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Dedicated to Mel Hochster on his 65th birthday

1. Introduction

The aim of this note is to remark that the injectivity theorems of Kollar and Esnault—
Viehweg can be used to give a quick algebraic proof of a strengthening (by dropping
the positivity hypothesis) of the Skoda-type division theorem for global sections
of adjoint line bundles vanishing along suitable multiplier ideal sheaves (proved
in [EL]) and to extend this result to higher cohomology classes as well (cf. Theo-
rem 4.1). For global sections, this is a slightly more general statement of the alge-
braic version of an analytic result of Siu [S] based on the original Skoda theorem.
In Section 4 we list a few consequences of this type of result, such as the surjectiv-
ity of various multiplication or cup product maps and the corresponding version
of the geometric effective Nullstellensatz.

Along the way, in Section 3 we write down an injectivity statement for multi-
plier ideal sheaves (Theorem 3.1) and its implicit torsion-freeness and vanishing
consequences (Theorem 3.2). These statements are not required in this generality
for the main result here (see the following paragraph), but having them available
will hopefully be of use. Modulo some standard tricks, the results in Section 3 re-
duce quickly to theorems of Kollar [K1] and Esnault and Viehweg [EsV], and we
do not claim originality in any of the proofs.

All of the results are proved in the general setting of twists by nef and abundant
(or good) line bundles, which replace twists by nef and big line bundles required for
the use of vanishing theorems. In particular, what is used in the proof of the main
Skoda-type statement is a Kollar vanishing theorem for the higher direct images
of adjoint line bundles of the form Kx + L, where L is the round-up of a nef and
abundant Q-divisor. For such vanishing, the only contribution we bring here is a
natural statement that seems to be slightly more general that what we found in the
literature (cf. Corollary 3.3(4)). The proof is otherwise standard after establishing
a simple lemma on restrictions of nef and abundant divisors in Section 2.

Mel Hochster used tight closure techniques to give a beautiful treatment to local
statements of Briangon—Skoda type in positive characteristic. We are very happy
to be able to contribute work in a similar circle of ideas to a volume in his honor.
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2. Preliminaries

INnJECTIVITY. We always work with varieties defined over an algebraically closed
field of characteristic 0. We first recall that the approach to vanishing theorems
described by Esnault and Viehweg in [EsV] produces the following injectivity
statement. (Note that [EsV, 5.1] contains a slightly more general statement that
allows for adding an extra effective divisor under some transversality conditions;
we will not make use of this here.)

THEOREM 2.1 [EsV, 5.1]. Let X be a smooth projective variety, and let L be a
line bundle on X. Assume that there exists a reduced simple normal crossings di-
visor )_; A; such that we can write L ~q Y, 8; A;, with 0 < 8; < 1 foralli. If
B is any effective divisor supported on Y. A;, then the natural maps

H'(X,0x(Kx + L)) — H'(X,0x(Kx + L + B))

are injective for all i.

NEF AND ABUNDANT Divisors. Recall next that a nef Q-divisor D is called
abundant (or good) if k(D) = v(D)—that is, if its litaka dimension is equal to
its numerical dimension (the largest integer k such that D* - Y # 0 for some Y C
X of dimension k). Note that a semiample divisor is abundant, and so is a divisor
that is big and nef. We recall the following basic description due to Kawamata.

LemMA 2.2 [Ka, Prop. 2.1; EsV, Lemma 5.11].  For a Q-divisor B on a normal
projective variety X, the following statements are equivalent:

(i) B is nef and abundant.

(i1) There exists a birational morphism ¢: W — X, with W smooth and projec-
tive, and a fixed effective divisor F on W such that, for any m sufficiently
large and divisible, ¢*(mB) = A + F with A semiample.

The following simple restriction statement will be used to note that Kollar vanish-
ing holds for higher direct images of Kx + B, where B is nef and abundant without
restrictions. This fact is needed here and is slightly stronger than results stated in
the literature (cf. Theorem 3.2(iii) and Corollary 3.3(iv)).

LEMMA 2.3.  Let X be a normal projective variety and B a nef and abundant Q-
divisor on X.

(1) If L is a globally generated line bundle on X and if D € |L| is a general
divisor, then B|p is also nef and abundant.
(ii) If C is another nef and abundant Q-divisor on X, then B + C is also nef and
abundant.
(i) If f: Y — X is a surjective morphism from another normal projective vari-
ety, then f*B is nef and abundant.

Proof. For (i), we need only show that B|p is abundant. This follows most eas-
ily from the preceding description. Consider a birational morphism ¢: W — X
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as in Lemma 2.2. If D is the proper transform of D, we can choose D such that
#|p is an isomorphism at the generic point of D, D is smooth, and no compo-
nent of D is contained in Supp(F). In this case we have an induced decomposi-
tion (¢|5)*(mB|p) = Alp + Flp for all m sufficiently large and divisible. By
Lemma 2.2, this shows that B|p is abundant. Parts (ii) and (iii) follow immedi-
ately from the same characterization in Lemma 2.2. O

REMARK 2.4.  Although we will not use this, it is worth pointing out the following
more precise statement, which can be obtained by a closer analysis of the charac-
terization in [Ka, Prop. 2.1]. In the setting of Lemma 2.3, assume that x (B) = k.
We always have B* - L"=¥ > 0 and, when the restriction B|p is nef and abundant:
k(B|p) =kiff B¥ . L" ¥ > 0and k(B|p) = k — liff B¥. L"kF = 0.

3. Injectivity for Q-Divisors and Multiplier Ideals

In this section we write down the proof of an injectivity statement for multiplier
ideals. This is a consequence of Theorem 2.1 and follows quickly from it via stan-
dard tricks. For the appropriate level of generality, we use multiplier ideals asso-
ciated to ideal sheaves. The equivalent divisorial condition (on the log-resolution)
is stated at the beginning of the proof. Throughout, by “Q-effective” we mean
“Q-linearly equivalent to an effective divisor”.

THEOREM 3.1.  Let X be a smooth projective variety, a € Oy an ideal sheaf, and
L a line bundle on X. Consider also A a line bundle with A ® a globally gener-
ated, B an effective divisor, and A € Q such that

* L — LA is nef and abundant and
e L — AA — ¢B is Q-effective for some 0 < ¢ < 1.

Then the natural maps

H'(X,0x(Kx + L) ® J(X,a")) — H'(X,Ox(Kx + L + B) ® J(X,a"))
are injective for all i.
Proof. Let f: Y — X be alog-resolution of the ideal a, with a- Oy = Oy(—FE).

The two hypotheses in the theorem imply that:

e f*L—AE = f*(L —AA)+ A(f*A — E) is nef and abundant (by (ii) and (iii)
of Lemma 2.3);
* f*L —AE — ef*B is Q-effective for some 0 < ¢ < 1.

We recall that, by definition, J(X,a*) = f+Oy(Ky/x — [LE]). The projection
formula and the local vanishing theorem (cf. [L2, 9.4.4]) imply that we have
isomorphisms

H'(Y,Oy(Ky + f*L — [AE])) = H'(X,Ox(Kx + L) ® J(X,a"))

and their analogues with B added. Hence it is enough to show injectivity on ¥ —
namely, for the maps

H'(Y,Oy(Ky + f*L — [AE])) — H'(Y,Oy(Ky + f*L — [AE1+ f*B)).
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By assumption there exists an a € N such that a(f*L — AE — ¢f*B) ~ B/,
where B’ is an integral effective divisor. On the other hand, f*L — AE is nef and
abundant, and we may assume that the log-resolution f factors through the bi-
rational morphism ¢ of Lemma 2.2. Hence we can write f*L — AE = A"+ F,
where A’ is a semiample Q-divisor and F is an effective Q-divisor with fixed
support but arbitrarily small coefficients. In particular, for N > 0 we can write
(N —a)A” ~ P, where P is a reduced, irreducible divisor. We can then write
down a decomposition

f*L — AE = %(a(f*L —AE)+ (N —a)A' + (N —a)F)

* ’ N —a
~qaf'B+ BB +VP+TF, (D

with «, B, y arbitrarily small.

We claim that, by passing to a log-resolution of the pair (X, E + f*B + B’ +
P + F), we can assume in addition that everything is in simple normal crossings.
Let’s assume this in order to conclude. Denote A’ := AE — [AE]. Using (1), we
can write

N_
f*L—[AEl~q A +af*B + BB + yP + TaF.

Note that A" may have common components with some of the other divisors ap-
pearing in the expression on the right-hand side. However, since their coefficients
can be made arbitrarily small, we can assume that every irreducible divisor in the
sum appears with coefficient less than 1. Consequently we can apply Theorem 2.1,
with the role of L played by f*L — [AE] and that of B by f*B.

It remains to prove our claim. Toward this end, note that our choices yield the
following. If we denote

N_
T = A’+af*B+,3B’+yP+TaF,

then (Y, T') is a klt pair, and we have seen that f*L —[AE] ~q T. Letg: Z — Y
be a log-resolution of (¥, T'). Then

JY,T)=g.07(Kz;y —[&*T]) = Oy.

Applying again the local vanishing theorem cited previously, we see that it is
enough to prove injectivity on Z for the map

HY(Z,07(Kz + g*(f*L — [LE]) — [g*T1))
— HY(Z,07(Kz + g*(f*L —[\E1) — [g*T1+ g*f*B)).

But g*(f*L —[AE]) — [g*T] ~q {g* T}, which reduces us to the simple normal
crossings situation. O

Theorem 3.1 implies standard torsion-freeness and vanishing consequences for im-
ages of twisted multiplier ideal sheaves, in analogy with Kollar’s [K1, Thm. 2.1].
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THEOREM 3.2. Let X be a smooth projective variety, and let f: X — Y be a
surjective morphism to a projective variety Y. Let a C Oy be an ideal sheaf and
A a line bundle on X such that A @ a is globally generated. Let . € Q and let L
be a line bundle on X such that L — ML A is nef and abundant. Then:

(i) Rif.(Ox(Kx + L) ® J(a)) are torsion-free for all i;
(i) R'f(Ox(Kx + L) ® J(a*)) =0 fori > dim(X) — dim(Y);
(iii) H/(Y, Rif,(Ox(Kx + L) ® J(a*)) @ M) =0 foralli and all j > 0, where
M is any big and nef line bundle on Y.

Proof. For the convenience of the reader we sketch briefly how this can be deduced
from injectivity—in this case, Theorem 3.1. All the main ideas are, of course, con-
tained in [K1] and [EsV].

The assertion in (ii) is an immediate consequence of (i) and base change. For (i),
consider N a sufficiently positive line bundle on Y. If R'f,.(Ox (Kx + L) ® J(a*))
had torsion, we would be able to choose D € |N| such that the natural map on
global sections

H°(Y,R'f.(Ox(Kx + L) ® J(a*)) @ N)
— HY,R'f.(Ox(Kx + L) ® J(a*)) ® N(D))

is not injective. On the other hand, for N positive enough, by the degeneration of
the corresponding Leray spectral sequences we see that the foregoing map is the
same as the natural homomorphism

H(X,0x(Kx + L + f*N) ® J(a"))
— H/(X,0x(Kx + L+ f*N + f*D) ® J(a")).

Note that f*N is semiample on X and so, by Lemma 2.3(ii), the Q-divisor
L+ f*N — AA is still nef and abundant. We can then apply Theorem 3.1 to derive
a contradiction, since the other condition in the theorem is obviously satisfied.

For (iii) one uses induction on the dimension of X. We sketch the proof only
for the case of M ample, which implies the big and nef case via a standard use of
Kodaira’s lemma. For some integer p >> 0, consider Y, € |pM| a general divi-
sor such that Xy = f~!(¥p) is a smooth divisor in X. Fix an i, and for simplicity
denote F := Ox(Kx + L) ® J(a*). Then we have the exact sequence

0 — F — F(Xo) — F(Xo)lx, — 0.
Pushing this forward to Y, for each i we obtain exact sequences
0 — RfF — Rf(F(X0) — RF(F(Xo)lx,) — 0.

The reason these sequences are exact at the extremities is that, by (i), the sheaves
Rf, F are torsion-free while the R'f,.(F(X¢)|x,) are generically zero. Twisting
this with M and recalling that p > 0, we immediately obtain
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HITYY, R, F® M) = H/(Yy, R'f.(F(Xo)|x,) ® My,) forall j>1.

Since Y, was chosen to be general, the restriction (L —A A)|x, is still nef and abun-
dant by Lemma 2.3(i), while by [L2, 9.5.35] we have J(a") - Ox, = J(a- Ox,).
Thus, by induction on the dimension, we can apply (iii) to the right-hand side
above and deduce the conclusion on Y for j > 2.

We are left with the case j = 1. Consider again p > 0, and choose a divisor
D € |pM| such that H'(Y, R'f, F ® M(D)) = 0. We then have a Leray spectral
sequence,

EJ":= H(Y,R'.F @ M) = H™(X,F ® f*M).

By the previous paragraph, the E é’ are zero for j > 2; then, chasing the spectral
sequence easily gives that we have an injective map

H' (Y, Rf. F®M) — HT (X, F® f*M).

Analogously, there is a similar injective map after twisting with D. But Theo-
rem 3.1 shows that the map

HN X, F® f*M) — H(X,F ® f*M(D))
is injective, so all of this implies (finally) that the map
H'(Y,Rf,F® M) — H'\Y,R'f.F @ M(D))

is also injective. However, this last group is zero. UJ

A special case of the two theorems in this section is the following result for Q-
divisors. The first part is already explicitly stated by Esnault and Viehweg [EsV ]
and is an extension of Kollar’s injectivity theorem [K1, Thm. 2.2]; parts (ii) and
(iii), of course, follow directly from it. Part (iv) is stated a little less generally in
[EsV, 6.17(b)]. We will need the following formulation.

COROLLARY 3.3. Let L a line bundle on a smooth projective X, and let A =
> 8iA; be a simple normal crossings divisor with 0 < 8; < 1 for all i. Assume
that L — A is nef and abundant and that B is an effective Cartier divisor such
that L — A — eB is Q-effective for some 0 < ¢ < 1. Consider also a morphism
f: X = Y withY projective. Then the following statements hold.

(1) The natural maps
H'(X,0x(Kx + L)) — H'(X,0x(Kx + L + B))

are injective for all i [EsV, 5.12(b)].

(ii) R'f.Ox(Kx + L) are torsion-free for all i.

(iii) R'f,Ox(Kx + L) =0 fori > dim(X) — dim(Y).

(iv) HI(Y,Rif.Ox(Kx + L) ®@ M) =0 forall i and all j > 0, where M is any
big and nef line bundle on Y.



Global Division of Cohomology Classes via Injectivity 255

4. Skoda-type Global Division Theorem

For the objects involved in the statement of Theorem 4.1, recall the following. If
f:Y — X is acommon log-resolution for ideal sheaves a and b, where a - Oy =
Oy(=E)and b - Oy = Oy(—F), and if u, A € Q, then the “mixed” multiplier
ideal is defined as J(a* - b*) = f+Oy(Kyx — [WE 4+ AF]) (cf. [L2,9.2.8]). For
a line bundle B on X, we say that B ® b* is nef and abundant if the Q-divisor
f*B — AF is nef and abundant on Y. These definitions are independent of the
log-resolution we choose.

THEOREM 4.1. Let X be a smooth projective variety of dimensionn, and let a,b C
Oy be ideal sheaves. Consider line bundles L and B on X such that L @ a is glob-
ally generated and B ® b* is nef and abundant for some ). € Q.. Then, for every
integer m > n + 2, the sections in

H(X,Ox(Kx +mL + B) ® J(a™ - b*))
can be written as linear combinations (with coefficients in H°(L)) of sections in
H°(X,Ox(Kx +(m = DL+ B) ® J(@"~" - b")).
More generally, for every i > 0, the cohomology classes in
H'(X,0x(Kx +mL + B) ® J(@" - b*))
can be written as linear combinations (with coefficients in H O(L), via cup prod-

uct) of classes in H'(X, Ox(Kx + (m — )L + B) @ J(a™!. b")).

Proof. Let f: Y — X be a common log-resolution for a and b, where a - Oy =
Oy(—FE)and b - Oy = Oy(—F). Let’s assume that L ® a is generated by s >
n + 1 sections spanning a linear subspace V. C HCL. In fact, it will be clear from
the proof that if L ® a happens to be spanned by p < n sections then the result
can be improved, with an identical argument, by replacing n + 1 with p.

The line bundle A := f*L — E will be generated by the corresponding space
of sections in H°(A), which we denote also by V. Denote by g: ¥ — Z C P*~!
the map it determines, so that A = g*O,(1). The goal is to prove the surjectivity
of the multiplication map

V® H(X,Ox(Kx + (m =)L + B) ® J(a" " - b*))

— H%X,O0x(Kx +mL + B) ® J(a™ - b*)).
Note, however, that by definition we have
J@* - 6" = f,Oy(Kyx —kE —[AF]) forallk,
so this is equivalent to the surjectivity of the multiplication map

V®HY,Op(Ky +(m — ) f*L+ f*B — (m — )E — [AF]))

— H%Y,0y(Ky + mf*L + f*B — mE — [AF])).



256 LAWRENCE EIN & MIHNEA Popra

Recall the notation A = f*L — E and denote N = f*B — [AF], which by as-
sumption can be written as a nef and abundant Q-divisor plus a simple normal
crossings boundary divisor. Rewriting the preceding map, we are then interested
in the surjectivity of the multiplication map

V®HY,Oy(Ky + (m — 1A+ N)) — H(Y,Oy(Ky +mA+N)). (2)

We compare this with the picture obtained by pushing forward to Z via g. Note
that V can be considered as a space of sections generating Oz(1). Itis well known
that this gives rise to an exact Koszul complex on Z (cf. e.g. [L1, beginning of
Apx. B.2]):

0— AVROz(—s) — ---
— ANV R0O4(=2) — VR0z~-1) — 07 — 0.

We twist this with the sheaf 2.0y (Ky + N) ® Oz(m), which preserves the ex-
actness of the sequence

00— AVR®Oz(m—5)QgOy(Ky + N) — - -+
— V®0z(m—1)®g.0y(Ky + N) — Oz(m) ® g.0y(Ky + N) — 0.
(Note that the Koszul complex is locally split and its syzygies are locally free, so

twisting by any coherent sheaf preserves exactness.) Since A = g*Oz(1), the sur-
jectivity of the map in (2) is equivalent to the surjectivity of the multiplication map

VR HYZ,07(m —1)® g.0y(Ky + N))
— H%Z,07(m) ® 8.0y (Ky + N))

induced by the taking global sections in the foregoing Koszul complex. But since
m > n + 2, the line bundle case of Corollary 3.3(iv) implies that

H/(Z,07(m —i) ® g.0y(Ky + N)) =0 forall j >0 and i <n+1.

By chasing through the induced short exact sequences, this easily implies that the
entire Koszul complex stays exact after passing to global sections. (Note that be-
yond i = n+1 we are, as before, interested only in cohomology groups for j > n,
which are automatically zero.) This proves the statement for global sections.

The proof of the general statement for cohomology classes is similar. Note first
that, again by Corollary 3.3(iv), for higher direct images we have that, for every i
and every k > 0, the Leray spectral sequence degenerates to an isomorphism

H'(Y,Oy(Ky + kA + N)) = HZ, R'g.Oy(Ky + N) ® Oz(k)).

But, exactly as before, the same vanishing applied yet again for Rig, Oy (Ky + N)
implies that, after twisting the Koszul complex with Rig,Oy(Ky + N) and pass-
ing to global sections, we obtain the surjection

V®HYZ,0;(m —1)® R'g.Oy(Ky + N))
— H%Z,0z(m) ® R'g.O0y(Ky + N)).

This implies the surjectivity of the cup product
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V®H(Y,0p(Ky + (m —1)A + N)) — H'(Y,Oy(Ky +mA + N)).
On the other hand, by the local vanishing theorem we have
ij*Oy(Ky —kE —[AF])=0 forall j >0 and k>0
and so, for all i,
H(X,0x(Kx + kL + B) @ J(a™ - b*)) = H'(Y, Oy (Ky + kA + N)).
The result follows. O

Taking b = Oy in the theorem yields the following corollary.

COROLLARY 4.2. In the notation of Theorem 4.1, if B is a nef and abundant line
bundle (e.g., B = Ox) then, for every m > n + 2 and every i, the cohomology
classes in ‘

H'(X,0x(Kx +mL + B) ® J(a™))

can be written as linear combinations of classes in

H'(X, Ox (Kx + (m = DL+ B) ® J(@" ).

In the case of global sections (i.e., i = 0), this result is an improvement of the
global divison theorem of [EL] (cf. [L.2, Thm. 9.6.31]): one does not require twist-
ing with an ample (or big and nef) line bundle. (Note, however, that in order to
do this we must start with m = n + 2, not with m = n + 1.) Also, fori = 0,
Corollary 4.2 is a slightly more general version of the algebraic version of the
Skoda-type theorem proved in the analytic context by Siu [S, Thm. 1.8.3]. Ob-
serve that the method used here does not distinguish between global sections and
higher cohomology classes. The case of trivial multiplier ideals already yields a
slightly surprising statement even in the case B = Oy, as follows.

COROLLARY 4.3. Let L be a globally generated line bundle and B a nef and
abundant line bundle on a smooth projective variety X of dimension n. Then, for
allm >n+2andalli > 0, the cup product maps

H%X,L)® H(X,Ox(Kx + (m — 1)L + B)) — H'(X,Ox(Kx +mL + B))

are surjective.

An interesting consequence of this involves multiplication maps of globally gen-
erated adjoint line bundles. When B is globally generated, this is the statement of
[S, Thm. 1.8.4].

COROLLARY 4.4. Let B be a nef and abundant line bundle on X such that the
adjoint bundle L :== Kx + B is globally generated. Then mL is projectively nor-
mal for all m > n + 2 and the section ring Ry = @mzo HO%mL) is generated by

DB<niz H(mL).

In particular, if L is also ample then mL is very ample for m > n + 2. This can
be shown directly by using Castelnuovo—Mumford regularity.



258 LAWRENCE EIN & MIHNEA Popra

Proof of Corollary 4.4. Corollary 4.3 implies that, for all m > n 4 2, we have the
surjectivity the multiplication map

HL)® H(mL) — H((m + L),

which implies the generation statement. By iteration we obtain the surjectivity of
the map
H(L)®* ® H(mL) — H°((m +k)L)

for all k£ > 1, which has as a special consequence the projective normality of mL.

O
For completeness, note that the statement of Corollary 4.3, at least for B = Oy,
holds also for higher direct images of canonical bundles.

PROPOSITION 4.5.  Let X and Y be projective varieties, with X smooth and Y of
dimension n, and let f: X — Y be a surjective morphism. Consider a globally
generated line bundle L on Y. Then, forallm > n+ 2 and alli, j > 0, the cup
product maps

H(Y,L) ® H'(Y, Rif.wx ® Oy((m — 1)L)) — H'(Y, R'f.0ox ® Oy(mL))

are surjective.

Proof. The proof goes along the same lines as the proof of Theorem 4.1. We use
the morphism g: ¥ — Z induced by L and the corresponding Koszul complex
on Z. The extra thing to note is that the vanishing

HYNZ,R'g,Rif.wx ® Oz(1)) =0 forall k,l >0
still holds by [K2, Thm. 3.4]. O

One also obtains a similar weakening of the hypotheses under which the geometric
effective Nullstellensatz, [EL, Thm. (iii)] (cf. also [L2, Thm. 10.5.8]) holds, by
plugging the statement of Theorem 4.1 into the original proof of [EL, Thm. (iii)].

COROLLARY 4.6 (Geometric effective Nullstellensatz). Let X be a smooth pro-
jective variety, a C Oy an ideal sheaf, and L an ample line bundle on X such that
L ® a is globally generated—say, by sections g; € H %L ® a). Consider also a
nef and abundant line bundle B on X. Then, for allm > n + 2, if a section

g€ H%(X,Ox(Kx +mL + B))

vanishes to order at least (n + 1) - deg; X at a general point of each distinguished
subvariety of a, then g can be expressed as a linear combination y_ h;g;, where
h; € HY(X, Ox(Kx + (m — 1)L + B)).

Recall that this means the following: If f: ¥ — X is the normalized blow-up of
X along a and if a - Oy = Oy(—)_ a;E;), then the distinguished subvarieties of
a are the images of the E; in X (cf. [EL, Sec. 2]).

ACKNOWLEDGMENTS. We would like to thank the referee for a detailed reading
of the paper and for useful suggestions.



Global Division of Cohomology Classes via Injectivity 259

References

[EL] L. Ein and R. Lazarsfeld, A geometric effective Nullstellensatz, Invent. Math. 137
(1999), 427-448.
[EsV] H. Esnault and E. Viehweg, Lectures on vanishing theorems, DMV Sem., 20,
Birkhiuser, Basel, 1992.
[Ka] Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent.
Math. 79 (1985), 567-588.
[K1] J. Kollér, Higher direct images of dualizing sheaves I, Ann. of Math. (2) 123
(1986), 11-42.
, Higher direct images of dualizing sheaves II, Ann. of Math. (2) 124
(1986), 171-202.
[L1] R. Lazarsfeld, Positivity in algebraic geometry, 1. Classical setting: Line bundles
and linear series, Ergeb. Math. Grenzgeb. (3), 48, Springer-Verlag, Berlin, 2004.
, Positivity in algebraic geometry, Il. Positivity for vector bundles, and
multiplier ideals, Ergeb. Math. Grenzgeb. (3), 49, Springer-Verlag, Berlin, 2004.
[S] Y.-T. Siu, Multiplier ideal sheaves in complex and algebraic geometry, Sci. China
Ser. A 48 (2005), 1-31.

[K2]

(L2]

L. Ein M. Popa

Department of Mathematics Department of Mathematics
University of Illinois at Chicago University of Illinois at Chicago
Chicago, IL 60607-7045 Chicago, IL 60607-7045

ein@math.uic.edu mpopa@math.uic.edu



