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1. Introduction

In this paper we provide explicit formulas for the core of an ideal. Recall that for
an ideal I in a Noetherian ring R, the core of I, core(I ), is the intersection of all
reductions of I. For a subideal J ⊂ I we say that J is a reduction of I, or that
I is integral over J, if I r+1 = JI r for some r ≥ 0; the smallest such r is called
the reduction number of I with respect to J and is denoted by rJ(I ). If (R, m) is
local with infinite residue field k then every ideal has a minimal reduction, which
is a reduction minimal with respect to inclusion. Minimal reductions of a given
ideal I are far from unique, but they all share the same minimal number of gener-
ators, called the analytic spread of I and written 	(I ). Minimal reductions arise
from Noether normalizations of the special fiber ring F(I ) = grI(R)⊗k of I, and
therefore 	(I ) = dim F(I ). From this one readily sees that ht I ≤ 	(I ) ≤ dimR;
these inequalities are equalities for any m-primary ideal, and if the first inequality
is an equality then I is called equimultiple. Obviously, the core can be obtained
as an intersection of minimal reductions of a given ideal.

Through the study of the core one hopes to better understand properties shared
by all reductions. The notion was introduced by Rees and Sally for the purpose of
generalizing the Briançon–Skoda Theorem [17]. As an a priori infinite intersection
of reductions, the core is difficult to compute, and there have been considerable ef-
forts to find explicit formulas; see [3; 4; 9; 10; 11; 12; 15]. We quote the following
result from [15].

Theorem 1.1. Let R be a local Gorenstein ring with infinite residue field k, let I
be anR-ideal with g = ht I > 0 and 	 = 	(I ), and let J be a minimal reduction of
I with r = rJ(I ). Assume that I satisfiesG	, that depthR/Ij ≥ dimR/I − j +1
for 1 ≤ j ≤ 	− g, and that either char k = 0 or char k > r − 	+ g. Then

core(I ) = J n+1 : I n

for every n ≥ max{r − 	+ g, 0}.
The propertyG	 in Theorem 1.1 is a rather weak requirement on the local number
of generators of I : it means that the minimal number of generatorsµ(Ip) is at most

Received May 29, 2007. Revision received February 29, 2008.
The second and third author were supported in part by the NSF. The second author was also supported

in part by the NSA.

305



306 Louiza Fouli , Claudia Polini , & Bernd Ulrich

dimRp for every prime ideal p containing I with dimRp ≤ 	− 1. Both hypothe-
ses, the G	 condition and the depth assumption on the powers, are automatically
satisfied if I is equimultiple. They also hold for one-dimensional generic com-
plete intersection ideals or, more generally, for Cohen–Macaulay generic complete
intersections with 	 = g+1. In the presence of theG	 property, the depth inequal-
ities for the powers hold if I is perfect with g = 2, if I is perfect Gorenstein with
g = 3 or, more generally, if I is in the linkage class of a complete intersection
[8, 1.11].

Theorem 1.1 is not true in general without the assumption on the characteris-
tic, as was shown in [15, 4.9]. Hence in this paper we study the case of arbitrary
characteristic. Explicit formulas for the core that are valid in any characteristic
and for any reduction number are known for equimultiple ideals of height 1 [15,
3.4(a)] and for powers of the homogeneous maximal ideal of standard graded re-
duced Cohen–Macaulay rings over an infinite perfect field [12, 4.1]. In this paper
we clarify the latter result and generalize it to ideals generated by forms of the
same degree that are not necessarily zero-dimensional or even equimultiple.

Theorem 1.2. Let k be an infinite field, R ′ a positively graded geometrically
reduced Cohen–Macaulay k-algebra, and R the localization of R ′ at the homoge-
neous maximal ideal. Let I be an R-ideal generated by forms in R ′ of the same
degree with g = ht I > 0 and 	 = 	(I ), and let J be a minimal reduction of I
with r = rJ(I ). If 	 > g, further assume that R ′ is Gorenstein, I satisfiesG	, and
depthR/Ij ≥ dimR/I − j + 1 for 1 ≤ j ≤ 	− g. Then

core(I ) = J n+1 : I n

for every n ≥ max{r − 	+ g, 0}.
Recall that the k-algebra R ′ is said to be geometrically reduced if, after tensoring
with the algebraic closure k̄ of k, the ring R ′ ⊗k k̄ is reduced.

Theorem 1.2 is a special case of a considerably more general result in which
the assumption on the grading is replaced by the condition that the residue field
is perfect and the special fiber ring F(I ) is reduced or, still more generally, has
embedding dimension ≤ 1 locally at every minimal prime of maximal dimension
(Theorem 3.3). We identify further instances where the assumption on the special
fiber ring is satisfied. More generally than in Theorem 1.2, it suffices to require
that I = (K, f ), where K is generated by forms of the same degree and either f
is integral over K (Theorem 4.1) or else 	(K) ≤ 	(I ) and F(K) satisfies Serre’s
condition R1 (Theorem 4.3). We give a series of examples showing that our hy-
potheses are sharp: Theorem 1.2 fails to hold without the assumption of geometric
reducedness, even when R ′ is a domain and I = m (Example 5.1); this also shows
that an assumption needs to be added in [12, 4.1]. Likewise, in Theorem 3.3 it does
not suffice to suppose that the generic embedding dimension of F(I ) be at most 2
(Example 5.2), and in Theorems 4.1 and 4.3 we must require f to be integral over
K or F(K) to satisfy R1 (Example 5.3).

Our approach, which differs from that in [12], can be outlined as follows. Write
	 = 	(I ), let f1, . . . , f	+1 be general elements in I, set J = (f1, . . . , f	), and
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let ¯ denote reduction modulo the “geometric residual intersection” (f1, . . . , f	−1) :
I. Because Ī is an equimultiple ideal of height 1, we can apply the formula of [15,
3.4(a)]; this formula states that, regardless of characteristic,

core(Ī ) = J̄ n+1 :
∑
y∈Ī
(J̄, y)n for n� 0.

The problem is that the formula does not “lift” from Ī to I. On the other hand,
according to one of our main technical results, the equality core(Ī ) = J̄ n+1 : Ī n

does lift (Lemma 3.2; cf. also [15, 4.2]). Thus the task becomes to show that∑
y∈Ī
(J̄, y)n = Ī n for n� 0.

This follows from a general “decomposition formula” for powers that may be in-
teresting in its own right. In fact, we prove that ifR is a Noetherian local ring with
infinite perfect residue field and if F(I ) has embedding dimension ≤ 1 locally at
every minimal prime of maximal dimension, then

I n = (f1, . . . , f	−1)I
n−1 + (f	, f	+1)

n for n� 0

(special case of Theorem 2.7).

2. A Decomposition Formula for Powers

In this section we show our decomposition formula for powers of ideals. The proof
is based on Theorem 2.3, a generalization of the primitive element theorem. We
begin by reviewing two lemmas.

Lemma 2.1. Let k be an infinite field, A = k[X1, . . . ,Xn] a polynomial ring with
quotient field K, and B an A-algebra essentially of finite type. Then

dimB ⊗A A/({Xi − λi}) ≤ dimB ⊗A K
for (λ1, . . . , λn)∈ kn general.

Proof. By the generic flatness lemma, there exists an element 0 �= f ∈ A such
that Af → Bf is flat and hence satisfies going down [14, 24.1]. For every
(λ1, . . . , λn)∈ kn \V(f ),

dimB ⊗A A/({Xi − λi}) ≤ dimB ⊗A K
by [14, 15.3].

Lemma 2.2. Let k be an infinite field, C a finitely generated k-algebra, and I =
(f1, . . . , fn) a C-ideal. Let a be a C-ideal generated by t general k-linear combi-
nations of f1, . . . , fn. Then

dimC/(a : I∞) ≤ dimC − t.
In particular, dimC/a ≤ max{dimC − t, dimC/I }.
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Proof. Let Xij be variables over k, where 1 ≤ i ≤ t and 1 ≤ j ≤ n, set R =
C [{Xij}], and write A for the R-ideal generated by the t generic linear combina-
tions

∑n
j=1Xijfj , where 1 ≤ i ≤ t. We first show that A : I∞ has height ≥ t in R

or, equivalently, that IR ⊂ √
A locally in codimension ≤ t−1. So, letQ be a prime

ideal of R that has height ≤ t − 1 and does not contain I. Replacing C by CQ∩C ,
we may assume that C is local and I = C; after applying a C-automorphism of R
we are in the situation where f1, . . . , fn = 1, 0, . . . , 0. But then A = (X11, . . . ,Xt1),
which cannot be contained inQ becauseQ has height ≤ t − 1.

Next, consider the map A = k[{Xij}] → B = R/A : I∞. Write K for the
quotient field ofA, and put S = R⊗AK = C⊗k K. Notice that dim S = dimC⊗k

K = dimC, because C is a finitely generated k-algebra, and that ht(A : I∞)S ≥
ht(A : I∞) ≥ t. Therefore,

dimB ⊗A K = dim S/(A : I∞)S ≤ dim S − ht(A : I∞)S ≤ dimC − t.
Finally, for a point (λij )∈ ktn, let a denote the C-ideal generated by the t elements∑n
j=1 λijfj . Observe that B ⊗A A/({Xij − λij}) maps onto C/(a : I∞). Hence

Lemma 2.1 shows that if (λij ) is general then dimC/(a : I∞) ≤ dimB ⊗A K ≤
dimC − t.
Theorem 2.3. Let k be an infinite perfect field, B = k[y1, . . . , yn] a finitely gen-
erated k-algebra of dimension d, and s a positive integer. LetA be a k-subalgebra
generated by d + s general k-linear combinations of y1, . . . , yn. Then B is a fi-
nite A-module, and dimA B/A < d if and only if B has embedding dimension ≤
s locally at every minimal prime of dimension d.

Proof. Clearly B is a finite A-module by Lemma 2.2.
First assume that dimA B/A < d. Let q ∈ Spec(B) with dimB/q = d, and let

p = q ∩ A. Notice that dimA/p = d. Since dimA B/A < d, it follows that Ap =
Bp = Bq.WriteA as an epimorphic image of the polynomial ring k[X1, . . . ,Xd+s],
and let P be the preimage of p in k[X1, . . . ,Xd+s]. Then

dim k[X1, . . . ,Xd+s]P = d + s − dim k[X1, . . . ,Xd+s]/P
= d + s − dimA/p = s.

Hence Bq = Ap has embedding dimension ≤ s.
We now assume that B has embedding dimension ≤ s locally at every mini-

mal prime of dimension d. Let x1, . . . , xd+s be general k-linear combinations of
y1, . . . , yn, and consider the exact sequence

0 −−→ D −−→ C = B ⊗k B
mult−−→ B −−→ 0.

Notice that "k(B) = D/D2 is the module of differentials of B over k. The C-
ideal D is generated by ci = yi ⊗ 1 − 1 ⊗ yi for 1 ≤ i ≤ n. Thus, setting ai =
xi ⊗ 1 − 1 ⊗ xi, we have that a1, . . . , ad+s are general k-linear combinations of
the generators c1, . . . , cn of D. Write a for the C-ideal generated by a1, . . . , ad+s .
According to Lemma 2.2,
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dimC/(a : D∞) ≤ dimC − d − s ≤ d − 1.

Hence, for every Q ∈ Spec(C) with dimC/Q = d, Q ∈ V(a) if and only if Q ∈
V(D). Observe that there are only finitely many such primes because they are all
minimal over D.

LetQ be one of these primes and write q = Q/D. Now dimB/q = d and hence
edimBq ≤ s. Consider the exact sequence

qBq/q
2Bq −→ "k(Bq)⊗Bq

k(q) −→ "k(k(q)) −→ 0.

In this sequence we have µ(qBq/q
2Bq) ≤ s, and µ("k(k(q))) = trdegk k(q) =

dimB/q = d because k is perfect. As a result, µ("k(Bq) ⊗Bq
k(q)) ≤ d + s.

Notice that"k(Bq) = DQ/D
2
Q and hence µ(DQ) ≤ d+ s by Nakayama’s lemma.

Therefore, DQ = aQ by the general choice of a1, . . . , ad+s . In summary, we obtain
DQ = aQ for everyQ∈V(a) with dimC/Q = d.

Write A = k[x1, . . . , xd+s] and consider the exact sequence

0 −→ D ′ = D/a −→ C ′ = C/a = B ⊗A B −→ B −→ 0.

From our previous discussion it follows that D ′
Q = 0 for every Q ∈ Spec(C ′)

with dimC ′/Q = d. The homomorphism A → C ′ = B ⊗A B makes C ′ a finite
A-module. Let p ∈ Spec(A) with dimA/p = d. Let Q be any prime of C ′ lying
over p. Since dimC ′/Q = dimA/p = d, we obtain D ′

Q = 0. Because this holds
for any suchQ, we have D ′

p = 0. Thus Bp ⊗Ap
Bp

∼= Bp. Computing numbers of
generators asAp-modules, we conclude thatBp = Ap and hence (B/A)p = 0.

Theorem 2.3 enables us to prove various versions of our decomposition formula,
as follows.

Lemma 2.4. Let k be a field and B a standard graded k-algebra of dimension d
with homogeneous maximal ideal m. Let A be a k-subalgebra generated by d + s
linear forms x1, . . . , xd+s in B. Then mn = (x1, . . . , xd−1)m

n−1 + (xd , . . . , xd+s)n
for n� 0 if and only if B/A is a finite module over k[x1, . . . , xd−1].

Proof. Write C = B/A. Mapping variables Xi �→ xi, we obtain homogeneous
homomorphisms

k[Xd , . . . ,Xd+s] � A/(x1, . . . , xd−1)A→ B/(x1, . . . , xd−1)B.

Their composition is surjective in large degrees if and only if C/(x1, . . . , xd−1)C is
a finite-dimensional k-vector space, which by the graded Nakayama lemma means
that C is a finite module over k[x1, . . . , xd−1].

Proposition 2.5. Let k be an infinite perfect field,B a standard graded k-algebra
of dimension d with homogeneous maximal ideal m, and s a positive integer. Let
A be a k-subalgebra generated by d + s general linear forms x1, . . . , xd+s in B.
Then mn = (x1, . . . , xd−1)m

n−1 + (xd , . . . , xd+s)n for n � 0 if and only if B has
embedding dimension ≤ s locally at every minimal prime of dimension d.



310 Louiza Fouli , Claudia Polini , & Bernd Ulrich

Proof. The assertion is an immediate consequence of Lemma 2.4 and Theorem 2.3.

Corollary 2.6. Let R be a Noetherian local ring and I an R-ideal of ana-
lytic spread 	. Let f1, . . . , f	+s be elements in I, let a = (f1, . . . , f	−1) and K =
(f1, . . . , f	+s), and consider the natural map of special fiber rings ϕ : F(K) →
F(I ). Then I n = (f1, . . . , f	−1)I

n−1 + (f	, . . . , f	+s)n for n � 0 if and only if
coker(ϕ) is a finite F(a)-module.

Proof. Apply Lemma 2.4 with B = F(I ) and A = ϕ(F(K)); then use Naka-
yama’s lemma.

We are now ready to prove the main result of this section. Let I be an ideal in
a Noetherian local ring R with infinite residue field k. Elements f1, . . . , ft in I
are said to be general if the image of the tuple (f1, . . . , ft ) is a general point of
the affine space (I ⊗ k)t. Recall that t ≥ 	(I ) general elements in I generate a
reduction and hence give I n = (f1, . . . , ft )I n−1 for n � 0. The next result pro-
vides, under suitable assumptions, a different type of decomposition formula for
the powers of I.

Theorem 2.7. LetR be a Noetherian local ring with infinite perfect residue field,
I anR-ideal of analytic spread 	, and s a positive integer. Let f1, . . . , f	+s be gen-
eral elements in I, let a = (f1, . . . , f	−1) andK = (f1, . . . , f	+s), and consider the
natural map of special fiber rings ϕ : F(K) → F(I ). Then the following state-
ments are equivalent :

(i) I n = (f1, . . . , f	−1)I
n−1 + (f	, . . . , f	+s)n for n� 0;

(ii) coker(ϕ) is a finite F(a)-module;
(iii) F(I ) has embedding dimension ≤ s locally at every minimal prime of di-

mension 	.

Proof. Apply Corollary 2.6 and Proposition 2.5.

3. The Main Theorem

In this section we prove our main theorem about the core in arbitrary characteris-
tic. The proof uses reduction to the case of equimultiple height 1 ideals, which we
treat by means of the results in the previous section. The reduction step requires
the following two technical lemmas.

Lemma 3.1. Let R be a Noetherian local ring with infinite residue field k, I an
R-ideal, and J a reduction of I. Let x be a general element in J, write x∗ for the
image of x in [F(I )]1, and let ¯ denote images in R̄ = R/(x).
(a) The kernel of the natural map F(I )/x∗F(I ) → F(Ī ) is a finite-dimensional

k-vector space.
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(b) Let a ⊂ K be R-ideals with x ∈ a and K ⊂ I. Consider the natural map of
special fiber rings ϕ : F(K) → F(I ), and write ϕ̄ for the induced map from
F(K̄) to F(Ī ). Then coker(ϕ̄) is a finite F(ā)-module if and only if coker(ϕ)
is a finite F(a)-module.

Proof. To prove part (a) let G(I ) and G(Ī ) denote the associated graded ring of I
and Ī, respectively. Consider the exact sequence

0 −→ C −→ G(I )/(x + I 2)G(I ) −→ G(Ī ) −→ 0.

Since x is general in J and since J is a reduction of I, it follows that x is a super-
ficial element of I. Thus C vanishes in large degrees. Tensoring the preceding
sequence with the residue field k, we deduce that

C ⊗R k −→ F(I )/x∗F(I ) −→ F(Ī ) −→ 0

is exact and that C ⊗R k is a finite-dimensional k-vector space.
To prove part (b), observe that part (a) and the snake lemma show that the kernel

of the natural map

coker(ϕ)/(x∗ coker(ϕ))� coker(ϕ̄)

is a finite-dimensional k-vector space as well. Hence coker(ϕ̄) is finitely gener-
ated as a F(ā)-module if and only if coker(ϕ)/(x∗ coker(ϕ)) is finitely generated
as a F(a)-module. By the graded Nakayama lemma, the latter condition means
that coker(ϕ) is a finite F(a)-module.

The following two results use, in an essential way, the theory of residual inter-
sections. Let R be a local Cohen–Macaulay ring, I an R-ideal, and s an integer.
Recall that a : I is a geometric s-residual intersection of I if a is an s-generated
R-ideal properly contained in I and if ht a : I ≥ s and ht(I, a : I ) ≥ s + 1. The
ideal I has the Artin–Nagata property AN−

s if R/a : I is Cohen–Macaulay for
every geometric i-residual intersection a : I and every i ≤ s.
Lemma 3.2. Let R be a local Cohen–Macaulay ring with infinite residue field,
and assume that R has a canonical module. Let I be an R-ideal with analytic
spread 	 > 0, and suppose that I satisfies G	 and AN−

	−1. Let J be a minimal re-
duction of I and let K be an R-ideal with J ⊂ K ⊂ I. Consider the natural map
of special fiber rings ϕ : F(K) → F(I ). Assume that coker(ϕ) has dimension ≤
	− 1 as a module over F(J ). Write A = A(J ) for the set consisting of all ideals
a such that a : J is a geometric (	 − 1)-residual intersection of J, µ(J/a) = 1,
and coker(ϕ) is a finite F(a)-module. For t a positive integer, letH be anR-ideal
with ht(J, J t : H ) ≥ 	. Then

H ∩
⋂
a∈A
(J t, a) ⊂ J t.

Proof. We prove the lemma by induction on 	. First let 	 = 1. Since I satisfiesG1,
so does J and hence 0 : J is a geometric 0-residual intersection of J. Therefore,
A = {0} and the assertion is clear. We may thus assume that 	 ≥ 2. Let b ∈ H
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and suppose that b /∈ J t. We shall prove the existence of an ideal a ∈ A with b /∈
(J t, a). Since (J t, a) ⊂ J, we may assume that b ∈ J.

We first reduce to the case where I has positive height. Let ¯ denote images in
R̄ = R/0 : I. Notice that 0 : I is a geometric 0-residual intersection of I since I
satisfies G1. Therefore, R̄ is Cohen–Macaulay by the AN−

0 condition, and ht Ī >
0. Furthermore, I ∩ (0 : I ) = 0 by [18, 1.7(c)]. Hence the canonical epimor-
phism R � R̄ induces isomorphisms Im � Ī m and Jm � J̄ m for every m ≥ 1.
Therefore b̄ /∈ J̄ t. Moreover, [G(I )]m � [G(Ī )]m for m ≥ 1 and F(I ) � F(Ī ).
Hence 	(Ī ) = 	(I ) and J̄ is a minimal reduction of Ī . As ht 0 : I = 0, it follows
that Ī satisfies G	; since I ∩ (0 : I ) = 0, the ideal Ī satisfies AN−

	−1 according to
[13, 2.4(b)]. Obviously, the cokernel of the induced map ϕ̄ : F(K̄) → F(Ī ) has
dimension ≤ 	− 1 as an F(J̄ )-module.

Every ideal in A(J̄ ) is of the form ā for some a ∈ A(J ). Indeed, if ā ∈ A(J̄ )
then there exists an (	 − 1)-generated ideal a ⊂ J whose image in R̄ is ā. Since
J ∩ (0 : I ) = 0 we have a : J = (0 : I, a) : J, and it follows that a : J is a
geometric (	− 1)-residual intersection of J. Notice that a minimal generating set
of a forms part of a minimal generating set of J, so µ(J/a) = 1. Furthermore,
coker(ϕ) is a finite F(a)-module because F(I ) � F(Ī ). Finally, ht(J̄, J̄ t : H̄ ) ≥
ht(J, J t : H ) ≥ 	 because ht 0 : I = 0. We may thus replace R by R̄ and assume
that ht I > 0. With this additional assumption we now prove that b /∈ (J t, a) for
some a ∈ A.

Notice that ht J : I ≥ 	 according to [13, 2.7]. Since I satisfies G	, it follows
that J satisfies G∞. Again, since ht J : I ≥ 	, the property AN−

	−1 passes from
I to J by [18, 1.12]. Now J satisfies the sliding depth condition according to [18,
1.8(c)]. In particular, Sym(J/J 2) � G(J ) via the natural map and these algebras
are Cohen–Macaulay by [6, 6.1].

The proof of [15, 4.2] shows that b̄ /∈ J̄ t, where now ¯ denotes images in R̄ =
R/(x) for a general element x in J. By the general choice of x in J and since J is
a minimal reduction of I, we have 	(Ī ) ≤ µ(J̄ ) = 	(I ) − 1; then Lemma 3.1(a)
shows that 	(Ī ) = 	(I ) − 1, in particular J̄ is a minimal reduction of Ī . Again
because x is a general element and ht J > 0, it follows that x is R-regular. For
the same reasons and because G(J ) is Cohen–Macaulay, the leading form x∗ of
x in G(J ) is regular on G(J ), which gives G(J )/x∗G(J ) � G(J̄ ). Therefore,
Sym(J̄/J̄ 2) � G(J̄ ), and this forces J̄ to satisfy G∞. Hence Ī satisfies G	−1, be-
cause ht J̄ : Ī ≥ 	 − 1. Since x is an R-regular element, it is easy to see that Ī
is AN−

	−2.

Again by the general choice of x, the cokernel of the natural map from F(K̄) to
F(Ī ) has dimension ≤ 	− 2 as an F(J̄ )-module. Finally, ht(J̄, J̄ t : H̄ ) ≥ 	− 1
and, by Lemma 3.1(b), every ideal of A(J̄ ) is of the form ā for some a ∈ A. Thus,
by the induction hypothesis, b̄ /∈ (J̄ t, ā) for some a ∈ A. Hence b /∈ (J t, a).
We are now ready to prove our main result.

Theorem 3.3. Let R be a local Cohen–Macaulay ring with infinite perfect res-
idue field, let I be an R-ideal with g = ht I > 0 and 	 = 	(I ), and let J be a
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minimal reduction of I with r = rJ(I ). Suppose that the special fiber ring F(I )
of I has embedding dimension ≤ 1 locally at every minimal prime of dimension
	. If 	 > g, further assume that R is Gorenstein, that I satisfies G	, and that
depthR/Ij ≥ dimR/I − j + 1 for 1 ≤ j ≤ 	− g. Then

core(I ) = J n+1 : I n

for every n ≥ max{r − 	+ g, 0}.
Proof. According to [18, 2.9(a)], the ideals I and IR̂ satisfy AN−

	−1 and are uni-
versally weakly 	− 1 residually S2 in the sense of [2, p. 203]. Therefore, [3, 4.8]
shows that core(I )R̂ = core(IR̂). Thus we may pass to the completion of R and
assume that R has a canonical module. Let f1, . . . , f	+1 be general elements in I.
The ideal J n+1 : I n for n ≥ max{r − 	+ g, 0} is independent of the minimal re-
duction J and of n, as can be seen from [11, 5.1.6] if 	 = g and from [15, 2.3] if
	 > g. Hence we may assume that J = (f1, . . . , f	) and n � 0. We use the nota-
tion of Lemma 3.2 with K = (J, f	+1), t = n + 1, and H the intersection of all
primary components of J n+1 of height < 	. Notice that coker(ϕ) has dimension
≤ 	−1 as a module over F(J ) according to Theorem 2.7. Hence the assumptions
of Lemma 3.2 are satisfied.

Let a ∈ A be as in Lemma 3.2. Write ¯ for images in R̄ = R/a : I. Notice that
R̄ is Cohen–Macaulay and that, by [18, 1.7(a)], ht Ī > 0; consequently, ht Ī =
	(Ī ) = 1. Now [15, 3.4] shows that core(Ī ) = J̄ n+1 :

∑
y∈Ī (J̄, y)n. Notice that

K̄ n ⊂ ∑
y∈Ī (J̄, y)n ⊂ Ī n and that K̄ n = Ī n according to Corollary 2.6. Hence

core(Ī ) = J̄ n+1 : Ī n.
On the other hand, by [3, 4.5] we have core(Ī ) = (α1) ∩ · · · ∩ (αγ ) for some

integer γ and for γ general principal ideals (α1), . . . , (αγ ) in Ī . Notice that (a,αi)
are reductions of I, hence core(I ) ⊂ ⋂γ

i=1(a,αi). Therefore,

core(I ) ⊂
γ⋂
i=1

(a,αi) ⊂
γ⋂
i=1

(αi) = core(Ī ).

Because core(Ī ) = J̄ n+1 : Ī n, we obtain

core(I ) ⊂ (J n+1, a : I ) : I n

= (J n+1, (a : I ) ∩ I ) : I n

= (J n+1, a) : I n.

The last equality holds because (a : I ) ∩ I = a by [18, 1.7(c)]. It follows that

core(I ) ⊂
⋂
a∈A
(J n+1, a) : I n. (3.1)

Next we show that
core(I ) ⊂ H : I n (3.2)

or, equivalently, (core(I ))p ⊂ (H : I n)p for every prime ideal p with dimRp <

	. Indeed, by [13, 2.7] we have Jp = Ip, and so J np = I np. Thus (core(I ))p ⊂
Jp ⊂ J n+1

p : J np = Hp : I np.
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Finally, J n+1 : I n ⊂ core(I ), as can be seen from the proof of [15, 4.5] via [11,
5.1.6] if 	 = g and from [15, 4.8] otherwise. Hence (3.1), (3.2), and Lemma 3.2
together imply that

J n+1 : I n ⊂ core(I ) ⊂
(
H ∩

⋂
a∈A
(J n+1, a)

)
: I n

⊂ J n+1 : I n.

As a result, core(I ) = J n+1 : I n.

4. Applications

In this section, we collect several instances where the assumption on the generic
embedding dimension of the special fiber ring required in Theorem 3.3 holds
automatically.

Theorem 4.1. Let k be an infinite field, R ′ a positively graded geometrically
reduced Cohen–Macaulay k-algebra, and R the localization of R ′ at the homoge-
neous maximal ideal. Let K be an R-ideal generated by forms in R ′ of the same
degree, let f be an element of R integral over K, and write I = (K, f ). Set g =
ht I > 0 and 	 = 	(I ), and let J be a minimal reduction of I with r = rJ(I ). If
	 > g, suppose that R ′ is Gorenstein, that I satisfies G	, and that depthR/Ij ≥
dimR/I − j + 1 for 1 ≤ j ≤ 	− g. Then

core(I ) = J n+1 : I n

for every n ≥ max{r − 	+ g, 0}.
Proof. Observe that

R = R ′
R ′+ ↪→ S = (R ′ ⊗k k̄)(R ′⊗k k̄)+

is a flat local extension. Furthermore, according to [18, 2.9(a)], the ideals I and
IS are universally weakly 	 − 1 residually S2. Therefore, [3, 4.8] shows that
core(I )S = core(IS). Thus, replacing k by k̄, we may suppose that k is perfect
and that R ′ is reduced.

Write K = (f1, . . . , fm), where f1, . . . , fm are forms of the same degree. Now
F(K) � k[f1, . . . , fm] is a subalgebra of R ′ and thus is reduced. Let p be a mini-
mal prime of F(I ) of dimension 	 and write q for its contraction to F(K). Since
K is a reduction of I, we have 	(K) = 	(I ) and so dim F(K) = 	 = dim F(I ).
Furthermore, F(I ) is finitely generated as a module over F(K). It follows that q
is a minimal prime of F(K). Because F(K) is reduced, the localization F(K)q
is a field, say L. Now F(I )p is a localization of an L-algebra generated by a sin-
gle element—namely, the image of f. Hence F(I )p has embedding dimension ≤
1. Since this holds for every minimal prime p of dimension 	, the result follows
from Theorem 3.3.
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Remark 4.2. Taking f = 0 in Theorem 4.1 yields Theorem 1.2 of the Introduc-
tion. There is a graded and a global version of the latter theorem if the ideal I is
zero-dimensional. Thus, let I ′ be a homogeneous R ′-ideal with I ′R = I, and let
J ′ be an R ′-ideal generated by dimR ′ general k-linear combinations of homoge-
neous minimal generators of I ′. Then

gradedcore(I ′) = core(I ′) = J ′n+1 : I ′n for every n ≥ r,
where gradedcore(I ′) stands for the intersection of all homogeneous reductions
of I ′.

In fact, since I ′ is zero-dimensional and generated by forms of the same de-
gree, the first equality obtains by [3, 4.5] and [16, 2.1]; the second equality follows
from Theorem 1.2 and [16, 2.1].

Theorem 4.3. Let R be a local Cohen–Macaulay ring with infinite perfect res-
idue field, let I be an R-ideal with g = ht I > 0 and 	 = 	(I ), and let J be a
minimal reduction of I with r = rJ(I ). Suppose that I = (K, f ), where 	(I ) ≥
	(K) and the special fiber ring F(K) satisfies Serre’s condition R1. If 	 > g,
further assume that R is Gorenstein, that I satisfies G	, and that depthR/Ij ≥
dimR/I − j + 1 for 1 ≤ j ≤ 	− g. Then

core(I ) = J n+1 : I n

for every n ≥ max{r − 	+ g, 0}.
Proof. According to Theorem 3.3 it suffices to prove that F(I ) has embedding
dimension ≤ 1 locally at every minimal prime of dimension 	 = dim F(I ).

Let A = F(K) and B = F(I ). Let q be a prime ideal of B of dimension 	 and
write p for the preimage of q in A. We claim that dimAp ≤ 1. The affine domain
B/q is generated by one element as an algebra over A/p. Therefore,

dimA/p ≥ dimB/q − 1 = dimB − 1.

Hence

dimAp ≤ dimA− dimA/p ≤ dimA− dimB + 1 = 	(K)− 	+ 1 ≤ 1.

Since dimAp ≤ 1, our assumption gives that Ap is regular. Now we consider
the following exact sequence of modules of differentials:

Bq ⊗Ap
"k(Ap) −→ "k(Bq) −→ "Ap

(Bq) −→ 0.

Since Ap is regular and k is perfect, it follows that µAp
("k(Ap)) ≤ dimAp +

trdegk A/p and so µBq
(Bq ⊗Ap

"k(Ap)) ≤ dimAp + trdegk A/p. Because B is
generated by one element as an A-algebra, the Bq-module "Ap

(Bq) is cyclic. By
computing numbers of generators along the preceding exact sequence, we obtain

µBq
("k(Bq)) ≤ dimAp + trdegk A/p + 1.

On the other hand, by [1, Satz 1(a)],

µBq
("k(Bq)) = edimBq + trdegk B/q.
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We conclude that

edimBq ≤ dimAp + trdegk A/p − trdegk B/q + 1

= dimAp + dimA/p − dimB + 1

≤ dimA− dimB + 1

≤ 1.

Theorem 4.3 can be considered as a generalization of the case of second analytic
deviation 1 treated in [15, 4.8]. In this case, the minimal number of generators of
I exceeds 	 by at most 1 and so we can choose K to be J in Theorem 4.3. But
then 	(K) = 	 and F(K) satisfies R1, being a polynomial ring over k.

Also observe that the condition 	 ≥ 	(K) in Theorem 4.3 is always satisfied if
I is primary to the maximal ideal. We now describe another situation where this
inequality holds automatically.

Theorem 4.4. Let k be an infinite perfect field, R ′ a positively graded Cohen–
Macaulay k-algebra, and R the localization of R ′ at the homogeneous maximal
ideal. Let K be an R-ideal generated by forms in R ′ of the same degree e, let f
be a form in R ′ of degree at least e, write I = (K, f ), and assume that the sub-
algebra k[Ke] ofR ′ satisfies Serre’s conditionR1. Set g = ht I > 0 and 	 = 	(I ),
and let J be a minimal reduction of I with r = rJ(I ). If 	 > g, further suppose
that R ′ is Gorenstein, that I satisfiesG	, and that depthR/Ij ≥ dimR/I − j +1
for 1 ≤ j ≤ 	− g. Then

core(I ) = J n+1 : I n

for every n ≥ max{r − 	+ g, 0}.
Proof. After rescaling the grading, we can identify the subalgebra k[Ke] ofR ′ with
F(K), which shows that the latter ring satisfies R1. Thus, to apply Theorem 4.3,
it suffices to verify that 	(I ) ≥ 	(K). Comparing Hilbert functions shows that
	(I ) = dim F(I ) ≥ dim F(K) = 	(K), once we have proved the injectivity of
the natural map ϕ : F(K) → F(I ). To show the latter, write m for the maxi-
mal ideal of R. Let F be a form of degree s in F(K) such that ϕ(F ) = 0. Then
F ∈ mI s as an element of R ′ ⊂ R. In R ′, the form F has degree se whereas the
nonzero homogeneous elements of mI s have degrees at least se + 1. Therefore,
F = 0.

5. Examples

In this section we present several examples showing that the various assumptions
in our theorems are, in fact, necessary. We will always use zero-dimensional ideals
in local Gorenstein rings, so that the property G	 as well as the depth conditions
for the powers of the ideal hold automatically.

The first example illustrates that Theorem 1.2 is no longer true if the ringR ′ fails
to be geometrically reduced, even if it is a domain and all the other assumptions
of the theorem are satisfied.
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Example 5.1. Let k0 be a field of characteristic p > 0, and let k = k0(s, t) be
the rational function field in two variables. Consider the ring

R ′ = k[x, y, z]/(xp − szp, yp − tzp),
which is a one-dimensional standard graded Gorenstein domain. Indeed, the ele-
mentsxp, yp, zp generate an ideal of grade 3 in k0[x, y, z], andxp−szp andyp−tzp
are obtained from generic linear combinations of these elements by localization,
change of variables, and descent. Thus [7, Thm. (b)] shows that xp − szp and
yp − tzp generate a prime ideal in the ring k[x, y, z].

On the other hand, R ′ is not geometrically reduced. After tensoring with the
algebraic closure k̄ of k, we obtain

R ′ ⊗k k̄ � k̄[x, y, z]/((x − zs1/p )p, (y − zt1/p )p ),
which is not a reduced ring.

Let (R, m) denote the localization of R ′ at the homogenous maximal ideal. We
claim that

core(m) �= J n+1 : mn for every n� 0 and every minimal reduction J of m.

Indeed, the pth power of any general linear form in R generates the ideal Rzp.
Since the core of m is a finite intersection of principal ideals generated by general
linear forms [3, 4.5], it follows that Rzp ⊂ core(m). On the other hand, by [15,
3.2(a)] we have J n+1 : mn = Rzn+1 : mn because Rz is a minimal reduction of
m. Since R ′/R ′zn+1 is a standard graded Artinian Gorenstein ring with a-invariant
n+ 2p − 2, it follows that Rzn+1 : mn = m2p−1, which does not contain Rzp.

The next example shows that the assumption in Theorem 3.3 on the local embed-
ding dimension of the special fiber ring is sharp: If we allow the local embedding
dimension to be 2, then the statement of the theorem is no longer true even in the
presence of the other conditions.

Example 5.2. Let k be an infinite perfect field of characteristic 2, let R =
k[x, y](x,y) be a localized polynomial ring, and let I = (x6, x 5y3, x4y 4, x 2y8, y9).

Using Macaulay 2 [5], the special fiber ring of I may be computed as

F(I ) � k[a, b, c, d, e]/(b2, bd, cd, d 2, c2 − ad),
where a, b, c, d, e are variables over k. This ring has a unique minimal prime ideal
p, which is generated by the images of b, c, d, and one easily sees that [F(I )]p has
embedding dimension 2.

We claim that

core(I ) �= J n+1 : I n for every n� 0 and every minimal reduction J of I.

Indeed, H = (x6, y9) is a minimal reduction of I with rH (I ) = 2. Hence, by [15,
2.3], J n+1 : I n = H 3 : I 2. On the other hand, the algorithm of [16, 3.6] has been
used to show that core(I ) �= H 3 : I 2 [16, 3.9].
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The next example shows that in Theorem 4.1 and Theorem 4.3 it is essential to as-
sume that either f is integral over K or else the special fiber ring F(K) satisfies
Serre’s condition R1.

Example 5.3. Let k be an infinite perfect field of characteristic 2, and let R =
k[x, y](x,y) be a localized polynomial ring. LetK = (x9, x 5y 4, x3y6, x 2y7), which
is an ideal generated by monomials of the same degree, and let f = y8 and I =
(K, f ). Again we claim that

core(I ) �= J n+1 : I n for every n� 0 and every minimal reduction J of I.

The ideal H = (x9, y8) is a minimal reduction of I with rH (I ) = 2, so J n+1 :
I n = H 3 : I 2 by [15, 2.3]. On the other hand, using the algorithm of [16, 3.6] and
Macaulay 2 [5], we can compute

core(I ) = H 3 : I 2 + (xy12, y13) � H 3 : I 2.
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