(R/Lkv). Therefore,

xk = βk,kv(xkv)∈ Ikv(R/Lk) ⊆ J kv(R/Lk)

for every v ∈N. Since J (R/Lk) is contained in the Jacobson radical of R/Lk and
since R/Lk is Noetherian, it follows that⋂

v∈N

J kv(R/Lk) = (0).

Hence xk = 0 for each k ∈ N and so � is injective. The remaining assertions
are clear.

Lemma 2.5. With R∗ and R̂n as in Setting 2.1, we have

R∗ =
⋂
n∈N

R̂n.

Proof. The “⊆” inclusion is shown in Proposition 2.3. For the reverse inclusion,
fix positive integers n and k, and let L� = Qnk�, I� = Q�

nk , and H� = Q�
n for each

�∈N. Then L� ⊆ I� ⊆ H� ⊆ J �, as in Lemma 2.4, and

R̂L := lim←−
�

R/Qnk� = R∗, R̂I := lim←−
�

R/Q�
nk = R̂nk , R̂H := lim←−

�

R/Q�
n = R̂n.

(Also, as before, R̂ := lim←−� R/J �.) We define ϕn, ϕnk , ϕnk,n, θ, and ϕ to be the
canonical injective homomorphisms given by Lemma 2.4 among the rings dis-
played in the following diagram:

R̂ R̂
θ��

R∗
ϕnk ��

ϕ

��
ϕn

�����������
R̂nk .

ϕnk,n

��

(2.5)

By Lemma 2.4, this diagram is commutative.
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Let ŷ ∈⋂
n∈N R̂n. We show that there is an element ξ ∈ R∗ such that ϕ(ξ) =

ŷ. This is sufficient to ensure that ŷ ∈R∗, since the maps θt are injective and dia-
gram (2.5) is commutative.

First, we define ξ. For each t ∈N, we have

ŷ = (y1,t , y2,t , . . . )∈ lim←−
�

R/Q�
t = R̂t ,

where

y1,t ∈R/Qt , y2,t ∈R/Q2
t , y2,t +Qt/Q

2
t = y1,t ∈R/Qt , . . .

is a coherent sequence as in [1, pp. 103–104]. Now take zt ∈R so that zt +Qt =
y1,t . Thus ŷ − zt ∈QtR̂t . For positive integers s and t with s ≥ t, we have Qs ⊆
Qt. Therefore, zt − zs ∈ QtR̂t ∩ R = QtR. Thus ξ := (zt )t∈N ∈ R∗. We have
ŷ − zt ∈ QtR̂t ⊆ J t R̂ for all t ∈ N, so ϕ(ξ) = ŷ. This completes the proof of
Lemma 2.5.

The following special case of Setting 2.1 has been used by Brodmann, Rotthaus,
Ogoma, Heitmann, Weston, and Nishimura in their construction of numerous
examples.

Setting 2.6. LetR be a Noetherian ring with Jacobson radical J. For each i ∈N,
let pi ∈J be a nonzero divisor (i.e., a regular element) on R.

For each n∈N, let qn = (p1 · · ·pn)
n. Let F0 = {(qk)}k≥0 be the filtration

R ⊇ (q1) ⊇ · · · ⊇ (qk) ⊇ (qk+1) ⊇ · · ·
of R, and define R∗ := lim←−k R/(qk) to be the completion of R with respect to F0.

Remark 2.7. In Setting 2.6, assume further that R = K[x1, . . . , xn](x1,...,xn), the
localized polynomial ring over a countable field K, and that {p1,p2, . . . } is an enu-
meration of all the prime elements (up to associates) in R. As in Setting 2.6, let
R∗ := lim←−n R/(qn), where each qn = (p1 · · ·pn)

n. The ring R∗ is often useful
for the construction of Noetherian local rings with a bad locus (regular, Cohen–
Macaulay, and normal). In particular, the authors listed in the paragraph before
Setting 2.6 make use of special subrings of this multi-adic completion R∗ for their
counterexamples; the first such example was constructed by Rotthaus in [16]. In
this paper, we obtain a regular local Nagata ring A containing a prime element
ω such that the singular locus of the quotient ring A/(ω) is not closed. This ring
A is situated between the localized polynomial ring R and its ∗-completion R∗;
thus, in general, R∗ is bigger than R. In the Rotthaus example, the singular locus
of (A/(ω))∗ is defined by a height-1 prime ideal Q that intersects A/(ω) in (0).
Since all ideals Q + (pn) are extended from A/(ω), the singular locus of A/(ω)

is not closed.

3. Preserving Noetherian under Multi-adic Completion

Theorem 3.1. With notation as in Setting 2.1, the ring R∗ defined in (2.1) is
Noetherian.
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Proof. It suffices to show that each ideal I of R∗ is finitely generated. Since R̂ is
Noetherian, there exist f1, . . . , fs ∈ I such that IR̂ = (f1, . . . , fs)R̂. Since R̂n ↪→
R̂ is faithfully flat, IR̂n = IR̂ ∩ R̂n = (f1, . . . , fs)R̂n for each n∈N.

Let f ∈ I ⊆ R∗. Then f ∈ IR̂1 and so

f =
s∑

i=1

b̂i0fi,

where b̂i0 ∈ R̂1. Consider R as “Q0”, so b̂i0 ∈ Q0R̂1. Since R̂1/Q1R̂1
∼= R/Q1,

for all i (1 ≤ i ≤ s) we have b̂i0 = ai0 + ĉi1, where ai0 ∈ R = Q0R and ĉi1 ∈
Q1R̂1. Then

f =
s∑

i=1

ai0fi +
s∑

i=1

ĉi1fi.

Notice that

d̂1 :=
s∑

i=1

ĉi1fi ∈ (Q1I )R̂1 ∩ R∗ ⊆ R̂2.

By the faithful flatness of the extension R̂2 ↪→ R̂1, we see that d̂1∈ (Q1I )R̂2 and
hence there exist b̂i1∈Q1R̂2 with

d̂1 =
s∑

i=1

b̂i1fi.

As before, we can use R̂2/Q2R̂2
∼= R/Q2 to write b̂i1 = ai1+ ĉi2, where ai1 ∈ R

and ĉi2 ∈Q2R̂2. This implies that ai1∈Q1R̂2 ∩ R = Q1. We have

f =
s∑

i=1

(ai0 + ai1)fi +
s∑

i=1

ĉi2fi.

Now set

d̂2 :=
s∑

i=1

ĉi2fi.

Then d̂2 ∈ (Q2I )R̂2 ∩ R∗ ⊆ R̂3 and, since the extension R̂3 ↪→ R̂2 is faithfully
flat, d̂2 ∈ (Q2I )R̂3. We repeat the process. By a simple induction argument,

f =
s∑

i=1

(ai0 + ai1+ ai2 + · · · )fi,

where aij ∈Qj and ai0 + ai1+ ai2 + · · · ∈R∗. Thus f ∈ (f1, . . . , fs)R
∗. Hence I

is finitely generated and R∗ is Noetherian.

Corollary 3.2. With notation as in Setting 2.1, the maps R ↪→ R∗, R∗ ↪→ R̂n,
and R∗ ↪→ R̂ are faithfully flat.

We use Proposition 3.3 in the next section on preserving excellence.

Proposition 3.3. Assume notation as in Setting 2.1, and let the ring R∗ be de-
fined as in (2.1). If M is a finitely generated R∗-module, then
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M ∼= lim←−
k

(M/QkM);

in other words, M is ∗-complete.

Proof. If F = (R∗)n is a finitely generated free R∗-module, then one can see di-
rectly that

F ∼= lim←−
k

F/QkF

and so F is ∗-complete.
Let M be a finitely generated R∗-module. Consider an exact sequence

0 �� N �� F �� M �� 0,

where F is a finitely generated free R∗-module. This induces an exact sequence

0 ��
Ñ

�� F ∗ �� M ∗ �� 0,

where Ñ is the completion ofN with respect to the induced filtration {QkF∩N}k≥0

(cf. [1, (10.3)]).
This gives the commutative diagram

0 �� N ��

��

F ��

∼=
��

M ��

γ

��

0

0 ��
Ñ

�� F ∗ �� M ∗ �� 0,

where γ is the canonical map γ : M → M ∗. The diagram shows that γ is surjec-
tive. We have ∞⋂

k=1

(QkM) ⊆
∞⋂
k=1

J kM = (0),

where the last equality is by [1, (10.19)]. Therefore, γ is also injective.

Remark 3.4. Let the notation be as in Setting 2.1, and letB be a finiteR∗-algebra.
Let B̂n

∼= B ⊗R∗ R̂n denote the Qn-adic completion of B. By Proposition 2.3 and
Corollary 3.2, we have a sequence of inclusions

B ↪→ · · · ↪→ B̂n+1 ↪→ B̂n ↪→ · · · ↪→ B̂1 ↪→ B̂,

where B̂ denotes the completion of B with respect to JB. Let J0 denote the
Jacobson radical of B. Since every maximal ideal of B lies over a maximal ideal
of R∗, we have JB ⊆ J0.

Theorem 3.5. With the notation of Setting 2.1, let B be a finite R∗-algebra and
let B̂n

∼= B ⊗R∗ R̂n denote the Qn-adic completion of B. Let Î be an ideal of B̂,
let I := Î ∩ B, and let In := Î ∩ B̂n for each n ∈ N. If Î = InB̂ for all n, then
Î = IB̂.
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Proof. By replacing B with B/I, we may assume that (0) = I = Î ∩ B. To prove
the theorem, it suffices to show that Î = 0.

For each n∈N, we define ideals cn of B̂n and an of B as

cn := In +QnB̂n, an := cn ∩ B.

Since B/QnB = B̂n/QnB̂n, it follows that the ideals of B containing Qn are in
one-to-one inclusion-preserving correspondence with the ideals of B̂n containing
QnB̂n. Therefore,

anB̂n = cn, an+1B̂n = an+1B̂n+1B̂n = cn+1B̂n. (3.1)

Since B̂ is faithfully flat over B̂n and since Î is extended, we have

In+1B̂n = (In+1B̂) ∩ B̂n = Î ∩ B̂n = In. (3.2)

For all n∈N it thus follows by (3.1), (3.2), and Qn+1B̂n ⊆ QnB̂n that

anB̂n = cn = In +QnB̂n = In+1B̂n +QnB̂n

= cn+1B̂n +QnB̂n = an+1B̂n +QnB̂n.

Because B̂n is faithfully flat over B, the preceding equation implies that

an+1+QnB = (an+1B̂n +QnB̂n) ∩ B = anB̂n ∩ B = an. (3.3)
Thus also

anB̂ ⊆ an+1B̂ +QnB̂ ⊆ In+1B̂ +QnB̂ = Î +QnB̂. (3.4)

Now Qn ⊆ J nB̂ and J ⊆ J0; hence using (3.4) we obtain⋂
n∈N

(anB̂) ⊆
⋂
n∈N

(Î +QnB̂) ⊆
⋂
n∈N

(Î + J nB̂) = Î .

Since Î ∩ B = (0), it follows that

0 = Î ∩ B ⊇
( ⋂

n∈N

(anB̂)

)
∩ B ⊇

⋂
n∈N

((anB̂) ∩ B) =
⋂
n∈N

an,

where the last equality is because B̂ is faithfully flat over B. Thus
⋂

n∈N an = (0).

Claim: Î = (0).

Proof of Claim. Suppose Î �= 0. Then there exists a d ∈N such that Î � J d
0 B̂.

By hypothesis, Î = IdB̂ and so IdB̂ � J d
0 B̂. Since B̂ is faithfully flat over B̂d ,

we have Id � J d
0 B̂d . By (3.1),

adB̂d = cd = Id +QdB̂d � J d
0 B̂d ,

so there must exist an element yd ∈ ad with yd /∈J d
0 .

By (3.3), ad+1+QdB = ad . Hence there exist yd+1∈ ad+1 and qd ∈QdB such
that yd+1+ qd = yd. Recursively we construct, for each n ≥ d, sequences of ele-
ments yn ∈ an and qn ∈QnB such that yn+1+ qn = yn.

The sequence ξ = (yn +QnB) ∈ lim←−n B/QnB = B corresponds to a nonzero
element y ∈B such that, for every n ≥ d, we have y = yn + gn for some element
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gn ∈QnB. This shows that y ∈ an for all n ≥ d and hence
⋂

n∈N an �= 0, a con-
tradiction. Thus Î = (0).

4. Preserving Excellence and Henselian
under Multi-adic Completion

The first four results of this section concern preservation of excellence.

Theorem 4.1. Assume notation as in Setting 2.1, and let the ring R∗ be defined
as in (2.1). If (R, m) is an excellent local ring, then R∗ is excellent.

The following result is critical to the proof of Theorem 4.1.

Lemma 4.2 [9, Thm. 32.5, p. 259]. Let A be a semilocal Noetherian ring. As-
sume that (B̂)Q is a regular local ring for every local domain (B, n) that is a
localization of a finite A-algebra and for every prime ideal Q of the n-adic com-
pletion B̂ such that Q∩B = (0). Then A is a G-ring; that is, A ↪→ Âp is regular
for every prime ideal p of A. Thus all of the formal fibers of all the local rings of
A are geometrically regular.

We use also Proposition 4.3 in the proof of Theorem 4.1.

Proposition 4.3. Let (R, m) be a Noetherian local ring with geometrically reg-
ular formal fibers. Then R∗ has geometrically regular formal fibers.

Proof. Let B be a domain that is a finite R∗-algebra, and let P ∈ Sing(B̂) (i.e.,
B̂P is not a regular local ring). To prove that R∗ has geometrically regular formal
fibers, by Lemma 4.2 it suffices to prove that P ∩ B �= (0).

The Noetherian complete local ring R̂ has the property J -2 in the sense of Mat-
sumura: for every finite R̂-algebra, such as B̂, the subset Reg(Spec(B̂)) of primes
where the localization of B̂ is regular is an open subset (cf. [8, pp. 246–249]).
Hence there is a radical ideal Î in B̂ such that

Sing(B̂) = V(Î ).

If Î = (0) (i.e., if (0) is a radical ideal), then B̂ is a reduced ring and, for all mini-
mal primes Q of B̂, the localization B̂Q is a field, contradicting Q∈ Sing(B̂). Thus
Î �= (0). For all n∈N,

B̂n
∼= R̂n ⊗R∗ B

is a finite R̂n-algebra. Because R̂n has geometrically regular formal fibers [18], so
has B̂n. This implies that Î is extended from B̂n for all n∈N. By Theorem 3.5, Î
is extended from B and so Î = IB̂, where 0 �= I := Î ∩ B. Since Î ⊆ P, we have
(0) �= I ⊆ P ∩ B.

Proof of Theorem 4.1. It remains to show that R∗ is universally catenary. We have
injective local homomorphisms R ↪→ R∗ ↪→ R̂ and that R∗ is Noetherian with
R̂∗ = R̂. Proposition 4.4 then implies that R∗ is universally catenary.
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Proposition 4.4. Let (A, m) be a Noetherian local universally catenary ring,
and let (B, n) be a Noetherian local subring of the m-adic completion Â of A with
A ⊆ B ⊆ Â and B̂ = Â, where B̂ is the n-adic completion of B. Then B is uni-
versally catenary.

Proof. By [9, Thm. 31.7], it suffices to show for P ∈ Spec(B) that Â/PÂ is equidi-
mensional. We may assume that P ∩ A = (0) and hence that A is a domain. Let
Q and W in Spec(Â) be minimal primes over PÂ.

Claim: dim(Â/Q) = dim(Â/W ).

Proof of Claim. Since B is Noetherian, the canonical morphisms BP → ÂQ

and BP → ÂW are flat. By [9, Thm. 15.1],

dim(ÂQ) = dim(BP)+ dim(ÂQ/PÂQ),

dim(ÂW ) = dim(BP)+ dim(ÂW/PÂW ).

Since Q and W are minimal over PÂ, it follows that

dim(ÂQ) = dim(ÂW ) = dim(BP).

Let q ⊆ Q and w ⊆ W be minimal primes of Â such that

dim(ÂQ) = dim(ÂQ/qÂQ), dim(ÂW ) = dim(ÂW/wÂW).

Because we have reduced to the case where A is a universally catenary domain,
its completion Â is equidimensional and so

dim(Â/q) = dim(Â/w).

Since a complete local ring is catenary [9, Thm. 29.4], we have

dim(Â/q) = dim(ÂQ/qÂQ)+ dim(Â/Q),

dim(Â/w) = dim(ÂW/wÂW)+ dim(Â/W ).

Since dim(Â/q) = dim(Â/w) and dim(ÂQ) = dim(ÂW ), it follows that

dim(Â/Q) = dim(Â/W ).

This completes the proof of Proposition 4.4.

Remark 4.5. Let R be a universally catenary Noetherian local ring. Proposi-
tion 4.4 implies that every Noetherian local subring B of R̂ with R ⊆ B and
B̂ = R̂ is universally catenary. Hence, for each ideal I of R, the I -adic comple-
tion of R is universally catenary. Moreover, R∗ as in Setting 2.1 is universally
catenary. Proposition 4.4 also implies that the Henselization of R is universally
catenary. Seydi [19] shows that the I -adic completions of universally catenary
rings are universally catenary. Proposition 4.4 establishes this result for a larger
class of rings.

Proposition 4.6. With notation as in Setting 2.1, let (R, m, k) be a Noetherian
local ring. If R is Henselian, then R∗ is Henselian.
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Proof. Assume that R is Henselian. It is well known that every ideal-adic com-
pletion of R is Henselian (cf. [16, p. 6]); thus R̂n is Henselian for all n∈N. Let n
denote the nilradical of R̂. Then n∩R∗ is the nilradical of R∗ and, to prove R∗ is
Henselian, it suffices to prove that R ′ := R∗/(n ∩ R∗) is Henselian [10, (43.15)].
To prove R ′ is Henselian, by [16, Prop. 3, p. 76] it suffices to show:

If f ∈R ′[x] is a monic polynomial and its image f̄ ∈ k[x] has a simple
root, then f has a root in R ′.

Let f ∈R ′[x] be a monic polynomial such that f̄ ∈ k[x] has a simple root. Be-
cause R̂n/(n∩ R̂n) is Henselian, for each n∈N there exist α̂n ∈ R̂n/(n∩ R̂n) with
f(α̂n) = 0. Since f is monic and R̂/(n ∩ R̂) is reduced, f has only finitely many
roots in R̂/(n ∩ R̂). Hence there is an α such that α = α̂n for infinitely many n∈
N. By Lemma 2.5, R∗ =⋂

n∈N R̂n. Therefore,

R ′ = R∗/(n ∩ R∗) =
⋂
n∈N

R̂n/(n ∩ R̂n)

and so there exists an α ∈R ′ such that f(α) = 0.
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