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Introduction

The purpose of this paper is to construct examples of strange behavior of local co-
homology. In these constructions we follow a strategy that was already used in
[CH] and that relates, via a spectral sequence introduced in [HRa], the local co-
homology for the two distinguished bigraded prime ideals in a standard bigraded
algebra.

In the first part we consider algebras with rather general gradings and deduce
a similar spectral sequence in this more general situation. A typical example of
such an algebra is the Rees algebra of a graded ideal. The proof for the spectral
sequence given here is simpler than that of the corresponding spectral sequence
in [HRa].

In the second part of this paper we construct examples of standard graded rings
A, which are algebras over a field K, such that the function

j �→ dimK(H
i
A+(A)−j ) (1)

is an interesting function for j � 0. In our examples, this dimension will be finite
for all j.

Suppose that A0 is a Noetherian local ring and that A = ⊕
j≥0 Aj is a stan-

dard graded ring, and set A+ := ⊕
j>0 Aj . Let M be a finitely generated graded

A-module and let F := M̃ be the sheafification of M on Y = Proj(A). We then
have graded A-module isomorphisms

H i+1
A+ (M) ∼=

⊕
n∈Z

H i(Y, F(n))

for i ≥ 1 as well as a similar expression for i = 0 and 1.
By Serre vanishing, H i

A+(M)j = 0 for all i and j � 0. However, the asymp-
totic behavior of H i

A+(M)−j for j � 0 is much more mysterious.

In the case when A0 = K is a field, the function (1) is in fact a polynomial for
large enough j. The proof is a consequence of graded local duality ([BrS, 13.4.6]
or [BH, 3.6.19]) and follows also from Serre duality on a projective variety.

For more generalA0, theH i
A+(M)−j are finitely generatedA0 modules but need

not have finite length.
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The following problem was proposed by Brodmann and Hellus [BrHe].

Tameness Problem. Are the local cohomology modules H i
A+(M) tame? That

is, is it true that either

{H i
A+(M)j �= 0 ∀j � 0} or {H i

A+(M)j = 0 ∀j � 0}?
The problem has a positive solution for A0 of small dimension (see e.g. [Br; BrHe;
L; RSe]).

Theorem 0.1 [BrHe]. If dim(A0) ≤ 2, then M is tame.

However, it has recently been shown by two of the authors that tameness can fail
if dim(A0) = 3.

Theorem 0.2 [CH]. There are examples with dim(A0) = 3 where M is not
tame.

The statement of this example is reproduced in Theorem 3.1 of this paper. The
function (1) is periodic for large j. Specifically, the function (1) is 2 for large even
j and is 0 for large odd j.

In Theorem 3.3 we construct an example of failure of tameness of local coho-
mology that is not periodic and is not even a quasi-polynomial (in −j) for large
j. Specifically, for j > 0 we have

dimK(H
2
A+(A)−j ) =


1 if j ≡ 0 (modulo p + 1),

1 if j = pt for some odd t ≥ 0,

0 otherwise,

where the characteristic of K is p. We have pt ≡ −1 (modulo p + 1) for all odd
t ≥ 0.

We also give an example (Theorem 3.5) of failure of tameness where (1) is a
quasi-polynomial with linear growth in even degree and is 0 in odd degree.

In Theorem 3.6 we give a tame example, but we have

lim
j→∞

dimK(H
2
A+(A)−j )

j 3
= 54

√
2

and so (1) is far from being a quasi-polynomial in −j for large j.

Whereas the example of [CH] is for M = ωA with ωA the canonical module of
A, the examples in this paper are all for M = A. This allows us to easily reinter-
pret our examples as Rees algebras in Section 4; thus we have examples of Rees
algebras over local rings for which the preceding failure of tameness holds.

Finally, in Section 5 we give an analysis of the explicit and implicit roles of
bigraded duality in the construction of the examples and, in addition, some com-
ments on how it affects the geometry of the constructions.
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1. Duality for Polynomial Rings in Two Sets of Variables

Let K be any commutative ring (with unit). In later applications K will be mostly
a field. Furthermore, let S = K[x1, . . . , xm, y1, . . . , yn], P = (x1, . . . , xm), and
Q = (y1, . . . , yn).

The homology of the Čech complex CP (·) (resp. CQ(·))will be denoted byHP (·)
(resp.HQ(·)). Observe that, for any commutative ringK, this homology is the local
cohomology supported in P (resp. Q) because P and Q are generated by regular
sequences.

Assume that S is �-graded for some abelian group � and that deg(a) = 0 for
a ∈ K. If x syp ∈ R, then deg(x syp) = l(s) + l ′(p) with l(s) := ∑

i si deg(xi)
and l ′(p) := ∑

j pj deg(yj ).

Definition 1.1. Let I ⊂ S be a �-graded ideal. For every i and γ ∈ �, the
�-grading of S is I -sharp if H i

I (S)γ is a finitely generated K-module.

Lemma 1.2. The following conditions are equivalent:

(i) the �-grading of S is P -sharp;
(ii) the �-grading of S is Q-sharp;

(iii) for all γ ∈�, |{(α,β) : α ≥ 0, β ≥ 0, l(α) = γ + l ′(β)}| < ∞.

Note that if K is Noetherian, M is a finitely generated �-graded S-module, and the
�-grading of S is I -sharp, thenH i

I (M)γ is a finiteK-module for every i and γ ∈�.

This follows from the converging �-graded spectral sequence Hp−q(H
p

I (F)) ⇒
H

q

I (M), where F is a �-graded free S-resolution of M with Fi finite for every i.

We will assume from now on that the �-grading of S is P -sharp (equivalently,
Q-sharp). Set σ = deg(x1 · · · xmy1 · · · yn), and for N a �-graded module let
N∨ = HomS(N, S(−σ)) and N ∗ = ∗HomK(N,K), where the �-grading of N ∗ is
given by (N ∗)γ = HomK(N−γ ,K). More generally, we always denote the graded
K-dual of a graded module N (over any graded K-algebra) by N ∗. Finally, we de-
note by ϕαβ the map S(−a) → S(−b) induced by multiplication by xαyβ, where
a = deg xα and b = −deg yβ.

Lemma 1.3. Hm
P (ϕαβ)γ ∼= Hn

Q((ϕ
∨
αβ)−γ )

∗.

Proof. The free K-module Hm
P (S)γ is generated by the elements x−s−1yp with

s,p ≥ 0 and −l(s)− l(1)+ l ′(p) = γ, and Hn
Q(S)γ ′ is generated by the elements

x ty−q−1 with t, q ≥ 0 and l(t) − l ′(q) − l ′(1) = γ ′.
Let dγ : Hm

P (S)γ → (H n
Q(S

∨)∗)γ = HomK(H
n
Q(S)−γ−σ ,K) be the K-linear

map defined by

dγ(x
−s−1yp)(x ty−q−1) =

{
1 if s = t and p = q,

0 otherwise.

Then dγ is an isomorphism (because the �-grading of S is Q-sharp) and there is
a commutative diagram
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Hm
P (S)γ−a

Hm
P
(ϕαβ )γ

��

dγ−a

��

Hm
P (S)γ−b

dγ−b

��

(H n
Q(S)−γ+a−σ )

∗ Hn
Q
((ϕ∨

αβ
)−γ )

∗
�� (H n

Q(S)−γ+b−σ )
∗.

The assertion follows.

As an immediate consequence we obtain the following statement.

Corollary 1.4. (a) Let f ∈ S be an homogeneous element of degree a − b, and
let ϕ : S(−a) → S(−b) be the graded degree-0 map induced by multiplication
with f. Then

Hm
P (ϕ) � Hn

Q(ϕ
∨)∗.

(b) Let F be a �-graded complex of finitely generated free S-modules. Then:

(i) H i
P (F) = 0 for i �= m and H

j

Q(F) = 0 for j �= n;
(ii) Hm

P (F) � Hn
Q((F)

∨)∗.

The main result of this section is as follows.

Theorem 1.5. Assume that K is Noetherian, that the �-grading of S is P -sharp
(equivalently, Q-sharp), and that M is a finitely generated �-graded S-module.
Set ωS/K := S(−σ), and let F be a minimal �-graded S-resolution of M. Then
the following statements hold.

(a) For all i, there is a functorial isomorphism

H i
P (M) � Hm−i(H

m
P (F)).

(b) There is a convergent �-graded spectral sequence

H i
Q(ExtjS(M,ωS/K)) ⇒ H i+j−n(H m

P (F)∗).

In particular, if K is a field then there is a convergent �-graded spectral
sequence

H i
Q(ExtjS(M,ωS)) ⇒ H

dim S−(i+j)

P (M)∗.

Proof. Claim (a) is an immediate consequence of Corollary 1.4 via the �-graded
spectral sequence Hp−i(H

p

P (F)) ⇒ H i
P (M). For (b), the two spectral sequences

arising from the double complex C •• := CQF∨ with C ij = C i
Q(HomS(Fj , S(−σ)))

have as respective second terms ′Eij

2 = H i
Q(ExtjS(M,ωS/K)) and ′′Eij

2 = 0 (for
i �= n) and ′′Enj

2 = Hj(H n
Q(F

∨)) � Hj(Hm
P (F)∗). If K is also a field, then

Hj(Hm
P (F)∗) � (Hj(H

m
P (F)))∗ � H

m−j

P (M)∗.

Corollary 1.6. Under the hypotheses of the theorem, if K is a field then, for
any γ ∈�, there exist convergent spectral sequences of finite-dimensionalK-vector
spaces

H i
Q(ExtjS(M,ωS))γ ⇒ H

dim S−(i+j)

P (M)−γ ,

H i
P (ExtjS(M,ωS))γ ⇒ H

dim S−(i+j)

Q (M)−γ .
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We now consider the special case where�= Z2 and S := K[x1, . . . , xm, y1, . . . , yn]
with deg(xi) = (1, 0) and deg(yj ) = (dj ,1) for dj ≥ 0. Set T := K[x1, . . . , xm]
and let M be a �-graded S-module. We view M as a Z-graded module by defining
Mk = ⊕

j M(j,k). Observe that each Mk is itself a graded T -module with (Mk)j =
M(j,k) for all j. We also note that H i

P (M)k ∼= H i
P0
(Mk), as can been seen from the

definition of local cohomology using the Čech complex. Here P0 = (x1, . . . , xm)
is the graded maximal ideal of T.

Corollary1.7. With notation as before, let s := dim S = m+nandd := dimM.

(a) H 0
P (Ext s−d

S (M,ωS)) ∼= H d
Q(M)∗ for any k.

(b) There is an exact sequence

0 → H1
P (Ext s−d

S (M,ωS)) → H d−1
Q (M)∗ → H 0

P (Ext s−d+1
S (M,ωS)).

(c) Let i ≥ 2. If ExtjS(M,ωS) is annihilated by a power of P for all s − d < j <

s − d + i, then there is an exact sequence

Ext s−d+i−1
S (M,ωS) → H i

P (Ext s−d
S (M,ωS))

→ H d−i
Q (M)∗ → H 0

P (Ext s−d+i
S (M,ωS)).

In particular, if ExtjS(M,ωS) has finite length for all s−d < j ≤ s−d + i0 then,
for some integer i0,

H i
P0
(Ext s−d

S (M,ωS)k) ∼= (H d−i
Q (M)−k)

∗ for all i ≤ i0 and k � 0.

Consequently, ifM is a generalized Cohen–Macaulay module (i.e., Ext s−i
S (M,ωS)

has finite length for all i �= d) and if we set N = Ext s−d
S (M,ωS), then

H i
P0
(Nk) ∼= (H d−i

Q (M)−k)
∗ for all i and all k � 0.

Proof. (a), (b), and (c) are direct consequences of Corollary 1.6. For the appli-
cation, notice that if γ = (,, k) ∈ � with k � 0 then one has ExtjS(M,ωS)γ =
0 for all s − d < j ≤ s − d + i0. Therefore, for such γ, the desired conclusion
follows.

A typical example to which this situation applies is the Rees algebra of a graded
ideal I in the standard graded polynomial ring T = K[x1, . . . , xm]. Suppose I is
generated by the homogeneous polynomials f1, . . . , fn with deg fj = dj for j =
1, . . . , n. Then the Rees algebra R(I ) ⊂ T [t] is generated by the elements fj t. If
we set deg fj t = (dj ,1) for all j and deg xi = (1, 0) for all i, then R(I ) becomes
a �-graded S-module via the K-algebra homomorphism S → R(I ) with xi �→
xi and yj �→ fj t. According to this definition, we have R(I )k = I k for all k.

Since dim R(I ) = m+1, the module ωR(I ) = Extn−1
S (R(I ),ωS) is the canon-

ical module of R(I ) (in the sense of [HK, 5. Vortrag]). Recall that if a ring
R is a finite S-module of dimension m + 1, then the natural finite map R →
Hom(ωR ,ωR) ∼= Extn−1

S (ωR ,ωS) is an isomorphism if and only ifR isS2. Together
with Corollary1.7, this yields the following result.
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Corollary 1.8. Let R := R(I ). Suppose that Rp is Cohen–Macaulay for all
p �= (m,R+), where m = (x1, . . . , xm) and R+ = ⊕

k>0 I
kt k. Then

H i
m(I

k) ∼= (H m+1−i
R+ (ωR)−k)

∗ for all i and all k � 0.

Proof. Because ωR localizes, the conditions imply that (ωR)p is Cohen–Macaulay
for all p �= (m,R+). Hence the natural “into” map R → R ′ := Extn−1

S (ωR ,ωS)

has a cokernel of finite length. In particular, R ′
k = Rk = I k for k � 0. Thus

Corollary 1.7 applied to M = ωR gives the desired conclusion.

Remark 1.9. Let R := R(I ). If the cokernel of R → Hom(ωR ,ωR) is annihi-
lated by a power of R+ (in other words, if the blow-up is S2 as a projective scheme
over Spec(T )), then R ′

k = I k for k � 0 and one therefore has an exact sequence

0 → H 0
m(T/I

k) → (H m
R+(ωR)−k)

∗

→ H 0
m(ExtnS(ωR ,ωS)k) → H1

m(T/I
k) → (H m−1

R+ (ωR)−k)
∗

for such a k.

2. A Method of Constructing Examples

Suppose that R = ⊕
i,j≥0 Rij is a standard bigraded algebra over a ring K =

R00. Define Ri = ⊕
j≥0 Rij and Rj = ⊕

i≥0 Rij . Define ideals P = ⊕
i>0 R

i

and Q = ⊕
j>0 Rj in R. Suppose that M = ⊕

ij∈Z Mij is a finitely generated,
bigraded R-module. Define Mi = ⊕

j∈Z Mij and Mj = ⊕
i∈Z Mij . Note that

Mi is a graded R0-module and Mj is a graded R0-module. Let Q0 = R01R
0, so

that Q = Q0R; let P0 = R10R0, so that P = R10R. Then we have K-module
isomorphisms

H l
Q(M)m,n

∼= H l
Q0
(Mm)n

for m, n ∈ Z. Let M̃m be the sheafification of the graded R0-module Mm on
Proj(R0). Then we have K-module isomorphisms

H l
Q0
(Mm)n ∼= H l−1(Proj(R0), M̃m(n))

for l ≥ 2 as well as exact sequences

0 → H 0
Q0
(Mm)n → (Rm)n

= Rm,n → H 0(Proj(R0), M̃m(n)) → H1
Q0
(Mm)n → 0.

We have similar formulas for the calculation of H l
P (M).

Now assume that X is a projective scheme over K and that F1 and F2 are very
ample line bundles on X. Let

Rm,n = �(X, F ⊗m
1 ⊗ F ⊗n

2 ).

We require that R = ⊕
m,n≥0 Rm,n be a standard bigraded K-algebra. We have

X ∼= Proj(R0) ∼= Proj(R0).

The sheafification of the graded R0-module Rm on X is R̃m = F ⊗m
1 , and the

sheafification of the graded R0-module Rn on X is R̃n
∼= F ⊗n

2 [Ha, Exer. II.5.9].
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For l ≥ 2 we have bigraded isomorphisms

H l
Q(R)

∼=
⊕

m≥0, n∈Z

H l
Q0
(Rm)n ∼=

⊕
m≥0, n∈Z

H l−1(X, F ⊗m
1 ⊗ F ⊗n

2 ).

Viewing R as a graded R0 algebra, we thus have graded isomorphisms

H l
Q(R)n

∼=
⊕
m≥0

H l−1(X, F ⊗m
1 ⊗ F ⊗n

2 ) (2)

for l ≥ 2 and n∈ Z. Let d = dim(R) = dim(X) + 2.
We now further assume that K is an algebraically closed field and that X is a

nonsingular K-variety. Let

V = P(F1 ⊕ F2),

a projective space bundle over X with projection π : V → X. Since F1 ⊕ F2 is
an ample bundle on X, it follows that OV (1) is ample on V. Since

R ∼=
⊕
t≥0

�(V, OV (t))

with
�(V, OV (t)) ∼= �(X, S t(F1 ⊕ F2)) ∼=

⊕
i+j=t

Rij

and since R is generated in degree 1 with respect to this grading, it follows that
OV (1) is very ample on V and that R is the homogeneous coordinate ring of the
nonsingular projective variety V. Hence R is generalized Cohen–Macaulay, since
all local cohomology modules H i

R+(R) of R with respect to the maximal bigraded
ideal R+ of R have finite length for i < d. Moreover,V is projectively normal by
this embedding [Ha, Exer. II.5.14] and so R is normal.

3. Strange Behavior of Local Cohomology

In [CH] we constructed the following example of failure of tameness of local co-
homology. In the example, R0 has dimension 3, which is the lowest possible for
failure of tameness [Br].

Theorem 3.1. Suppose that K is an algebraically closed field. Then there exist a
normal standard graded K-algebra R0 with dim(R0) = 3 and a normal standard
graded R0-algebra R with dim(R) = 4 such that, for j � 0,

dimK(H
2
Q(ωR)−j ) =

{
2 if j is even,

0 if j is odd,

where ωR is the canonical module of R and Q = ⊕
n>0 Rn.

We first show that this theorem is also true for the local cohomology of R.

Theorem 3.2. Suppose that K is an algebraically closed field. Then there exist
a normal standard graded K-algebra R0 with dim(R0) = 3 and a normal stan-
dard graded R0-algebra R with dim(R) = 4 such that, for j > 0,
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dimK(H
2
Q(R)−j ) =

{
2 if j is even,

0 if j is odd,
where Q = ⊕

n>0 Rn.

Proof. We compute this directly for the R of Theorem 3.1 from (2) and the
calculations of [CH]. Translating from the notation of this paper to the nota-
tion of [CH], we have X = S is an Abelian surface, F1 = OS(r2 laH ), and
F2 = OS(r2(D + alH )).

By (2), for n∈ N we have

dimK(H
2
Q(R)n) =

∑
m≥0

h1(X, F ⊗m
1 ⊗ F ⊗n

2 )

=
∑
m≥0

h1(S, OS((m + n)r2alH + nr2D)).

Formula (1) of [CH] tells us that, for m, n∈ Z,

h1(S, OS(mH + nD)) =
{

2 if m = 0 and n is even,

0 otherwise.
(3)

Thus, for n < 0 we have

dimK(H
2
Q(R)n) =

{
2 if n is even,

0 if n is odd,

giving the conclusions of the theorem.

The following example shows nonperiodic failure of tameness.

Theorem 3.3. Suppose that p is a prime number such that p ≡ 2 mod 3 and
p ≥ 11. Then there exist a normal standard graded K-algebra R0 over a field
K of characteristic p with dim(R0) = 4 as well as a normal standard graded
R0-algebra R with dim(R) = 5 such that, for j > 0,

dimK(H
2
Q(R)−j ) =


1 if j ≡ 0 (modulo p + 1),

1 if j = pt for some odd t ≥ 0,

0 otherwise,

where Q = ⊕
n>0 Rn. We have pt ≡ −1 (modulo p + 1) for all odd t ≥ 0.

To establish this result, we need the following simple lemma.

Lemma 3.4. Let C be a nonsingular curve of genus g over an algebraically
closed field K, and let M, N be line bundles on C. If deg(M) ≥ 2(2g + 1) and
deg(N ) ≥ 2(2g + 1), then the natural map

�(C, M) ⊗ �(C, N ) → �(C, M ⊗ N )

is a surjection.

Proof. If L is a line bundle on C, then (a) H1(C, L) = 0 if deg(L) > 2g − 2 and
(b) L is very ample if deg(L) ≥ 2g + 1 [Ha, Chap. IV, Sec. 3].
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Suppose that L is very ample and that G is another line bundle onC. If deg(G ) >
2g − 2 − deg(L), then G is 2-regular for L [M1, Lec. 14]. Therefore, if deg(G ) >
2g − 2 + deg(L), then

�(C, G ) ⊗ �(C, L) → �(C, G ⊗ L)

is a surjection by Castelnuovo’s proposition [M1, Lec. 14, p. 99].
We now apply these remarks to prove the lemma. Write M ∼= A⊗q ⊗B, where

A is a line bundle such that deg(A) = 2g + 1 ≤ deg(B) < 2(2g + 1). Observe
that deg(N ) > 2g − 2 + deg(A). Hence there exists a surjection

�(C, N ) ⊗ �(C, A) → �(C, A ⊗ N ).

We iterate to obtain the surjections

�(C, A⊗i ⊗ N ) ⊗ �(C, A) → �(C, A⊗(i+1) ⊗ N )

for i ≤ q as well as the surjection

�(C, A⊗q ⊗ N ) ⊗ �(C, B) → �(C, M ⊗ N ).

Proof of Theorem 3.3. For the construction, we start with an example from [CSr,
Sec. 6]. There is an algebraically closed field K of characteristic p, a curve C of
genus 2 over K, a point q ∈ C, and a line bundle M on C of degree 0 such that,
for n ≥ 0,

H1(C, OC(q) ⊗ M⊗n) =
{

1 if n = pt for some t ≥ 0,

0 otherwise.

Furthermore, H1(C, OC(2q) ⊗ M⊗n) = 0 for all n > 0.
Let a = p +1. Let E be an elliptic curve over K and T = E ×E, with projec-

tions πi : T → E. Let b ∈E be a point and let A = π∗
1(OE(b))⊗π∗

2(OE(b)). Let
X = T ×C, with projections ϕ1 : X → T and ϕ2 : X → C. Let L = OC(q). Let

F1 = ϕ∗
1(A)⊗a ⊗ ϕ∗

2(L)⊗a and

F2 = ϕ∗
1(A)⊗(1+a) ⊗ ϕ∗

2(L⊗(1+a) ⊗ M−1).

For m, n ≥ 0, we have the natural surjections

�(X, F1)
⊗m ⊗ �(X, F2)

⊗n

= �(T, A⊗a)⊗m ⊗ �(T, A⊗(1+a))⊗n ⊗ �(C, La)⊗m ⊗ �(C, L⊗(1+a) ⊗ M−1)⊗n

→ �(T, A⊗(ma+n(1+a))) ⊗ �(C, L⊗(ma+n(1+a)) ⊗ M−⊗n) = �(X, F ⊗m
1 ⊗ F ⊗n

2 )

(4)
by the Künneth formula (see [M1, Lec. 11, IV]) and Lemma 3.4.

Let Rm,n = �(X, F ⊗m
1 ⊗F ⊗n

2 ). Since (by (4)) R = ⊕
m,n≥0 Rm,n is a standard

bigraded K-algebra, it follows that (2) holds.
By the Riemann–Roch theorem we compute

h0(C, L⊗r ⊗ M−⊗s ) = h1(C, L⊗r ⊗ M−⊗s ) + r − 1, (5)

and for s < 0 we obtain
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h1(C, L⊗r ⊗ M−⊗s ) =



1 − r if r < 0,

1 if r = 0 and s < 0,

1 if r = 1 and s = −pt for some t ∈ N,

0 if r = 1 and s �= −pt for some t ∈ N,

0 if r = 2 and s < 0,

0 if r ≥ 3.

(6)

We also have

h1(T, A⊗r ) =
{

0 if r �= 0,

2 if r = 0,
(7)

and

h0(T, A⊗r ) =


0 if r < 0,

1 if r = 0,

r 2 if r > 0.

(8)

By (2), for n∈ Z we have

dimK(H
2
Q(R)n) =

∑
m≥0

h1(X, F ⊗m
1 ⊗ F ⊗n

2 ).

By the Künneth formula,

H1(X, F ⊗m
1 ⊗ F ⊗n

2 )

∼= H 0(T, A⊗(ma+n(1+a))) ⊗ H1(C, L⊗(ma+n(1+a)) ⊗ M−⊗n)

⊕ H1(T, A⊗(ma+n(1+a))) ⊗ H 0(C, L⊗(ma+n(1+a)) ⊗ M−⊗n).

Thus, from (5)–(8) it follows that, for j > 0,

dimK(H
2
Q(R)−j ) =


1 if j ≡ 0 mod a,

1 if j = pt for some odd t ∈ N,

0 otherwise,

which confirms the conclusions of Theorem 3.3.

Theorem 3.5 gives an example of failure of tameness of local cohomology with
larger growth.

Theorem 3.5. Suppose that K is an algebraically closed field. Then there exist
a normal standard graded K-algebra R0 over K with dim(R0) = 4 and a normal
standard graded R0-algebra R with dim(R) = 5 such that, for j > 0,

dimK(H
3
Q(R)−j ) =

{
6j if j is even,

0 if j is odd,
where Q = ⊕

n>0 Rn.

Proof. Let E be an elliptic curve over K and let q ∈ E be a point. Let L =
OE(3q). By [Ha, Prop. IV.4.6], L is very ample on E and⊕

n≥0

�(E, L⊗n) (9)
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is generated in degree 1 as a K-algebra. For n∈ N,

h0(C, L⊗n) =


0 if n < 0,

1 if n = 0,

3n if n > 0.

(10)

Moreover,

h1(C, L⊗n) =


−3n if n < 0,

1 if n = 0,

0 if n > 0.

(11)

Let X = E3 with the three canonical projections πi : X → E. Define

F1 = π∗
1(L⊗2) ⊗ π∗

2(L⊗2) ⊗ π∗
3(L⊗2)

and
F2 = π∗

1(L) ⊗ π∗
2(L) ⊗ π∗

3(L⊗2).

Let
Rm,n = �(X, F ⊗m

1 ⊗ F ⊗n
2 ),

R =
⊕
m,n≥0

Rm,n.

By (9) and the Künneth formula, R is standard bigraded. Given (2) and that ωX
∼=

OX, by Serre duality we have

dimK(H
3
Q(R)−j ) =

∑
m≥0

h2(X, F ⊗m
1 ⊗ F −⊗j

2 ) =
∑
m≤0

h1(X, F ⊗m
1 ⊗ F ⊗j

2 )

for j ∈ Z.

Now (10), (11), and the Künneth formula yield, for n > 0,

h1(X, F ⊗m
1 ⊗ F ⊗n

2 ) =
{

0 if 2m + n �= 0,

2h0(X, L⊗n) if 2m + n = 0.

Thus the conclusions of Theorem 3.5 hold.

The following theorem gives an example of tame but still rather strange local co-
homology. Let [x] denote the greatest integer in a real number x.

Theorem 3.6. Suppose that K is an algebraically closed field. Then there exist
a normal standard graded K-algebra R0 with dim(R0) = 3 and a normal stan-
dard graded R0-algebra R with dim(R) = 4 such that, for j > 0,

dimK(H
2
Q(R)−j )

= 162

(
j 2

([
j√
2

]
+ 1

2

)
− 1

3

[
j√
2

]([
j√
2

]
+ 1

)(
2

[
j√
2

]
+ 1

))
and

lim
j→∞

dimK(H
2
Q(R)−j )

j 3
= 54

√
2,

where Q = ⊕
n>0 Rn.
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Proof. We use the method of [C, Ex. 1.6]. Let E be an elliptic curve over an alge-
braically closed field K and let p ∈E be a point. Let X = E×E with projections
πi : X → E. Let C1 = π∗

1(p) and C2 = π∗
2(p), and let

4 = {(q, q) | q ∈E}
be the diagonal of X. We compute (as in [C]) that

(C2
1 ) = (C2

2 ) = (42) = 0 (12)

and
(4 · C1) = (4 · C2) = (C1 · C2) = 1. (13)

If N is an ample line bundle on X, then

H i(X, N ) = 0 for i > 0 (14)

by the vanishing theorem of [M2, Sec. 16].
Suppose that L is a very ample line bundle on X and that M is a numerically

effective (nef ) line bundle. Then M is 3-regular for L, so that

�(X, M ⊗ L⊗n) ⊗ �(X, L) → �(X, M ⊗ L⊗(n+1))

is a surjection if n ≥ 3. Since C1 + 2C2 is an ample divisor (by the Moishezon–
Nakai criterion; see [Ha, Thm.V.1.10]), it follows by the Lefschetz theorem [M2,
Sec. 17, Thm.] that 3(C1 + 2C2) is very ample. Let

F1 = OX(9(C1 + 2C2)).

Then OX is 3-regular for OX(3(C1 + 2C2)), so we have surjections

�(X, F ⊗n
1 ) ⊗ �(X, F1) → �(X, F ⊗(n+1)

1 )

for all n ≥ 1.
By the Moishezon–Nakai criterion, 4+C2 is ample. Let D = 3(4+C2). By

the Lefschetz theorem, D is very ample and so OX(D) ⊗ F1 is very ample. Let

F2 = OX(3D) ⊗ F ⊗3
1 .

Because OX is 3-regular for OX(D) ⊗ F1, we have surjections

�(X, F ⊗n
2 ) ⊗ �(X, F2) → �(X, F ⊗(n+1)

2 )

for all n ≥ 1.
For n > 0 and m ≥ 0,

F ⊗m
1 ⊗ F ⊗n

2
∼= OX(3nD) ⊗ F ⊗(m+3n)

1 .

Since D is nef, it is 3-regular for F1 and we have a surjection for all m ≥ 0 and
n > 0:

�(X, F ⊗m
1 ⊗ F ⊗n

2 ) ⊗ �(X, F1) → �(X, F ⊗(m+1)
1 ⊗ F ⊗n

2 ).

Let
Rm,n = �(X, F ⊗m

1 ⊗ F ⊗n
2 ).

We have shown that
⊕

m,n≥0 Rm,n is a standard bigradedK-algebra. Thus (2) holds.
For m, n∈ Z, let G = F ⊗m

1 ⊗F ⊗n
2 . By (14) and Serre duality (ωX

∼= OX, since
X is an abelian variety), we deduce (as in [C, Ex. 1.6]) that:
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1. (G2) > 0 and (G · F1) > 0 imply that G is ample and that h1(X, G ) =
h2(X, G ) = 0;

2. (G2) < 0 implies h0(X, G ) = h2(X, G ) = 0; and
3. (G2) > 0 and (G · F1) < 0 imply that G−1 is ample and that h0(X, G ) =

h1(X, G ) = 0.

Let τ2 = −4 − √
2/2 and τ1 = −4 + √

2/2. Using (12) and (13), we compute

(F 2
1 ) = 2 · 162, (F2)

2 = 31 · 162, (F1 · F2) = 8 · 162.
Then

(G2) = 324
(
m2 + 8mn + 31

2 n
2)

= 324(m − τ1n)(m − τ2n)

and
(G · F1) = 324(m + 4n).

Since τ2 < −4 < τ1 < 0, for n < 0 and m∈ Z it follows that:

1. m > τ2n if and only if G2 > 0 and G · F1 > 0;
2. τ1n < m < τ2n if and only if (G2) < 0; and
3. m < τ1n if and only if (G2) > 0 and (G · F1) < 0.

By the Riemann–Roch theorem for an abelian surface [M2, Sec. 16],

χ(G ) = 1

2
(G2).

Thus, for m∈ Z and n < 0,

h1(X, G ) =
{

− 1
2 (G2) = −162

(
m2 + 8mn + 31

2 n
2)

if τ1n < m < τ2n,

0 otherwise.

For n∈ Z, let σ(n) = dimK(H
2
Q(Rn)). By (2),

σ(n) =
∑
m≥0

h1(X, F ⊗m
1 ⊗ F ⊗n

2 ).

For n < 0, we have

σ(n) = −162

( ∑
τ1n<m<τ2n

(
m2 + 8mn + 31

2
n2

))
.

Setting r = m + 4n, we obtain

σ(n)

= −162

( ∑
√

2/2n<r<−√
2/2n

(
r 2 − 1

2
n2

))

= −324
[−n/

√
2 ]∑

r=1

(
r 2 − 1

2
n2

)
+ 81n2

= −324

(
1

6

[
− n√

2

]([
− n√

2

]
+ 1

)(
2

[
− n√

2

]
+ 1

)
− 1

2
n2

[
− n√

2

])
+ 81n2

= 162

(
n2

([
− n√

2

]
+ 1

2

)
− 1

3

[
− n√

2

]([
− n√

2

]
+ 1

)(
2

[
− n√

2

]
+ 1

))
.

We thus have the conclusions of the theorem.



150 M. Chardin, S . D. Cutkosky, J. Herzog, & H. Srinivasan

4. Strange Examples of Rees Algebras

Let notation and assumptions be as in Section 2. Since F1 is ample, there exists an
l > 0 such that �(X, F ⊗l

1 ⊗F −1
2 ) �= 0. Thus we have an embedding F2 ⊗F −l

1 ⊂
OX. Let A = F2 ⊗ F −l

1 , which we have embedded as an ideal sheaf of X. For
j ≥ 0 and i ≥ jl, let

Tij = �(X, F ⊗i
1 ⊗ A⊗j ) = Ri−jl,j .

For j ≥ 0, let Tj = ⊕
i≥jl Tij and T = ⊕

j≥0 Tj . Let B = ⊕
j>0 Tj . Observe

that R ∼= T as graded rings over R0
∼= T0, although they have different bigraded

structures. Hence for all i, j we have

H i
B(T )j

∼= H i
Q(R)j . (15)

We know that T1 is a homogeneous ideal of T0 and that T is the Rees algebra of
T1. Thus all of the examples of Section 3 can be interpreted as Rees algebras over
normal rings T0 with isolated singularities.

We thus obtain the following theorems from Theorems 3.2–3.6. Theorems 4.1,
4.2, and 4.3 give examples of Rees algebras with nontame local cohomology.

Theorem 4.1. Suppose that K is an algebraically closed field. Then there exist
a normal, standard graded K-algebra T0 with dim(T0) = 3 and a graded ideal
A ⊂ T0 such that the Rees algebra T = T0[At] of A is normal and, for j > 0,

dimK(H
2
B (T )−j ) =

{
2 if j is even,

0 if j is odd,

where B is the graded ideal AtT of T.

Theorem 4.2. Suppose that p is a prime number such that p ≡ 2 mod 3 and
p ≥ 11. Then there exist a normal standard graded K-algebra T0 over a field K

of characteristic p with dim(T0) = 4 as well as a graded ideal A ⊂ T0 such that
the Rees algebra T = T0[At] of A is normal and, for j > 0,

dimK(H
2
Q(T )−j ) =


1 if j ≡ 0 (modulo p + 1),

1 if j = pt for some odd t ≥ 0,

0 otherwise,

where B is the graded ideal AtT of T. Then pt ≡ −1 (modulo p + 1) for all odd
t ≥ 0.

Theorem 4.3. Suppose that K is an algebraically closed field. Then there exist
a normal, standard graded K-algebra T0 with dim(T0) = 4 and a graded ideal
A ⊂ T0 such that the Rees algebra T = R0[At] of A is normal and, for j > 0,

dimK(H
3
B(T )−j ) =

{
6j if j is even,

0 if j is odd,

where B is the graded ideal AtT of T.
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Theorem 4.4. Suppose that K is an algebraically closed field. Then there exist
a normal standard graded K-algebra T0 with dim(T0) = 3 and a graded ideal
A ⊂ T0 such that the Rees algebra T = T0[At] of A is normal and, for j > 0,

dimK(H
2
B (T )−j )

= 162

(
j 2

([
j√
2

]
+ 1

2

)
− 1

3

[
j√
2

]([
j√
2

]
+ 1

)(
2

[
j√
2

]
+ 1

))
and

lim
j→∞

dimK(H
2
B (T )−j )

j 3
= 54

√
2,

where B is the graded ideal AtT of T.

By localizing at the graded maximal ideal of T0, we obtain examples of Rees alge-
bras of local rings with strange local cohomology. In all of these examples, T0 is
generalized Cohen–Macaulay but is not Cohen–Macaulay. This follows because,
in all of these examples,

H 2
P0
(R0)0

∼= H1(X, OX) �= 0.

5. Local Duality in the Examples

The example of [CH], giving failure of tameness of local cohomology, is stated in
Theorem 3.1 of this paper. The proof of [CH] uses the bigraded local duality the-
orem of [HRa], which now follows from the much more general bigraded local
duality theorem (Theorem 1.5 and Corollary 1.7 of this paper) to conclude that in
our situation, where R is generalized Cohen–Macaulay,

(H d−i
Q (ωR)−j )

∗ ∼= H i
P (R)j (16)

for j � 0.
In [CH], the formula

H i
P (R)j

∼= H i
P0
(Rj )

∼=
⊕
m∈Z

H i−1(X, R̃j (m))

∼=
⊕
m∈Z

H i−1(X, F ⊗m
1 ⊗ F ⊗j

2 ) (17)

for i ≥ 2 and j ≥ 0 is then used with formula (1) of [CH] ((3) of this paper) to
prove Theorem 3.1.

In Section 2 we derived (2), from which we directly computed the local coho-
mology in the examples of this paper. We made essential use of Serre duality on
X in computing the examples. In this section, we show how (16) can be obtained
directly from the geometry of X and V and how this formula can be directly in-
terpreted as Serre duality on X.

Let notation be as in Section 2, so that K is an algebraically closed field and
F1, F2 are very ample line bundles on the nonsingular variety X. Let ωR be the
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dualizing module of R, and let ωX be the canonical bundle of X (which is a dual-
izing sheaf on X). For a K-module W, let W ′ = HomK(W,K).

Lemma 5.1. We have that

(ωR)ij =
{
�(X, F ⊗i

1 ⊗ F ⊗j

2 ⊗ ωX) if i ≥ 1 and j ≥ 1,

0 otherwise.

Set (ωR)
i = ⊕

j∈Z(ωR)i,j , a graded R0 module. Then the sheafification of (ωR)
i

on X is

(̃ωR)i =
{ F ⊗i

1 ⊗ ωX if i ≥ 1,

0 if i ≤ 0.
(18)

Set (ωR)j = ⊕
i∈Z(ωR)i,j , a graded R0 module. Then the sheafification of (ωR)j

on X is

(̃ωR)j =
{ F ⊗j

2 ⊗ ωX if j ≥ 1,

0 if j ≤ 0.
(19)

Proof. Give R the grading where the elements of degree e in R are [R]e =∑
i+j=e Rij . We have realized R (with this grading) as the coordinate ring of

the projective embedding of V = P(F1 ⊕ F2) by the very ample divisor OV (1)
with projection π : V → X.

Let ωV be the canonical line bundle on V. We first calculate ωV . Let f be a
fiber of the map π : V → X. By adjunction, we have that (f · ωV) = −2. Since

Pic(V ) ∼= ZOV (1) ⊕ π∗(Pic(X)),

there exists a line bundle G on X such that

ωV
∼= OV (−2) ⊗ π∗(G ).

The natural split exact sequence

0 → F2 → F1 ⊕ F2 → F1 → 0 (20)

determines a section X0 of X such that π∗ of the exact sequence

0 → OV (1) ⊗ OV (−X0) → OV (1) → OV (1) ⊗ OX0 → 0

is (20) [Ha, Prop. II.7.12]. Therefore,

OV (1) ⊗ OV (−X0) ∼= π∗(F2)

and
OV (1) ⊗ OX0

∼= F1.

By adjunction, we have that the canonical line bundle of X0 is

ωX0
∼= ωV ⊗ OV (X0) ⊗ OX0 .

Putting these expressions together, we see that

G ∼= F1 ⊗ F2 ⊗ ωX.

Hence
ωV

∼= OV (−2) ⊗ π∗(F1 ⊗ F2 ⊗ ωX).
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We realize R as a bigraded quotient of a bigraded polynomial ring

S = K[x1, . . . , xm, y1, . . . , yn]

with deg(xi) = (1, 0) for all i and deg(yj ) = (0,1) for all j. Viewing S as a graded
K-algebra with the grading determined by d(xi) = d(yj ) = 1 for all i, j, we have
a projective embedding V ⊂ P = Proj(S). Since V is nonsingular, we see from
[Ha, Sec. III.7] that

ωV
∼= Ext rP(OV , Op(−e)),

where e = m+n is the dimension of S and r = e−dim(R). Here ωR is defined as

ωR = ∗ExtrS(R, S(−e)) ∼=
⊕
m∈Z

ExtrP(OV , OP(m − e)).

For m � 0,

�(P, Ext rP(OV , Op(m − e))) ∼= ExtrP(OV , OP(m − e))

by [Ha, Prop. III.6.9]. Thus ωR and

�∗(ωV) =
⊕
m∈Z

�(V,ωV (m))

are isomorphic in high degree. Since both modules have depth ≥ 2 at the maximal
bigraded ideal of R, we see that

ωR
∼= �∗(ωV).

Thus

ωR =
⊕
m∈Z

�(V,ωV (m))

=
⊕
m∈Z

�(V, OV (m − 2) ⊗ π∗(F1 ⊗ F2 ⊗ ωX)).

Since a fiber f of π satisfies (f · OV (m − 2) ⊗ π∗(F1 ⊗ F2)) < 0 if m < 2, we
see that (with this grading) [ωR]m = 0 if m < 2 and, for m ≥ 2,

[ωR]m = �(X, Sm−2(F1 ⊕ F2) ⊗ F1 ⊗ F2)

=
⊕

i+j=m−2

�(X, F ⊗(i+1)
1 ⊗ F ⊗(j+1)

2 ⊗ ωX).

The conclusions of the lemma now follow.

Suppose that 2 ≤ i ≤ d − 2. Since F1 and F2 are ample and since d − (i + 1) >
0, there exists a natural number n0 such that

H d−(i+1)(X, F ⊗m
1 ⊗ F n

2 ⊗ ωX) = 0 (21)

for n ≥ n0 and all m ≥ 0.
By (18), we have graded isomorphisms

H i
Q(ωR)n ∼=

⊕
m≥1

H i−1(X, F ⊗m
1 ⊗ F ⊗n

2 ⊗ ωX) (22)

for n∈ Z.
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By Serre duality,

H i
Q(ωR)n ∼=

⊕
m≥1

(H d−i−1(X, F −⊗m
1 ⊗ F −⊗n

2 ))′. (23)

By (21), there exists an n0 such that

H i
Q(ωR)−n

∼=
⊕
m∈Z

(H d−i−1(X, F −⊗m
1 ⊗ F ⊗n

2 ))′ (24)

for n ≥ n0.

Now apply to (24) the functor L∗ = HomK(L,K) on graded R0-modules with
the grading

(L∗)i = HomK(L−i,K),

and compare with (17) to obtain

H d−i
P (R)n ∼= (H i

Q(ωR)−n)
∗ (25)

for n ≥ n0, from which (16) immediately follows.
We can now use (22) and (3) to verify that Theorem 3.1 is, in fact, true for all

j > 0.
We finally comment that an alternate proof of Theorem 3.2 for j � 0 is ob-

tained from Theorem 3.1, formulas (2) and (22), the fact thatX is an abelian variety
(so that ωX

∼= OX), and the observation that

h1(X, F −⊗n
2 ) = h1(X, F ⊗n

2 ) = 0

for n > 0.
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