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1. Introduction

Combinatorial commutative algebra is a branch of combinatorics, discrete geom-
etry, and commutative algebra. On the one hand, problems from combinatorics
or discrete geometry are studied using techniques from commutative algebra; on
the other hand, questions in combinatorics motivated various results in commuta-
tive algebra. Since the fundamental papers of Stanley (see [13] for the results) and
Hochster [8; 9], combinatorial commutative algebra has been a growing and ac-
tive field of research. See also Bruns and Herzog [7], Villarreal [16], Miller and
Sturmfels [11], and Sturmfels [15] for classical and recent results and new devel-
opments in this area of mathematics.

Stanley–Reisner rings and affine monoid algebras are two of the classes of rings
considered in combinatorial commutative algebra. In this paper we consider toric
face rings associated to monoidal complexes. They generalize Stanley–Reisner
rings by allowing a more general incidence structure than simplicial complexes
and more general rings associated with their faces—namely, affine monoid alge-
bras instead of polynomial rings.

In cooperation with M. Brun and B. Ichim, the authors have studied the local
cohomology of toric face rings in previous work [1; 3; 10]. One of the main re-
sults is a general version of Hochster’s formula for the local cohomology of a
Stanley–Reisner ring (see [7] or [13]) even beyond toric face rings.

In this paper we want to generalize Hochster’s formulas for the graded Betti
numbers of a Stanley–Reisner ring [9] and affine monoid rings [11, Thm. 9.2] to
toric face rings. Such a generalization is indeed possible for monoidal complexes
that, roughly speaking, can be embedded into a space Qd (see Theorem 4.5). As
counterexamples show, full generality does not seem possible. One of the prob-
lems encountered is to construct a suitable grading. This forces us to consider
grading monoids that are not necessarily cancellative.

Another topic treated in Section 3 is initial ideals (of the defining ideals) of toric
face rings with respect to monomial (pre)orders defined by weights. Indeed, toric
face rings come up naturally in the study of initial ideals of affine monoid alge-
bras. In this regard we generalize results of Sturmfels [15]. We will pay special
attention to the question of when the initial ideal is radical, monomial, or both
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(see Theorem 3.7 and Theorem 3.8). This gives us an opportunity to indicate a
“simplicial” proof of Hochster’s famous theorem on the Cohen–Macaulay prop-
erty of affine normal monoid domains [8]. For unexplained terminology we refer
the reader to [6] and [7].

2. Monoidal Complexes and Toric Face Rings

A cone is a subset of a space Rd of type R+x1+ · · ·+R+xn with x1, . . . , xn ∈Rd.

The dimension of a cone C is the vector space dimension of RC. A face of C is a
subset of type C ∩H, where H is a support hyperplane of C (i.e., a hyperplane H
for which C is contained in one of the two closed halfspaces H +,H − determined
by H ). A rational cone is generated by elements x ∈Qd. A pointed cone has {0}
as a face.

A fan in Rd is a finite collection F of cones in Rd satisfying the following
conditions:

(i) all the faces of each cone C ∈F belong to F, too;
(ii) the intersection C ∩D of C,D ∈F is a face of C and of D.

We want to investigate more general configurations of cones, giving up the con-
dition that all cones are contained in a single space but retaining the incidence
structure. A conical complex consists of

(i) a finite set 	 of sets,
(ii) a cone Cc ⊆ Rδc (δc = dim RCc) for each c ∈	, and

(iii) a bijection πc : Cc → c for each c ∈	 such that the following conditions are
satisfied:
(a) for each face C ′ of Cc (c ∈	) there exists a c ′ ∈	 with πc(C

′) = c ′;
(b) for all c, d ∈	 there exist faces C ′ of Cc and D ′ of Dd such that c∩ d =

πc(C
′)∩πd(D ′) and the restriction of π−1

d 
πc to C ′ is an isomorphism
of the cones C ′ and D ′.

Here an isomorphism of cones C,D is a bijective map ϕ : C → D that extends to
an isomorphism of the vector spaces RC and RD. Simplifying the notation, we
write 	 also for the conical complex. A fan F is a conical complex in a natural
way: fans are nothing but embedded conical complexes.

As introduced in the definition, δc will always denote the dimension of Cc so
that RCc can be identified with Rδc. The elements c ∈	 are called the faces of 	.

Similarly, one defines rays and facets of 	 as (respectively) 1-dimensional and
maximal faces of 	. The dimension of 	 is the maximal dimension of a facet
of 	. We denote by |	| = ⋃

c∈	 c the support of 	. Identifying Cc with c, we
may consider Cc as a subset of |	|. Then we can treat |	| almost like an (em-
bedded) fan. The main difference is that it makes no sense to speak of concepts
like convexity globally, although locally in the cones Cc we may consider con-
vex subsets. The complex 	 is rational and pointed (respectively) if all cones Cc,
c ∈ 	, are rational and pointed. We call 	 simplicial if all cones Cc, c ∈ 	, are
simplicial—that is, if they are generated by linearly independent vectors.
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In order to define interesting algebraic objects associated to a conical complex,
one needs a corresponding discrete structure. A monoidal complex M supported
by a conical complex 	 is a set of monoids (Mc)c∈	 such that:

(i) for each c ∈ C, the monoid Mc is an affine (i.e., finitely generated) monoid
contained in Zδ

c ;
(ii) Mc ⊆ Cc and R+Mc = Cc for every c ∈	;

(iii) for all c, d ∈	, the map π−1
d 
πc restricts to a monoid isomorphism between

Mc ∩ π−1
c (c ∩ d) and Md ∩ π−1

d (c ∩ d).
In other words, we have chosen for every c ∈ 	 an affine monoid Mc that gen-
erates Cc and whose intersection with a face Cd of Cc is just Md. The monoidal
complex naturally associated to a single affine monoid M is simply denoted by
M; it is supported on the conical complex formed by the faces of the cone R+M.

The simplest examples of monoidal complexes are those associated with ratio-
nal fans F. For each cone C ∈ F we choose MC = C ∩ Zd. These monoids are
finitely generated by Gordan’s lemma. Moreover, they are normal: recall that an
affine monoid M is normal if M = gp(M) ∩ R+M.

Remark 2.1. Let gp(M) denote the group of differences of a monoid M. The
groups gp(MC) of the monoids in the monoidal complex associated with a fan F
form again a monoidal complex in a natural way, since gp(MD) = gp(MC)∩RD

if D is a face of C. Its underlying conical complex is given by the collection of
the vector spaces RC, C ∈F.

In general, the compatibility condition between the passage to faces and the for-
mation of groups of differences need not be satisfied. Nevertheless, the rational
structures defined by the monoids Mc (namely, the rational subspaces Q gp(Mc)

of Rδc ) are compatible with the passage to faces. This follows from condition (ii):
both monoids gp(Mc)∩RCd and gp(Md) are contained in Zδd and have the same
rank δd .

Note that the monoids Mc form a direct system of sets with respect to the embed-
dings π−1

d 
 πc : Mc → Md , where c, d ∈	 and c ⊆ d. We set

|M| = lim−→ Mc.

In general, there exists no global monoid structure on |M|, but it carries a partial
monoid structure because we can consider each monoid Mc as a subset of |M| in
the natural way. If there exists a c ∈	 such that a, b ∈Mc, then a+ b is their sum
in Mc and, as an element of |M|, this sum is independent of the choice of c.

Next we choose a field K and define the toric face ring K[M] of M (over K)

as follows. As a K-vector space, let

K[M] =
⊕
a∈|M|

Kta.

We set

t a · t b =
{
t a+b if a, b ∈Mc for some c ∈	,

0 otherwise.
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Multiplication in K[M] is defined as the K-bilinear extension of this product; it
turns K[M] into a K-algebra. In the following, the elements of |M| are called
monomials.

There exist at least two other natural descriptions of toric face rings of a monoidal
complex. The first is a realization as an inverse limit of the affine monoid rings
K[Mc], c ∈	. For c ∈	 and a face d of c there exists a natural projection map,
the face projection map K[Mc]→ K[Md ] that sends monomials t a to zero if a /∈
Md. With respect to these maps we may consider the inverse limit lim←−K[Mc] as
follows.

Proposition 2.2. Let M be a monoidal complex supported on a conical com-
plex 	. Then

K[M] ∼= lim←−K[Mc].

For the proof of the proposition we introduce some more notation. Let c ∈ 	

and let pc be the ideal of K[M] that is generated by all monomials t a with a /∈
Mc. Then there is a natural isomorphism of K-algebras K[Mc] ∼= K[M]/pc. In
particular, pc is a prime ideal. Moreover, if d ⊂ c and c, d ∈ 	, then the natu-
ral epimorphism K[M]/pc → K[M]/pd coincides with the map induced by the
projection map K[Mc]→ K[Md ]. We identify these maps in the following proof.

Proof of Proposition 2.2. Observe that each of the ideals pc has a K-basis con-
sisting of monomials of K[M]. Hence the following equations are satisfied for
c, d, e ∈	:

(i) pc + pd = pc∩d;
(ii) pc ∩ (pd + pe) = pc ∩ pd + pc ∩ pe;

(iii) pc + pd ∩ pe = (pc + pd) ∩ (pc + pe) for all c, d, e.

Now it follows easily that lim←−K[M]/pc is isomorphic to K[M]/
⋂

c∈� pc (see
e.g. [1, Ex. 3.3]). But

⋂
c∈� pc = 0, and so

lim←−K[Mc] ∼= lim←−K[M]/pc ∼= K[M]
/ ⋂

c∈�
pc ∼= K[M].

As the second natural description we want to characterize a toric face ring as a
quotient of a polynomial ring. It is not difficult to compute the defining ideal of
such a presentation. In view of Theorem 3.4 (to follow), we must consider ele-
ments ofK[M] that are either monomials t a (a ∈M) or 0. For a uniform notation
we augment |M| by an element −∞ and set t−∞ = 0.

Proposition 2.3. Let M be a monoidal complex supported on a conical com-
plex 	, and let (ae)e∈E be a family of elements of |M|∪{−∞} generating K[M]
as a K-algebra. (Equivalently, {ae : e ∈E} ∩Mc generates Mc for each c ∈	.)

Then the kernel IM of the surjection

ϕ : K[Xe : e ∈E ]→ K[M], ϕ(Xe) = t ae,

is generated by
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(i) all monomials
∏

h∈H Xh, where H is a subset of E for which {ah : h∈H } is
not contained in any monoid Mc, c ∈�; and

(ii) all binomials
∏

g∈G Xig
g −

∏
h∈H X

jh
h , where G,H ⊂ E, all ag , ah are con-

tained in a monoid Mc for some c ∈	, and
∑

g∈G igag =∑
h∈H jhah.

Moreover, the monomials in (i) are all monomials contained in IM. A binomial is
contained in IM if either both its monomials are contained in the family of mono-
mials given in (i) or it is in the list of the binomials in (ii).

Proof. It is clear that IM contains the ideal J generated by all the monomials and
binomials listed in (i) and (ii).

For the converse, let f be a polynomial such that ϕ(f ) = 0. Then we can as-
sume that all monomials of f map to elements of |M|, since all other monomials
belong to IM. Now let c ∈	, and define fc to be the polynomial that arises as the
sum of those terms of f whose monomials are mapped to elements of Mc ⊂ |M|.
Then ϕ(fc) = 0 as well. It is well known and easy to show that fc then belongs
to the ideal in R[Xe : e ∈ E ] generated by all those binomials in (ii) for which
ag , ah ∈Mc. (Equivalently, the binomials in (ii) for Mc generate the presentation
ideal of K[Mc] over a polynomial ring in the variables Xe, where e ∈E and ae ∈
Mc.) We may thus replace f by f − fc and then finish the proof by induction on
the number of terms of f.

It is clear that a monomial belongs to IM if and only if it is contained in the
family of monomials given in (i). If a binomial is an element of IM, then either
both monomials belong to this ideal or none of the monomials belong. In the lat-
ter case the binomial must be one of the family of binomials given in (ii), since no
other binomials belong to the kernel of the map K[Xe : e ∈ E ] → K[M]. This
follows directly from the construction of the ring K[M].

Examples 2.4. (i) Let F be a rational fan in Rd, and let M be the conical com-
plex associated with F. Then the algebra K[M] is the toric face ring introduced
by Stanley [12].

(ii) Let " be an abstract simplicial complex on the vertex set [n] = {1, . . . , n}.
Then " has a geometric realization by considering the simplices conv(ei1, . . . , eim)
such that {i1, . . . , im} belongs to " (here e1, . . . , en is the canonical basis of Rn).

The cones over the faces of the geometric realization form a fan F whose toric face
ring R given by (i) is nothing but the Stanley–Reisner ring of ". In fact, accord-
ing to Proposition 2.3, the kernel of the natural epimorphism K[X1, . . . ,Xn]→ R

is generated by those monomials Xj1 · · ·Xjr such that {j1, . . . , jr} /∈".

Algebras associated with monoidal complexes therefore generalize Stanley–
Reisner rings by allowing arbitrary conical complexes as their combinatorial skele-
ton and, consequently, monoid algebras as their ring-theoretic flesh.

(iii) The polyhedral algebras of [5] are another special case of algebras asso-
ciated with monoidal complexes. For them, the cones are generated by lattice
polytopes and the monoids are the polytopal monoids considered in [5].

Remark 2.5. Toric face rings were defined in [2] by their presentation ideals
given in Proposition 2.3. Thus Proposition 2.2 is equivalent to [2, Thm. 4.7]. In
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[2] the generators of the affine monoids Mc for c ∈	 were fixed at the start, but
in this paper we fix only the monoids and are free to choose generators when-
ever we like. This approach leads directly to a natural description of the toric
face rings. Using arguments like those here (e.g., the prime ideals in the proof of
Proposition 2.2), one obtains alternative and slightly more compact proofs than
those in [2].

We have already used the fact that the zero ideal of K[M] is the intersection of
the prime ideals pc. This implies that K[M] is reduced.

Let	 be a conical complex. A conical complex � is a subdivision of 	 if |�| =
|	| and if each face c ∈	 is the union of faces d ∈�. The subdivision is called a
triangulation if � is simplicial. We call a subdivision � rational if all cones Cd

(d ∈�) are rational.
Suppose that � is a subdivision of 	, and let M be a monoidal complex sup-

ported by � and c a face of 	. In the situation of Proposition 2.3, for the toric face
ring K[M] we let Sc be the polynomial subring of S = K[Xe : e ∈E ] generated
by those Xe for which ae ∈Cc. Furthermore, let Mc be the monoidal subcomplex
of M consisting of all faces Dd of � (d ⊂ c) and their associated monoids.

Because Mc is a monoidal subcomplex, one has the natural epimorphism
K[M]→ K[Mc] generalizing the face projection. It is given by t a �→ t a when-
ever a ∈Cc and by t a �→ 0 otherwise. But we have also an embedding K[Mc]→
K[M], since points of |Mc| that are contained in a face of � are also contained
in a face of Mc.

In order to encode the incidence structure of 	, we let A	 denote the ideal in
S generated by the squarefree monomials

∏
h∈H Xh for which {ah : h∈H } is not

contained in a face of 	.

Proposition 2.6. Let notation be as in Proposition 2.3.

(i) The embedding K[Mc] → K[M] is a section of the projection K[M] →
K[Mc] and thus makes K[Mc] a retract of K[M].

(ii) Let c1, . . . , cn be the facets of 	, and set Mi =Mci . Then

IM = A	 + SIM1 + · · · + SIMn
.

Moreover, for each face c ∈	 we have IMc
= Sc ∩ IM.

Proof. Part (i) is evident. The representation of IM in part (ii) follows immedi-
ately from Proposition 2.3: none of the binomial relations is lost on the right-hand
side, which contains also all the monomial relations because these are contained
either in one of the IMi

or in A	. The equation IMc
= Sc ∩ IM restates part (i) as

lifted to the presentations of the algebras.

In particular, we can apply Proposition 2.6 in the case � = 	.

3. Toric Face Rings and Initial Ideals

Next we want to compute initial ideals of the presentation ideals of monoidal com-
plexes considered in Proposition 2.3. Recall that a weight vector for a polynomial
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ring S = K[X1, . . . ,Xn] is an element w ∈Nn, where N denotes the set of nonneg-
ative integers. Given this vector, we assign Xi the weight wi. It is easy to see that
this is equivalent to endowing S with a positive Z-grading under which the mono-
mials are homogeneous. Thus, the whole terminology of graded rings (with the
prefix w) can be applied. In particular, we can speak of the w-degree of a mono-
mial; it is defined by

degw X
a =

n∑
i=1

aiwi = a · w.

A weight vector w determines a weight ( pre-)order if one sets

Xa ≤w Xb ⇐⇒ a · w ≤ b · w.
The only axiom of a monomial order (as considered below) not satisfied is anti-
symmetry: for n > 1 there always exist distinct monomials Xa and Xb such that
simultaneously Xa ≤w Xb and Xb ≤w Xa.

The w-initial component inw(f ) of a polynomial f is just its w-homogeneous
component of highest degree. Let V ⊆ S be a subspace. Then the w-initial
subspace inw(V ) is the subspace generated by the polynomials inw(f ), f ∈ V.
Observe that, for an ideal I ⊆ S, the w-initial subspace inw(I ) is again an ideal of
S. Now well-known results for monomial orders hold also for weight orders. As
an example, for subspaces V1 ⊆ V2 ⊆ S we have inw(V1) = inw(V2) if and only
if V1 = V2.

A monomial order< on S is a total order of the monomials of S such that (i) 1 <
Xa for all monomials Xa and (ii) Xa < Xb implies Xa+c < Xb+c for all mono-
mials Xa,Xb,Xc. Now we can speak similarly of initial terms in<(f ) and initial
subspaces in<(V ) with respect to < . Recall that a Gröbner basis of I is a set of
elements of I whose initial monomials generate in<(I ). Such a set always exists
and then also generates I.

It is an important fact that a monomial order can always be approximated by a
weight order if only finitely many monomials are concerned: for an ideal I of S
there exists a weight vector w ∈Nn such that in<(I ) = inw(I ). Conversely, given
a weight vector w ∈Nn and a monomial order <′, we can refine the weight order
<w to a monomial order < by setting Xa < Xb if a · w < b · w or if a · w =
b ·w and Xa <′ Xb. Observe also that the w-initial terms of a Gröbner basis of I
with respect to < generate inw(I ). For more details and general results on weight
orders and monomial orders, we refer the reader to [4] or [15].

The ideal given in Proposition 2.3 has a special structure. It is generated by
monomials and binomials, and this property persists in the passage to initial ideals.

Lemma 3.1. Let I ⊂ K[X1, . . . ,Xn] be an ideal generated by monomials and
binomials and let w ∈ Nn be a weight vector. Then inw(I ) is generated by the
monomials and the initial components of the binomials in I.

Proof. We refine the weight order to a monomial order < . Using the Buchberger
algorithm to compute a Gröbner basis for I, one enlarges the given set of genera-
tors of I consisting of monomials and binomials only by adding more monomials
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and binomials. The corresponding initial components with respect to the weight
order <w then generate inw(I ).

It is a useful consequence of Lemma 3.1 that the decomposition of the ideal IM in
Proposition 2.6 is passed onto their initial ideals. We need this only for the triv-
ial subdivision of 	 by itself, but it can easily be generalized to the setting of
Proposition 2.6. (Also see [3, Thm. 5.9] for a related result.)

Proposition 3.2. Consider the presentation of K[M] as a residue class ring of
S = K[Xe : e ∈E ] as in Proposition 2.3, a weight vector w on S, and the induced
weight vectors for the subalgebras Sc = K[Xe : ae ∈Mc], c ∈	. We have

inw(I	) = AM + S · inw(IM1)+ · · · + S · inw(IMn
),

where again c1, . . . , cn are the facets of 	 and Mi = Mci . Moreover, inw(IMc
) =

Sc ∩ inw(IM) for all c ∈	.

Proof. It is clear that the right-hand side is contained in inw(I	). For the con-
verse inclusion it is enough to consider the system of generators of IM described
in Proposition 3.1, and there is nothing to say about the monomials in IM. Let f
be the initial component of a binomial g in IM. According to Proposition 2.3 there
are two cases: (1) g belongs to AM; then so does f. (2) g ∈ IMi

for some i; then
f ∈ inw(IMi

), and we are done with the decomposition of inw(I	).

The equality inw(IMc
) = Sc ∩ inw(IM) is left to the reader. It is easily derived

from Proposition 2.3 and Proposition 3.1.

Recall that a function f : X→ R on a convex set X is called convex if

f(tx + (1− t)y) ≤ tf(x)+ (1− t)f(y)

for all x, y ∈ X and t ∈ [0,1]. A function f : |	| → R on a conical complex
	 is called convex if it is convex on all the cones Cc for c ∈ 	. For a function
f : |	| → R, a connected subset W of a facet Cc of 	 is a domain of linearity if
it is maximal with respect to the following property: f |W can be extended to an
affine function on RCc. Now a subdivision � of a conical complex 	 is said to be
regular if there exists a convex function f : |	| → R whose domains of linearity
are facets of �. Such a function is called a support function for the subdivision �.

Let (ae)e∈E be a family of elements of |M| such that {ae : e ∈ E} ∩Mc gen-
erates Mc for each c ∈	. Now we choose a polynomial ring S = K[Xe : e ∈E ]
and define the surjective homomorphism ϕ : K[Xe : e ∈E ]→ K[M] that maps
Xe to t ae as considered in Proposition 2.3. Let w = (we)e∈E be a weight vector
for S.

On the one hand, the weight vector w determines initial ideals, especially the
initial ideal inw(IM). On the other hand, w determines also a conical subdivi-
sion �w of the conical complex 	 as follows. First, every cone Cc ⊆ Rδc and the
weight vector w define a cone

C ′c = R+((ae,we) : e ∈E such that ae ∈Cc) ⊆ Rδc+1.
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The projection on the first δc coordinates maps C ′c onto Cc. The bottom of C ′c
with respect to Cc consists of all points (a,ha) ∈ C ′c such that the line seg-
ment [(a, 0), (a,ha)] intersects C ′c only in (a,ha). In other words, ha = min{h′ :
(a,h′) ∈ C ′c}. Clearly ha > 0 for all a ∈ Cc, a �= 0. The bottom is a subcom-
plex of the boundary of C ′c (or C ′c itself ). Note that its projection onto Cc defines
a conical subdivision of the cone Cc. Second, the collection of these conical sub-
divisions of the cones Cc constitutes a conical subdivision of 	.

Now we show that this subdivision is regular (as defined previously). Toward
this end, we define the function htw : |	| → R as follows. For a ∈ |	| there exists
a minimal face c ∈	 such that a ∈ Cc. Construct C ′c as before, using the weight
vector w. Then we define

htw(a) = min{h′ ∈R : (a,h′)∈C ′c};
that is, htw(a) is the unique vector in the bottom of C ′c that is projected on Cc via
the projection map on the first δc coordinates.

Proposition 3.3. Let M be a monoidal complex supported on a conical com-
plex 	, let (ae)e∈E be a family of elements of |M| such that {ae : e ∈ E} ∩Mc

generates Mc for each c ∈	, and let w = (we)e∈E be a weight vector.

(i) For c ∈	, b1, . . . , bm ∈Cc, and αi > 0 (i = 1, . . . ,m), we have

htw

( m∑
i=1

αibi

)
≤

m∑
i=1

αi htw(bi). (1)

In particular, htw is a convex function on |	|.
(ii) Its domains of linearity are the cones Dd for facets d of �w; that is, equality

holds in (1) if and only if there exists a facet of �w containing b1, . . . , bm.

Therefore, �w is a regular subdivision of 	.

Part (i) uses only the definition of ht and that the cones C ′c are closed under R+-
linear combinations. Part (ii) reflects the fact that an R+-linear combination of
points in the boundary of a cone C lies in the boundary if and only if all points
(with nonzero coefficients) belong to a facet of C (cf. [6, Lemma 7.16]).

Since the weights we are positive, it follows that the cones C ′c are pointed even
if Cc is not. Thus all faces of �w are pointed, too.

For each Dd with d ∈ �w, we let Nd,w be the monoid generated by all ae ∈Dd

for which htw(ae) = we. The cones Dd and the monoids Nd,w form a monoidal
complex Mw =M�w supported by the conical complex �w, the monoidal com-
plex defined by w. Observe that each extreme ray of a cone Dd of �w is the image
of an extreme ray of C ′c for some c ∈	. The latter contains a point (ae,we) and
therefore we = htw(ae), which implies Dd = R+Nd,w. The remaining condi-
tions for a monoidal complex are fulfilled as well. It is important to note that the
monoidal complex Mw is dependent not only on �w or the pair (�w,E) but also
on the chosen weight w.

The algebra K[Mw] is again a residue class ring of the polynomial ring K[Xe :
e ∈E ] under the assignment
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Xe �→
{
t ae if ae ∈ |Mw|,
0 otherwise.

The kernel of this epimorphism is denoted by JMw
. It is, of course, just the pre-

sentation ideal of the toric face ring K[Mw] supported by the conical complex �w
(and here we must allow that indeterminates Xe go to 0).

One cannot expect that inw(IM) = JMw
, since JMw

is always a radical ideal but
inw(IM) need not be radical. However, this is the only obstruction. The next the-
orem generalizes a result of Sturmfels [14; 15], who proved it for the case where
the conical complex is induced by a single monoid and the subdivision �w is a
triangulation. So Theorem 3.4 is essentially equivalent to [2, Thm. 5.11]. See Re-
mark 2.5 for the difference between the two approaches.

Theorem 3.4. Let M be a monoidal complex supported on a conical complex
	, let (ae)e∈E be a family of elements of |M| such that {ae : e ∈E} ∩Mc gener-
ates Mc for each c ∈	, and let w = (we)e∈E be a weight vector. Moreover, let
Mw be the monoidal complex defined by w. Then the ideal JMw

is the radical of
the initial ideal inw(IM).

Proof. For a single monoid this is just [6, Thm. 7.18], and we reduce the general
case to it.

We remarked previously that the ideal JMw
is, by construction, the presenta-

tion ideal of a toric face ring. The underlying complex is �w, a subdivision of 	.

We apply Proposition 2.6 to this subdivision of 	 and to the facets of 	, which
correspond to single monoids M1, . . . ,Mn. Thus

JMw
= A	 + J(M1)w + · · · + J(Mn)w . (2)

By [6, Thm. 7.18] we have J(M1)w = Rad inw(IMi
), and therefore

JMw
= A	 + Rad S · inw(IM1)+ · · · + Rad S · inw(IMn

).

The right-hand side is certainly contained in Rad inw(IM), and it contains inw(IM)

by Proposition 3.2. Since JMw
is a radical ideal, we are done.

Because Rad inw(IM) = JMw
, we always have the inclusion inw(IM) ⊆ JMw

. It
is a natural question to characterize the cases where we have equality, which holds
exactly when the monoids Nd,w are determined by their cones.

Corollary 3.5. Given the hypotheses of Theorem 3.4, the following statements
are equivalent :

(i) inw(IM) is a radical ideal;
(ii) for all facets d ∈ �w one has Nd,w = Mc ∩ Dd , where c ∈ 	 is the smallest

face such that d ⊆ c.

Proof. Condition (ii) clearly depends only on the facets of 	, but this holds like-
wise for condition (i). The equality JMw

= inw(IM) is passed to the facets: we
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obtain the corresponding ideals for the facets ci by intersection with Sci , and in
the converse direction we use equation (2) and Proposition 3.2. Therefore, it is
enough to consider the case of a single cone, for which the corollary is part of [6,
Cor. 7.20].

Before presenting another corollary we characterize the cases in which inw(IM)

is a monomial ideal. We say that a monoidal complex is free if all its monoids
are free commutative monoids. Evidently this implies that the associated conical
complex is simplicial, but the converse does not hold. The free monoidal com-
plexes are exactly those derived from abstract simplicial complexes (cf. Example
2.4(ii)). We note the following obvious consequence of Theorem 3.4.

Lemma 3.6. Given the hypotheses of Theorem 3.4, the following statements are
equivalent :

(i) Rad inw(IM) is a (squarefree) monomial ideal;
(ii) Mw is a free monoidal complex.

In particular, if these equivalent conditions hold then �w is a regular triangula-
tion of 	.

For the next result we recall the definition of unimodular cones. Let L ⊆ Rd be a
lattice (i.e., L is a subgroup of Rd generated by R-linearly independent elements),
and assume that L ⊆ Qd. Let C ⊆ Rd be a rational pointed cone. Since for each
extreme ray R of C the monoid R∩L is normal and of rank 1, there exists a unique
generator e of this monoid. We call these generators the extreme generators of C
with respect to L. When C is simplicial we call C unimodular with respect to L

if the sublattice of L generated by the extreme generators of C with respect to L

generates a direct summand of L.

Theorem 3.7. With the same assumptions as in Theorem 3.4, the following state-
ments are equivalent :

(i) the ideal inw(IM) is a monomial radical ideal;
(ii) the conical complex �w is a triangulation of 	, the extreme generators of a

cone Dd for d ∈ �w with respect to gp(Mc) generate the monoid Nd,w, and
Dd is unimodular with respect to gp(Mc).

Proof. It follows from Corollary 3.5 and Lemma 3.6 that inw(IM) is a monomial
radical ideal if and only if the following statements hold.

(a) Mw is free.
(b) For a facet d ∈ �w, let c ∈ 	 be the smallest face such that d ⊆ c; then

Nd,w = Mc ∩Dd.

It remains to show the equivalence of (a) and (b) to (ii). Yet both sides of this
equivalence depend only on the single monoids Mc and the restrictions of Mw to
them. In the case of a single monoid, the theorem is part of [6, Cor. 7.20].
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Now we can give a nice criterion for the normality of the monoids in a monoidal
complex in terms of an initial ideal with respect to a weight vector.

Theorem 3.8. The following statements are equivalent :

(i) all monoids Mc of the monoidal complex M are normal;
(ii) there exists a family of elements (ae)e∈E of |M| such that {ae : ae ∈ Mc}

generates Mc for each monoid Mc of M and a weight vector w = (we)e∈E
such that inw(IM) is a monomial radical ideal.

Proof. Proving (ii)⇒ (i) again reduces to the case of a single monoid M by
Proposition 3.2. In this case, (ii) implies that M is the union of free monoids with
the same group as M. Then the normality of M follows immediately.

For (i)⇒ (ii) we must construct a regular unimodular triangulation � of R+M
by elements of M, which we choose as a system of generators. The weight of Xe

is then chosen as the value of the support function of the triangulation at ae.
The existence of such a triangulation is a standard result (see e.g. [6, Thm. 2.70],

where it is stated for a single monoid M). The construction goes through for
monoidal complexes as well (and the proof implicitly makes use of this fact).
However, there is one subtle point to be taken into account: If M is normal and
F is a face of the cone R+M, then gp(M ∩ F ) = gp(M) ∩ RF. This condition
ensures that the groups gp(Mc) again form a monoidal complex and that unimod-
ularity of a free submonoid does not depend on the monoid Mc in which it is
considered.

In the investigation of a normal monoid M, one is usually not interested in an ar-
bitrary system of generators of M but rather in Hilb(M). It is well known that one
cannot always find a (regular) unimodular triangulation by elements of Hilb(M),
and this limits considerably the value of results like Theorem 3.8. Nevertheless,
the theorem is powerful when the unimodularity of certain triangulations is given
automatically.

Theorem 3.8 can be used to prove that monoid algebras of normal affine monoids
are Cohen–Macaulay. This result is due to Hochster [8].

Corollary 3.9. Let M be a normal affine monoid. Then the monoid algebra
K[M ] is Cohen–Macaulay for every field K.

Proof. We may assume that M is positive. In fact, M = U(M) ⊕ M ′, where
U(M) is the group of units of M and M ′ is a normal affine monoid that is pos-
itive. Moreover, K[M ] is a Laurent polynomial extension of K[M ′ ] and so we
may replace M by M ′.

It follows from Theorem 3.8 that there exists a system of generators (ae)e∈E
of M and a weight vector w = (we)e∈E such that K[M ] = S/IM , where S =
K[Xe : e ∈E ] and inw(IM) is a monomial radical ideal. Thus, inw(IM) = I" for
an abstract simplicial complex " on the vertex set E. Now standard results from
Gröbner basis theory yield that K[M ] is Cohen–Macaulay if the Stanley–Reisner
ring K["] = S/I" is Cohen–Macaulay.
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Observe that " is a triangulation of a cross-section of R+M. Now one can
use, for example, a theorem of Munkres [7, 5.4.6], which states that the Cohen–
Macaulay property of K["] depends only on the topological type of |"|. A cross-
section of a pointed cone is homeomorphic to a simplex, whose Stanley–Reisner
ring is certainly Cohen–Macaulay.

4. Betti Numbers of Toric Face Rings

A consequence of Proposition 2.3 is a presentation of a toric face ring K[M] over
a polynomial ring S. It is a natural question to determine not only the Betti num-
bers of K[M] over S but also the graded Betti numbers (if there exists a natural
grading). The first question is, of course, which grading is a natural one to con-
sider: Zd may not be the best choice to start with even if 	 is a fan in Rd and the
monoids in M are embedded in Zd.

At first we recall a few facts from graded homological algebra. LetH be an (ad-
ditive) commutative monoid that is positive; in other words, H has no invertible
elements except 0. Usually one defines graded structures on rings and modules
via groups. If H is cancellative (i.e., if a + b = a + c implies b = c for a, b, c ∈
H ), then H can be naturally embedded into the abelian (Grothendieck) group G

of H. One can thus define terms like H-graded by considering G-graded objects
whose homogeneous components with degrees not in H are zero. But we will
have to consider noncancellative monoids, so it may be impossible to embed H

into a group.
Hence we introduce H-graded objects directly. Let R be a commutative ring

and M an R-module (where we as always assume that R is commutative and not
trivial). An H-grading of R is a decomposition R = ⊕

h∈H Rh of R as abelian
groups such that Rh · Rg ⊆ Rh+g for all h, g ∈H. A graded ring together with an
H-grading is called an H-graded ring. Now assume that R is an H-graded ring.
A grading of M is a decomposition M =⊕

h∈H Mh of M as abelian groups such
that Rh ·Mg ⊆ Mh+g for all h, g ∈H. An H-graded R-module M together with an
H-grading is called anH-graded module;Mh is called the h-homogeneous compo-
nent of M, and an element x ∈Mh is said to be homogeneous of degree deg x = h.

From now on we assume that R is a Noetherian H-graded ring. The finitely
generated (hereafter, f.g.) H-graded R-modules build a category. The morphisms
are the homogeneous R-module homomorphisms ϕ : M → M ′ (i.e., ϕ(Mh) ⊆
M ′h for all h∈H ). For h∈H we let M(−h) be the H-graded R-module with ho-
mogeneous components M(−h)g = ⊕

h′∈H,g=h′+h Mh′ for g ∈ H. In particular,
R(−h) is a free R-module of rank 1 with generator sitting in degree h. Since ker-
nels of homogeneous maps of f.g. H-graded R-modules are again f.g. H-graded
and since there exist f.g. free H-graded R-modules, it follows that every f.g. H-
graded R-module has a free (hence projective) resolution

F• : · · · → Fn→ · · · → F0 → 0,

where Fn is a finite direct sum of free modules of the form R(−h) for some h ∈
H and where all maps are homogeneous and R-linear.
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Next we want to pose a condition on H and specialize the considered class
of rings. We say that H is cancellative with respect to 0 if a + b = a implies
b = 0 for a, b ∈H. Let K be a field. An H-graded K-algebra R is a Noetherian
K-algebra R =⊕

h∈H Rh with R0 = K. Because H is positive, all homogeneous
units of R must belong to R0, and R has the unique H-graded maximal ideal m =⊕

h∈H\{0} Rh. We see that R is an H-graded local ring, a notion defined in the ob-
vious way. Observe that m is also maximal in R. The ring R behaves like a local
ring by the following lemma.

Lemma 4.1. Assume that H is cancellative with respect to 0 and that R is an
H-graded K-algebra. Then Nakayama’s lemma holds: If M is a f.g. H-graded
module and if N ⊆ M is a f.g. H-graded submodule such that M = N + mM,
then M = N. In particular, homogeneous elements x1, . . . , xn are a minimal sys-
tem of generators of M if and only if their residue classes constitute a K-vector
space basis of M/mM, in which case we write n = µ(Mm).

Proof. We may assume without loss of generality that N = 0. Now let x1, . . . , xn
be a minimal system of generators of homogeneous elements of M. Since M =
mM we have

xn =
n∑
i=1

ai xi,

where ai ∈m. For all homogeneous components aij of some ai, we may without
loss of generality assume that deg xn = deg aij +deg xi. Fix a homogeneous com-
ponent ain of an. Then deg xn = deg ain + deg xn implies deg ain = 0 because H
is cancellative with respect to 0. Therefore, ain ∈K ∩ m and so ain = 0. Hence
an = 0 and xn is a linear combination of x1, . . . , xn−1, in contradiction to the min-
imality of the system of generators.

Example 4.2. Let F = Nn for some n ≥ 0, and set deg a = ∑
ai for a ∈ F.

Let M be a quotient of F by a homogeneous congruence—that is, a congruence
in which x ∼ y implies deg x = deg y. Then M is cancellative at 0, but in general
it is not cancellative.

Now we can re-prove many well-known results from local and Z-graded ring the-
ory (see e.g. [7, Sec. 1.5]).

For example, let x1, . . . , xn be a minimal system of generators of M, where
deg xi = hi ∈H, and let ϕ : F =⊕n

i=1R(−hi)→ M be the homogeneous map
sending the generator ei ofR(−hi) to xi. Then we claim that Kerϕ ⊆ mF. Indeed,
otherwise it follows that the residue classes of x1, . . . , xn are not a K-vector space
basis of M/mM and thus, by Nakayama’s lemma, x1, . . . , xn is not a minimal
system of generators. This is a contradiction. Consequently, there exist minimal
H-graded free resolutions; that is, given a f.g.H-graded module M, there exists an
H-graded free resolution F• of M such that Ker ∂n ⊆ mFn for all n. Writing Fn =⊕

h∈H R(−h)βRn,h(M), we call the βR
n,h(M) the H-graded Betti numbers of M. Up

to homogeneous isomorphism of complexes, F• is uniquely determined by the re-
quirement that Ker ∂n ⊆ mFn for all n. The numbers βR

n,h(M) are also uniquely
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determined. Indeed, TorRn (M,K) is an H-graded module considered as an R- or
K-module (whereK = R/m) and we have dimK TorRn (M,K)h = βR

n,h(M), which
is easily verified. More results in this direction can be easily verified: a f.g. H-
graded R-module is projective if and only if it is free; proj dimM = proj dimMm;
and so forth.

Next we want to apply the theory discussed so far to the situation of toric face
rings. Let M be a monoidal complex supported on a pointed conical complex 	,
and let (ae)e∈E be a family of elements of |M| such that {ae : e ∈E} ∩Mc gen-
erates Mc for each c ∈	.

According to Proposition 2.3, the defining ideal IM of the toric face ring K[M]
of a monoidal complex is a sum

IM = AM + BM,

where AM is an ideal generated by squarefree monomials and BM is a binomial
ideal containing no monomials. This follows because every binomial generator
vanishes on the vector (1)e∈E but a monomial here has value 1.

Recall that a congruence relation on a commutative monoid M is an equiva-
lence relation ∼ such that, for a, b, c ∈M with a ∼ b, we have a + c ∼ b + c.

Now M/∼ is again a commutative monoid in a natural way.
Consider the free monoid NE with generators fe for e ∈ E. Note that S =

K[Xe : e ∈ E ] is the monoid algebra of NE; the monomials in S are denoted by
Xa = ∏

e∈E Xae
e . On NE we define the congruence relation a ∼ b for a, b ∈ NE

if and only if Xa −Xb ∈BM is a binomial. We let HM denote the monoid NE/∼.
It is well known and not hard to see that S/BM is exactly the monoid algebra of
the monoid HM.

Lemma 4.3. HM is a commutative positive monoid with monoid algebra S/BM.

Proof. We need only show that HM is positive. Let g,h ∈ HM for g,h ∈ NE

such that g + h = 0, and assume that g,h �= 0. It follows from the definition of
HM that Xg+h − 1 ∈ BM. But BM is generated by binomials that vanish on the
zero vector (0)e∈E because all monoids Mc for c ∈	 are positive. The binomial
Xg+h − 1 does not vanish on (0), and this yields a contradiction.

We saw that from the algebraic point of view it is useful for HM to be cancella-
tive with respect to 0. But this property is not strong enough for a combinato-
rial description of the Betti numbers, as a counterexample will show. The next
lemma describes a stronger cancellation property for monoidal complexes associ-
ated with fans.

Lemma 4.4. Assume that 	 is a rational pointed fan in Rn and that M is a
monoidal complex supported on 	 such that Mc ⊆ Zn for c ∈	. (We do not re-
quire that Mc = Cc ∩ Zn.)

(i) If i + j = i + k for i, j , k ∈HM, where i, j, k∈NE, then Xj −Xk ∈ IM.

(ii) The monoid HM is cancellative with respect to 0.
(iii) If Xj −Xk ∈ IM and Xj,Xk /∈ IM, then i = j in HM.
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Proof. (i) Note that the toric face ring K[M] has a natural Zn-grading induced
by the embeddings Mc ⊆ Zn for c ∈	. Then also the polynomial ring K[Xe : e ∈
E ] is Zn-graded if we give Xe the degree ae ∈ Zn. Observe that the ideal BM is
then Zn-graded because the generators are homogeneous with respect to this grad-
ing. Then K[Xe : e ∈E ]/BM is Zn-graded. Equivalently, we obtain the monoid
homomorphism ϕ : HM→ Zn, i �→∑

e∈E ieae.
Now i + j = i + k implies that

∑
e∈E(ie + je)ae =∑

e∈E(ie + ke)ae in Zn,
and thus

∑
e∈E jeae =

∑
e∈E keae. It follows that Xj − Xk ∈ Ker(K[Xe : e ∈

E ]→ K[M]) = IM.

(ii) It follows from (i) that HM is cancellative with respect to 0, because
Xj − 1 /∈ IM.

(iii) If Xj −Xk ∈ IM and Xj,Xk /∈ IM, then Xj −Xk ∈BM by the last obser-
vation of Proposition 2.3. Hence i = j in HM.

Let S = K[Xe : e ∈E ]. Observe that all rings S, S/BM, and K[M] are naturally
HM-graded. For S we set degXi = i ∈HM. SinceXa−1 /∈ IM we have thatHM
is positive, and S is an H-graded local ring. If HM is cancellative with respect
to 0, then one can apply Lemma 4.1 to f.g.HM-graded S-modules like K[M]. In
particular, we can speak about minimal HM-graded resolutions. Our next goal is
to determine the corresponding HM-graded Betti numbers.

For h∈HM we define

"
h
=

{
F ⊆ E : h = g +

∑
e∈F

fe for some g ∈HM

}
.

We see immediately that "
h

is a simplicial complex whose vertex set is a subset of
E; we call "

h
the squarefree divisor complex of h. Moreover, we need a special

subcomplex of "
h

defined as follows:

"
h,M =

{
F ⊆ E : h = g +

∑
e∈F

fe for some g ∈HM such that Xg ∈ IM

}
.

For an arbitrary simplicial complex " on some ordered vertex set E (with order
<), let C̃(") denote the augmented oriented chain complex of " with coefficients
in K—that is, the complex

C̃ •(") : 0→ Cdim"
∂−→ · · · ∂−→ C0

∂−→ C−1 −→ 0,

where Ci = ⊕
F∈",dimF=i KF and ∂(F ) = ∑

F ′∈",dimF ′=i−1 ε(F,F ′)F ′. Here
ε(F,F ′) is 0 if F ′ �⊆ F. Otherwise it is (−1)k if F = {e0, . . . , ei} for elements
e0 < · · · < ei in E, and F ′ = {e0, . . . , ek−1, ek+1, . . . , ei}. Further we let H̃(")i =
Hi(C̃(")•) be the ith reduced simplicial homology group of ". If "′ is a subcom-
plex of ", then we denote by C̃(","′)• = C̃(")•/C̃("′)• the relative augmented
oriented chain complex of " and "′ and by Hi(","′) the ith homology of this
complex.
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Theorem 4.5. Let M be a monoidal complex supported on a rational pointed
conical complex 	. Let (ae)e∈E be a family of elements of |M| such that {ae :
e ∈E} ∩Mc generates Mc for each c ∈	.

(i) For h∈HM such that K[M]
h
�= 0 (equivalently, for

∑
e heae ∈ |M	|) and

i ∈N, we have
βS

ih
(K[M]) = dimK H̃i−1("h

).

Moreover, if
∑

e heae ∈Mc for some c ∈	 then βS

ih
(K[M]) = βS

ih
(K[Mc]).

(ii) Suppose that 	 is a rational pointed fan in Rn and that Mc ⊆ Zn for c ∈	.

For h∈HM such that K[M]
h
= 0 and i ∈N, we have

βS

ih
(K[M]) = dimK H̃i−1("h

,"
h,M).

Proof. Let S = K[Xe : e ∈ E ]. We fix an arbitrary total order < on E. Let
K •(K[M]) denote the Koszul complex of Xe (e ∈ E) tensored with K[M].
This complex is naturally HM-graded, and its HM-graded homology is exactly
Tor•(K,K[M]) (see e.g. [7] for details). Hence we can use this complex to de-
termine the numbers βS

ih
(K[M]) in (i) and (ii). We have

Ki(K[M]) =
⊕

F⊆E, |F |=i
K[M]

(
−

∑
e∈F

fe

)
,

and the differential ∂i : Ki(K[M])→ Ki−1(K[M]) is given on the component

K[M]

(
−

∑
e∈F

fe

)
→ K[M]

(
−

∑
e∈F

fe

)

for F ′,F ⊆ E as the zero map for F ′ �⊆ F or otherwise as the multiplication
ε(F,F ′)Xek , where

ε(F,F ′) =
{

0 if F ′ �⊆ F,

(−1)k−1 if F = {e1 < · · · < ei}, F ′ = F \ {ek}.
For βS

ih
(K[M]) we must first determine Ki(K[M])

h
. Thus we compute

K[M]

(
−

∑
e∈F

fe

)
h

=
⊕

h′∈HM,h′+∑
e∈F fe=h

K[M]
h′ . (3)

We remark that such an h′ exists if and only if F ∈"
h
.

In case (i) we assume that K[M]
h
�= 0 (i.e., Xh /∈ IM). It follows from

h′ +∑
e∈F fe = h that Xh−Xh′ ·∏e∈F Xe ∈ IM. Applying the last statement of

Proposition 2.3, we see that there exists a c ∈	 such that ae ∈Mc if at least one
of the numbers he,h′e is not zero or if e ∈ F. But this situation coincides with the
computation of βS

ih
(K[Mc]), so we obtain βS

ih
(K[M]) = βS

ih
(K[Mc]). We can

replace 	 by the fan associated to C and M	 by its restriction to this fan. Note
that we could replace Mc by any Md such that

∑
e heae ∈Md , which takes care of
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the last assertion of (i). In particular, we may assume that 	 is a rational pointed
fan in Rn.

Since Xh − Xh′ ·∏e∈F Xe ∈ IM and since Xh /∈ IM, it follows from Propo-
sition 2.3 that Xh′ /∈ IM. Assume that there exists another h′′ ∈ HM such that
h′′+∑

e∈F fe = h andXh′′ /∈ IM. We obtain from Lemma 4.4 andh′+∑
e∈F fe =

h′′ +∑
e∈F fe that Xh′ −Xh′′ ∈BM. Hence h′ = h′′ in HM; in other words, h′ is

uniquely determined if it exists. Hence we have

Ki(K[M]) ∼=
⊕

F∈"h, |F |=i
KF

in case (i).
We now consider F ′ ∈ "

h
such that |F ′| = i − 1. Begin by choosing h′ such

that h′ +∑
e∈F fe = h and choosing h′′ such that h′′ +∑

e∈F ′ fe = h. The dif-
ferential Ki(K[M]) → Ki−1(K[M]) on the component KF → KF ′ (which
corresponds to K[M]

h′ → K[M]
h′′) is given by

∂i(F ) =
{

0 if F ′ �⊆ F,

ε(F,F ′)F ′ if F = {e1 < · · · < ei}, F ′ = F \ {ek}.
Hence we see that the complex K •(K[M])

h
coincides with C̃ •−1("h

), and this
yields

βS

ih
(K[M]) = dimK H̃i−1("h

).

It remains to prove (ii). By hypothesis, 	 is a rational pointed fan in Rn at
the outset, and we take h ∈ HM such that K[M]

h
= 0 (i.e., Xh ∈ IM). We

again consider equation (3) to compute βS

ih
(K[M]). We still have that h′ with

h′ +∑
e∈F fe = h exists if and only if F ∈"

h
. Such an h′ is again uniquely de-

termined by Lemma 4.4, as can be seen analogously to case (i). (Note that here
we need the assumption that 	 is a fan.)

Now K[M]
h′ = 0 if and only if F ∈"

h,M. Hence

Ki(K[M]) ∼=
⊕

F∈"h\"h,M, |F |=i
KF.

Similarly to the proof of (i), we see that the complex K •(K[M])
h

coincides with
the complex C̃ •−1("h

,"
h,M). It follows that

βS

ih
(K[M]) = dimK H̃i−1("h

,"
h,M),

and this concludes the proof.

One can easily generalize Theorem 4.5(ii) in the following way. If M satisfies
the properties of Lemma 4.4, then the proof of Theorem 4.5(ii) works for M.

However, in general one cannot expect the compact combinatorial formula to be
true for all monoidal complexes without any further assumptions. Indeed, we have
the following counterexample.
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Figure 1 Möbius strip as a monoidal complex

Example 4.6. Consider the Möbius strip as a monoidal complex M (see Fig-
ure 1) by viewing each quadrangle as a unit square and choosing the monoid over
it as the corresponding monoid. Together with the compatibility conditions, this
determines M completely.

The ideal IM is generated by the binomials resulting from the unit squares and
monomials

XxXz −XuXw, XyXw −XvXz, XxXv −XuXy , XuXvXw, and XuXvXz.

The other monomials are redundant (e.g., XuXyXz = Xz(XuXy − XxXv) +
Xv(XxXz − XuXw) + XvXuXw). Because the binomial relations are homoge-
neous, HM is cancellative with respect to 0.

Let xa stand for the residue class of Xa , and choose the degree

h = xuxvxz = xuxwxy = xx xy xz = xvxwxx ∈HM.

This equation shows that Lemma 4.4 does not hold for M.

Since Xh ∈ IM, it follows that K[M]
h
= 0. The degree-h component of the

Koszul complex is

K •(K[M])
h

: 0→ K 4 → K12 → K9 → 0→ 0,

where K9 is in homological degree 1, and the Betti numbers are

βS

ih
(K[M]) =

{
1 for i = 1,

0 otherwise.

Now we consider the complex C̃ •("h
,"

h,M), which is given by

0→ K 4 → K12 → K 6 → 0→ 0

with K 6 in homological degree 0. Hence H̃1("h
,"

h,M) = Kd for some d ≥ 2,
and the formula of Theorem 4.5(ii) does not hold in this case.

The results of this section imply, in particular, the well-known Tor formula of
Hochster for Stanley–Reisner rings (see [9]). Recall that if " is a simplicial com-
plex on the vertex set [n] and if S = K[X1, . . . ,Xn], then K["] = S/I" is the
Stanley–Reisner ring of", where I" =

(∏
i∈F Xi : F /∈") is the Stanley–Reisner

ideal of ". Now all considered rings have a natural Zn-grading. It is well known
that βS

ia(K["]) = 0 if a is not a squarefree vector—that is, if a is not a 0–1 vector.
(One can either show this via the results of this section or prove it directly.) For a
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squarefree vector a with support W = {i ∈ [n] : ai = 1}, we write βS
iW (K["]) =

βS
ia(K["]) for the corresponding Betti number.

Corollary 4.7 (Hochster). Let" be a simplicial complex on the vertex set [n].
Then, for W ⊆ [n],

βS
iW (K["]) = dimK H̃|W |−i−1("W),

where "W = {F ∈" : F ⊆ W }.
Proof. In Example 2.4 it was observed that there exists a rational pointed fan 	

and an embedded monoidal complex M such that K[M] = K["]. Hence the bi-
nomial ideal BM is 0, and IM = I" is generated by squarefree monomials. The
monoid HM is nothing but the free monoid Nn in this case; thus, the induced grad-
ing is just the natural Nn-grading on K["]. It remains to observe that the complex
C̃ •−1("h

,"
h,M) coincides with the complex C̃|W |−•−1("W), which determines the

homology H̃|W |−i−1("W). This concludes the proof.

Remark 4.8. Let " be a simplicial complex on [n]. Hochster computed also
the local cohomology of the Stanley–Reisner ring as a Zn-graded K-vector space
in terms of combinatorial data of the given complex (see e.g. [7; 13]). Whereas
the Tor formula for all cases is restricted to embedded monoidal complexes (or to
complexes that behave like these), one can prove a Hochster formula for the lo-
cal cohomology in great generality. In fact, the goal of showing such a formula
for toric face rings was one of the starting points for the systematic study of such
rings. See [10] for the case of embedded monoidal complexes and [1] for classes
of rings that include toric face rings as a special case.
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