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1. Introduction

Let X be an algebraic K3 surface over the field of complex numbers. The Z-module
obtained as the image of the first Chern class map

c1 : H1(X, O∗
X)→ H2(X, Z),

when endowed with the bilinear pairing induced by the intersection form on
H2(X, Z), forms an even lattice. By the Lefschetz theorem on (1,1)-classes, this is
precisely the Néron–Severi lattice NS(X) of the surface X—namely, the group of
isomorphism classes of divisors modulo homological equivalence. Furthermore,
according to the Hodge index theorem, NS(X) is an indefinite lattice of rank 1 ≤
pX ≤ 20 and signature of type (1, pX − 1).

In [11], Dolgachev formulated the notion of a lattice polarization of a K3 sur-
face. If M is an even lattice of signature (1, r) with r ≥ 0, then an M-polarization
on X is, by definition, a primitive lattice embedding

i : M ↪→ NS(X) (1)

such that the image i(M) contains a pseudo-ample class. A coarse moduli space
MM can be defined for equivalence classes of pairs (X, i) of M-polarized K3 sur-
faces and an appropriate version of the global Torelli theorem holds.

The focus of this paper is on K3 surfaces that admit a polarization by the unique
even unimodular lattice of signature (1,17). This particular lattice can be realized
effectively as the orthogonal direct sum

M = H ⊕ E8 ⊕ E8,

where H is the standard rank-2 hyperbolic lattice and E8 is the unique even,
negative-definite, and unimodular lattice of rank 8. Note that not all algebraic
K3 surfaces admit such an M-polarization. In fact, the presence of such a struc-
ture imposes severe constraints on the geometry of X. In particular, the Picard
rank pX must be 18, 19, or 20.

A standard observation on the Hodge theory of this special class of K3 sur-
faces is that the polarized Hodge structure of an M-polarized K3 surface (X, i) is
identical with the polarized Hodge structure of an abelian surface A = E1 × E2

realized as a Cartesian product of two elliptic curves. Since both types of surfaces
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involved admit appropriate versions of the Torelli theorem, Hodge theory implies
the well-defined correspondence

(X, i)←→ E1 × E2, (2)

giving rise to a canonical analytic isomorphism between the corresponding moduli
spaces on the two sides. By employing a modern point of view from the frontier
of algebraic geometry with string theory, one can regard (2) as a Hodge-theoretic
duality map—a correspondence that relates two seemingly different types of sur-
faces sharing similar Hodge-theoretic information. (In fact, the use of this termi-
nology for (2) is quite natural. The identification of Hodge structures given by
(2) is a particular case of a more general Hodge-theoretic phenomenon that, sur-
prisingly, was predicted by physics. In string theory this relationship is known as
the F-theory/heterotic string duality in eight dimensions. We refer the reader to
Section 5 for a brief discussion of this aspect.) Our point in this work is that the
resemblance of the two Hodge structures involved in the duality correspondence
(2) is not fortuitous but rather is merely a consequence of an interesting geometric
relationship.

Theorem 1.1. Let (X, i) be an M-polarized K3 surface.

(a) The surface X possesses a canonical involution β defining a Shioda–Inose
structure.

(b) The minimal resolution of X/β is a new K3 surface Y endowed with a canon-
ical Kummer structure. This structure realizes Y as the Kummer surface
Km(E1 × E2) associated to an abelian surface A canonically represented
as a Cartesian product of two elliptic curves. The elliptic curves E1 and E2

are unique up to permutation.
(c) The construction induces a canonical Hodge isomorphism between the M-

polarized Hodge structure of X and the natural H-polarized Hodge structure
of the abelian surface A = E1 × E2.

Section 3 of the paper is devoted entirely to proving this theorem.
In the second half of the paper (Section 4) we describe an application of the

geometric transform just outlined. One important feature of the special class of
M-polarized K3 surfaces is that such polarized pairs (X, i) turn out to be com-
pletely classified by two modular invariants π, σ ∈ C, much the same way as
elliptic curves over the field of complex numbers are classified by the J-invariant.
However, the two modular invariants π and σ are not geometric in origin. They
are defined Hodge-theoretically, and the result leading to the classification is a
consequence of the appropriate version of the global Torelli theorem for lattice
polarized K3 surfaces. However, in the context of the duality map (2), the two in-
variants can be seen as the standard symmetric functions on the J-invariants of the
dual elliptic curves:

σ = J(E1)+ J(E2), π = J(E1) · J(E2). (3)

This interpretation suggests that the modular invariants of an M-polarized K3 sur-
face can be computed by determining the two elliptic curves that appear on the
right-hand side (RHS) of (2).
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Explicit M-polarized K3 surfaces can be constructed by various geometrical
procedures. One such method, introduced in 1977 by Inose [17], constructs a two-
parameter family X(a, b) of M-polarized K3 surfaces by taking minimal resolu-
tions of the projective quartics in P3 associated with the special equations

y2zw − 4x3z+ 3axzw2 − 1
2 (z

2w2 + w4)+ bzw3 = 0, a, b ∈ C. (4)

(An equivalent two-parameter family is known in the physics literature as the
Morrison–Vafa family [25].) In fact, as we will see shortly, this family covers all
possibilities. Every M-polarized K3 surface can be realized as X(a, b) for some
a, b ∈ C. One can regard the Inose quartic (4) as a normal form of an M-polarized
K3 surface.

In Section 4 we shall use the geometric transform of Theorem 1.1 to explic-
itly describe the J-invariants of the two elliptic curves E1 and E2 associated to the
Inose surface X(a, b).

Theorem 1.2. The J-invariants J(E1) and J(E2) of the two elliptic curves as-
sociated to X(a, b) by the transform of Theorem 1.1 are the two solutions of the
quadratic equation

x2 − (a3 − b2 + 1)x + a3 = 0.

As pointed out earlier, by this theorem one obtains explicit formulas for the two
modular invariants of the Inose surface X(a, b).

Corollary1.3. The modular invariants of the Inose surface X(a, b) are given by

π = a3, σ = a3 − b2 + 1. (5)

The power of the geometric transformation underlying the duality map (2) is fully
revealed by the proof of Theorem 1.2. In the absence of such a geometric argu-
ment, proving that statement would require one to undertake long and complex
computations of the periods of the quartic (4). (Such an approach via period com-
putations has been taken in the physics literature [3; 6].)

The method of proof of Theorem 1.2 also provides an explicit description of the
geometric cycle in A × X underlying the Hodge isometry between the two sur-
faces A and X, as predicted by the Hodge conjecture. At the suggestion of Johan
de Jong, we have included a detailed discussion of this in Section 4.9.

It seems that the geometric transformation described by Theorem1.1 is a particu-
lar case of a more general phenomenon. Evidence for this is provided by an analy-
sis of the slightly more general case of K3 surfaces polarized by the rank-17 lattice
H⊕E8 ⊕E7. Surfaces in this class still admit a canonical Shioda–Inose structure.
This leads to a correspondence between these special K3 surfaces and Jacobians
of smooth genus-2 curves. These results will be described in a forthcoming paper.

An interesting alternative arithmetic approach to these questions, due to Noam
Elkies and Abhinav Kumar, has been communicated to the authors [22].

2. Hodge Structures for M-polarized K3 Surfaces

Let (X, i) be an M-polarized K3 surface. Denote by ω ∈ H2(X, C) the class of
a nonzero holomorphic two-form on X. This class is unique, up to multiplication
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by a nonzero scalar. The Hodge structure of X is then essentially given by the
decomposition

H2(X, C) = H2,0(X)⊕ H1,1(X)⊕ H0,2(X),

where H2,0(X) = C · ω, H0,2(X) = C · ω̄, and H1,1(X) = {ω, ω̄}⊥. Because the
lattice i(M) is generated by classes associated to algebraic cycles, we have the
embedding

i(M) ⊂ H1,1(X) ∩ H2(X, Z).

By standard lattice theory (see e.g. [27]), the orthogonal complement N of i(M)
in H2(X, Z) is an even, unimodular sublattice of signature (2, 2). Hence the lat-
tice N is isometric to the orthogonal direct sum H ⊕ H of two rank-2 hyperbolic
lattices. One can therefore choose a basis

B = {x1, x2, y1, y2}
of N with intersection matrix 


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


.

Hence ω belongs to N ⊗ C. Moreover, since the elements of the basis B are
isotropic, it follows that the class ω has nonzero intersection with any one of them.
The class ω is therefore uniquely defined as soon as one imposes the normaliza-
tion condition (ω, y2) = 1.

Let us also note that the basis B can be chosen such that the isomorphism of
real vector spaces

(ω, ·) : 〈x1, x2〉 ⊗ R → C (6)

is orientation reversing. Then, as discussed in [9], the Hodge–Riemann bilinear
relations imply that the normalized period class can be written as

ω = τx1 + x2 + uy1 + (−τu)y2, (7)

where τ, u are uniquely defined (but depending on the choice of basis B) elements
of the complex upper half-plane H.

Definition 2.1. The modular invariants of the M-polarized K3 surface (X, i)
are, by definition,

σ(X, i) := J(τ )+ J(u) and

π(X, i) := J(τ ) · J(u),
(8)

where J is the classical elliptic modular function. (The function J is normalized
such that J(i) = 1 and J(e2πi/3) = 0.)

Let us make two observations justifying the importance of the numbers just de-
fined. First, the numbers σ(X, i) and π(X, i) do not depend on the choice of basis
B. That is because any new choice of basis B ′ can be related to B by an integral
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isometry ϕ of the lattice N that preserves the spinor norm. That is, B ′ = ϕ(B).
But then (as shown e.g. in [15, Sec. 2]) the group O+(N) of such integral isome-
tries is naturally isomorphic to the semi-direct product

(PSL(2, Z)× PSL(2, Z))� Z/2Z ,

with the generator of Z/2Z acting on PSL(2, Z)× PSL(2, Z) by exchanging the
two sides. This clearly proves that such a modification does not affect σ(X, i) and
π(X, i).

Second, thanks to a lattice polarized version of the global Torelli theorem for
K3 surfaces [11], the numbers σ(X, i) and π(X, i) fully classify the polarized
pairs (X, i) up to isomorphism. Simply put, this means that there exists a two-
dimensional complex analytic space MM realizing a coarse moduli space for M-
polarized K3 surfaces and that the period map to the classifying space of polarized
Hodge structures is an isomorphism of analytic spaces:

MM −→ (PSL(2, Z)× PSL(2, Z))� Z/2Z\(H × H). (9)

From this point of view, the modular invariants σ and π can be regarded as natural
coordinates on the moduli space MM.

Note then that the RHS space in (9) also classifies unordered pairs (E1, E2) of
curves of genus 1. The two geometric structures—M-polarized K3 surfaces and
unordered pairs of elliptic curves—have the same classifying moduli space. More-
over, there is an obvious Hodge-theoretic bijective correspondence relating these
structures:

(X, i)←→ (E1, E2) (10)

such that σ(X, i) = J(E1)+ J(E2) and π(X, i) = J(E1) · J(E2).

3. A Geometric Transformation
Underlying the Duality Map

As mentioned in the Introduction, our goal is to place the Hodge-theoretic corre-
spondence (10) into a geometric setting. In what follows, we provide the details
needed for both the statement of Theorem 1.3 as well as its proof. Setting up the
geometric transformation requires a few technical ingredients concerning Shioda–
Inose structures, Kummer surfaces, and elliptic fibrations on a K3 surface. We
shall therefore begin our exposition by presenting some basic facts.

3.1. Shioda–Inose Structures

The notion of a Shioda–Inose structure originates in the works of Shioda and
Inose [18] and of Nikulin [27]. Their ideas were later refined and generalized by
Morrison [24]. These three papers are the main references for the assertions we
review here.

Definition 3.1. Let X be a K3 surface. An involution ϕ ∈ Aut(X) is called a
Nikulin involution if ϕ∗ω = ω for any holomorphic two-form ω.
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If a Nikulin involution ϕ exists on X, then ϕ has exactly eight fixed points. In such
a case, the quotient space

X/{idX,ϕ}
is a surface with eight rational double point singularities of type A1. The minimal
resolution of this singular space is a new K3 surface, which we denote by Y. The
two K3 surfaces X and Y are related by a (generically) two-to-one rational map
π : X ��� Y.

Denote by H2
Y the orthogonal complement in H2(Y, Z) of the eight exceptional

curves. One then has a natural push-forward map (see [24, Sec. 3] or [18, Sec. 3]),

π∗ : H2(X, Z)→ H2
Y;

this map restricts to a morphism of Z-modules,

π∗ : TX → TY, (11)

between the transcendental lattices of the two K3 surfaces.

Remark 3.2. The complexification of the morphism (11) is a morphism of Hodge
structures, but, in general, (11) does not preserve the lattice pairings. In fact, one
can check that

〈π∗(t1),π∗(t2)〉Y = 〈t1, t2〉X + 〈t1,ϕ∗(t2)〉X.

Definition 3.3. A Nikulin involution ϕ defines a Shioda–Inose structure on X
if Y is a Kummer surface and the morphism (11) is a Hodge isometry TX(2) � TY.

The notation TX(2) indicates that the bilinear pairing on the transcendental lattice
TX is multiplied by 2. We refer the reader to Section 3.4 for an explanation of the
significance of the last condition in Definition 3.3 as well as for a short overview
of the basics of Kummer surfaces.

Not every K3 surface admits a Nikulin involution, much less a Shioda–Inose
structure. An effective lattice-theoretic criterion that provides a necessary and suf-
ficient condition for the existence of a Shioda–Inose structure on a K3 surface X
has been given by Morrison.

Theorem 3.4 [24, Thm. 5.7]. Let X be an algebraic K3 surface. There exists a
Shioda–Inose structure on X if and only if the lattice E8 ⊕ E8 can be primitively
embedded into the Néron–Severi lattice NS(X).

The proof of this statement is based on a result of Nikulin [27, Thm. 4.3]. A prim-
itive embedding E8 ⊕ E8 ↪→ NS(X) allows one to define a special lattice isom-
etry of H2(X, Z) that interchanges the two copies of E8 given by the embedding
and acts trivially on their orthogonal complement. In this context, Nikulin’s the-
orem asserts that, possibly after conjugation by a reflection in an algebraic class
of square −2, this lattice isometry can be associated to an involution of the K3
surface X. Morrison shows that this involution actually defines a Shioda–Inose
structure on X.
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Closer to the purpose of this paper, note that Theorem 3.4 implies that an M-
polarized K3 surface (X, i) admits a Shioda–Inose structure. In fact, there exists
a well-defined Shioda–Inose structure β on X canonically associated with the
M-polarization.

This canonical Shioda–Inose structure associated to an M-polarized K3 surface
plays a central role in our construction. However, in this paper we shall take a
different point of view toward defining the Nikulin involution β underlying the
Shioda–Inose structure. Instead of using Theorem 3.4, we shall introduce this in-
volution in a more explicit and geometric manner. The canonical involution β
appears naturally in the context of a special Jacobian fibration on X.

3.2. Jacobian Fibrations on K3 Surfaces

We shall assume throughout this section that X is an algebraic K3 surface.

Definition 3.5. A Jacobian fibration (or elliptic fibration with section) on X is
a pair (ϕ, S) consisting of a proper map of analytic spaces ϕ : X → P1, whose
generic fiber is a smooth curve of genus 1, and a section S in the elliptic fibration ϕ.

If S ′ is another section of the Jacobian fibration (ϕ, S), then there exists an auto-
morphism of X preserving ϕ and mapping S to S ′. (See e.g. [12, Chap. 1] for a
proof of this result.) One can therefore realize an identification between the set
of sections of ϕ and the group of automorphisms of X preserving ϕ. This is the
Mordell–Weil group MW(ϕ, S) of the Jacobian fibration.

Note also that a Jacobian fibration (ϕ, S) on X induces a sublattice

H(ϕ,S) ⊂ NS(X)

constructed as the span of the two cohomology classes associated with the elliptic
fiber and the section, respectively. The lattice H(ϕ,S) is isomorphic to the standard
rank-2 hyperbolic lattice H.

The sublattice H(ϕ,S) determines uniquely the Jacobian fibration (ϕ, S). In other
words, there cannot be two distinct Jacobian fibrations on X determining the same
hyperbolic sublattice in NS(X). However, it is not true that any lattice embedding
of H into NS(X) corresponds to a Jacobian fibration. Nevertheless, the following
assertions hold.

Lemma 3.6. A lattice embedding H ↪→ NS(X) can be associated with a Jaco-
bian fibration (ϕ, S) if and only if its image in NS(X) contains a pseudo-ample
class.

Lemma 3.7. Let �X be the group of isometries of H2(X, Z) preserving the Hodge
decomposition. For any lattice embedding

e : H ↪→ NS(X),

there exists an α ∈�X such that Im(α � e) contains a pseudo-ample class.
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Lemma 3.8. One has the following bijective correspondence:{
isomorphism classes of

Jacobian fibrations on X

}
←→

{
lattice embeddings

H ↪→ NS(X)

} /
�X. (12)

These are standard and well-known results. For proofs, we refer the reader to [9;
21; 30].

Next, let us consider
W(ϕ,S) ⊂ NS(X)

to be the orthogonal complement of H(ϕ,S) in the Néron–Severi lattice of X. It
follows that W(ϕ,S) itself is a negative definite lattice of rank pX − 2. Moreover,
the Néron–Severi lattice decomposes as an orthogonal direct sum:

NS(X) = H(ϕ,S) ⊕ W(ϕ,S).

Let � ⊂ P1 be the set of points on the base of the elliptic fibration ϕ that corre-
spond to singular fibers. For each v ∈ �, denote by Tv the sublattice of W(ϕ,S)

spanned by the classes of the irreducible components of the singular fiber over v
that are disjoint from S. One then has the following result.

Lemma 3.9.

(a) For each v ∈�, Tv is a negative definite lattice of ADE type.
(b) Let W root

(ϕ,S) be the lattice spanned by the roots of W(ϕ,S). (A root of NS(X) is
an algebraic class of self-intersection −2.) Then

W root
(ϕ,S) =

⊕
v∈�

Tv. (13)

The decomposition (13) is unique up to a permutation of the factors.
(c) There exists a canonical group isomorphism:

W(ϕ,S)/W root
(ϕ,S)

�−→ MW(ϕ). (14)

Parts (a) and (b) are standard facts from Kodaira’s classification of singular fibers
of elliptic fibrations (see e.g. [20]). The last statement is due to Shioda [33].

Let us briefly indicate the construction of the correspondence in (14). Given γ ∈
W(ϕ,S), denote by L the unique holomorphic line bundle over X such that c1(L) =
γ. Let x ∈ X be a point belonging to a smooth fiber Eϕ(x). Then the restriction of
L to Eϕ(x) is a holomorphic line bundle of degree 0, so there exists a unique y ∈
Eϕ(x) such that

L|Eϕ(x) � OEϕ(x)(x − y).
The assignment x �→ y extends by continuity to an automorphism of the K3 sur-
face and hence to an element in MW(ϕ).

3.3. A Canonical Involution

We shall now apply the general theory presented in the previous section in the con-
text of an M-polarized K3 surface (X, i).
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By standard lattice theory (see [27]), there exist exactly two distinct ways (up
to an overall isometry) in which one can embed the standard rank-2 hyperbolic
lattice H isometrically into M. The two possibilities are distinguished by the iso-
morphism type of the orthogonal complement of the image of the embedding. The
orthogonal complement has rank 16, and it is unimodular, even, and negative defi-
nite. As is well known, up to isomorphism there exist only two such lattices. One
is E8 ⊕ E8. The other is D+

16, the unimodular index-2 overlattice of the negative
definite lattice associated with the root system D16.

In the presence of an M-polarization on X, the two distinct isometric embed-
dings of the rank-2 hyperbolic lattice H into M determine two distinct classes of
embeddings of H into the Néron–Severi lattice NS(X). According to Lemma 3.8,
one thus obtains two special Jacobian fibrations ( 1, S1) and ( 2, S2) on X:

 1, 2 : X → P1.

We shall use the term standard fibration for  1 (associated to the rank-16 lattice
E8 ⊕ E8) and alternate fibration for  2 (associated to the rank-16 lattice D+

16).

Proposition 3.10. Let (X, i) be an M-polarized K3 surface.

(a) The standard fibration ( 1, S1) has two singular fibers of Kodaira type II∗.
The section S1 is the unique section of  1 whose cohomology class belongs
to i(M).

(b) The alternate fibration ( 2, S2) has a singular fiber of type I∗
12. There are

precisely two sections S2 and S ′
2 of  2 with cohomology classes represented

in i(M). Sections S2 and S ′
2 are disjoint. Moreover, the Mordell–Weil group

MW( 2) contains a canonical involution β ∈ Aut(X) that exchanges S2

and S ′
2.

Proof. The assertions are consequences of the general principles reviewed in Sec-
tion 3.2. In the case of the standard fibration ( 1, S1), we have the orthogonal
decomposition

W root
( 1,S1)

= E8 ⊕ E8 ⊕ U root,

where U is the orthogonal complement of i(M) in NS(X) and U root is the root lat-
tice of U . This decomposition, combined with Lemma 3.9(b), proves the existence
of two singular fibers of Kodaira type II∗ in the elliptic fibration 1. It also follows
immediately that S1 is the unique section of  1 with associated cohomology class
in i(M). One can represent the rational curves obtained as irreducible components
of the two II∗ fibers of  1, as well as the section S1, in the following dual diagram.

C1• C2• ��
D2•��

D1•
C3•��

C5• C6• C7• C8• C9• S1• D9• D8• D7• D6• D5• D3• ��
C4• D4•

(15)

The case of the alternate fibration ( 2, S2) can be handled similarly. In this sit-
uation, we obtain the orthogonal decomposition
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W( 2,S2 ) = D+
16 ⊕ U .

Since any given root of this lattice must lie in one of the two factors, it follows that

W root
( 2,S) = D16 ⊕ U root.

Once more, Lemma 3.9(b) confirms that  2 has a singular fiber of type I∗
12. Next

observe that, by Lemma 3.9(c), there is an isomorphism of groups:

MW( 2) � Z/2Z ⊕ U/U root. (16)

The image β ∈ MW( 2) of the generator of the Z/2Z factor in (16) determines
naturally a nontrivial canonical involution of the K3 surface X. In particular, the
Jacobian fibration ( 2, S2) has an extra section S ′

2, the image of S2 through β.
One can easily see from (16) that S2 and S ′

2 are the only sections of the elliptic
fibration  2 with cohomology classes represented in the polarizing lattice i(M).

In fact, one can clearly see the special I∗
12 singular fiber together with two sec-

tions in the dual diagram (15). This special singular fiber of  2 is given by the
divisor,

C2 +C4 + 2(C3 +C5 +· · ·+C9 +S1 +D9 +D8 +· · ·+D3)+D4 +D2, (17)

whereas the two sections S2 and S ′
2 are represented by the two extremal curves C1

and D1.

Remark 3.11. The effect of the involution β on diagram (15) amounts to a right–
left flip that sends the C-curves to the corresponding symmetric D-curves and
vice versa. In particular, the restriction of β to the middle rational curve S is a
nontrivial involution of S with two distinct fixed points.

Remark 3.12. The induced morphism β∗ : H2(X, Z) → H2(X, Z) restricts to
the identity on the orthogonal complement of i(M). In particular, β∗ acts trivially
on the transcendental lattice TX.

One may guess now that it is the canonical involution β of Proposition 3.10 that
gives rise to the canonical Shioda–Inose structure on X we mentioned at the end
of Section 3.1.

We are now in position to formulate the main result of this paper.

Theorem 3.13. Let (X, i) be an M-polarized K3 surface.

(a) The involution β introduced in Proposition 3.10(b) defines a Shioda–Inose
structure on X.

(b) The minimal resolution Y of the quotient X/β is a K3 surface with a canoni-
cal Kummer structure. This structure realizes Y as the Kummer surface of an
abelian surface A = E1 × E2 canonically represented as a Cartesian product
of two elliptic curves. The two elliptic curves are unique up to permutation.

(c) The geometric transformation described in (b) induces a canonical Hodge
isomorphism between the M-polarized Hodge structure of X and the natural
H-polarized Hodge structure of A.
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Before embarking on the proof of Theorem 3.13, let us comment briefly on the
two special Jacobian fibrations 1 and 2 that we have uncovered in this section.
These two Jacobian fibrations are canonically associated to an M-polarization on
a K3 surface X. (There is also an interesting toric reinterpretation of  1 and  2.

They are induced from toric fibrations on a particular toric Fano three-fold by
restriction to the anticanonical hypersurface. These two toric fibrations are beau-
tifully illustrated in [5, Fig. 1].) However, so far, it is the standard fibration 1 that
has received the lion’s share of attention in the literature. (This is also the reason
why we decided to use the terms standard for 1 and alternate for 2.) An analy-
sis of 1 appears in the original work of Inose [17] and, over the last ten years, 1

has been extensively studied in the string theory literature owing to its connection
with the E8 ⊕ E8 heterotic string theory in eight dimensions. The alternate fibra-
tion  2, however, has been largely overlooked. Nevertheless, it is  2, with its
nontrivial Mordell–Weil group, that gives rise to a canonical Shioda–Inose struc-
ture on the M-polarized K3 surface X and leads one to a geometric explanation
for the Hodge-theoretic duality map (10). The alternate fibration  2 will play a
central role in the remainder of this paper.

3.4. Kummer Surfaces

In order to prove Theorem 3.13, we shall need a few classical results concerning
the geometry of Kummer surfaces. (For detailed proofs of the facts mentioned in
this brief review, see [24; 26; 30].)

Let A be a two-dimensional complex torus. Such a surface is naturally endowed
with an abelian group structure. One can therefore consider on A the special in-
volution given by −id. The fixed locus of −id consists of sixteen distinct points.
Hence, the quotient

A/{±id} (18)

is a singular surface with sixteen rational double point singularities of type A1. It
is well known that the minimal resolution of (18) is a special K3 surface Km(A)
called the Kummer surface of A.

As a first important feature of Kummer surfaces, we note that the Hodge struc-
tures of A and Km(A) are closely related. Indeed, denote by p : A → Km(A) the
rational map induced by the “quotient and resolution” procedure described previ-
ously. Then, as explained for example in [24], one has a natural morphism

p∗ : H2(A, Z)→ H2
Km(A),

where H2
Km(A) is the sublattice of H2(Km(A), Z) of classes orthogonal to all six-

teen exceptional curves. The complexification of p∗ sends the class of a holomor-
phic two-form on A to a class representing a holomorphic two-form on Km(A).
Then we have the following result as an immediate consequence of [24, Prop. 3.2].

Proposition 3.14. The map p∗ is an isomorphism, and it induces the canonical
Hodge isometry

H2(A, Z)(2)
p∗� H2

Km(A). (19)
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Moreover, p∗(TA) = TKm(A) and (19) leads to a Hodge isometry at the level of
transcendental lattices:

TA(2)
p∗� TKm(A). (20)

Kummer surfaces represent a large class of K3 surfaces. In fact, it is known (see
e.g. [30]) that they form a dense subset in the moduli space of K3 surfaces. One
would therefore like to have a criterion for determining whether a given K3 sur-
face is Kummer. An effective lattice-theoretic criterion for answering this question
was introduced by Nikulin in [26].

Definition 3.15. Let V be the four-dimensional vector space over the field F2.

Consider the rank-16 even lattice

R =
⊕
v∈V

Zxv (21)

whose bilinear form is induced by (xv , xv ′) = −2δvv ′ . By definition, the Kummer
lattice K is the lattice in R ⊗ Q spanned (over Z) by the following elements:

{xv | v ∈V} ∪
{

1

2

∑
v∈W

xv
∣∣ W ⊂ V is an affine hyperplane

}
.

(We wish to thank Afsaneh Mehran for pointing out an innacuracy in a previous
formulation of this definition.)

The Kummer lattice K has rank 16, is even and negative definite, and has the same
discriminant group and discriminant form as the orthogonal sum:

H(2)⊕ H(2)⊕ H(2),

where H is the standard rank-2 hyperbolic lattice.
The connection with Kummer surfaces is established by the fact that, given a

Kummer surface Km(A), we have the natural primitive lattice embedding

K ↪→ NS(Km(A)),

whose image is the minimal primitive sublattice of NS(Km(A)) containing the
classes of the sixteen exceptional curves.

Nikulin’s criterion asserts that the converse of the preceding statement is also
true.

Theorem 3.16 (Nikulin [26]).

(a) A K3 surface Y is a Kummer surface if and only if there exists a primitive lat-
tice embedding K ↪→ NS(Y).

(b) For every primitive lattice embedding e : K ↪→ NS(Y), there exist a unique
and canonically defined two-dimensional complex torus A and a Hodge isom-
etry α of H2(Y, Z) such that Y = Km(A) and Im(α � e) is the minimal prim-
itive sublattice of NS(Y) containing the sixteen exceptional curves that arise
during the Kummer construction process.
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Note that it is possible for a K3 surfaceY to have multiple nonequivalent Kummer
structures; in other words, there exist nonisomorphic complex tori A and A′ such
that

Km(A) � Y � Km(A′).
However, the last part of Theorem 3.16 illustrates that, once a primitive lattice
embedding of the Kummer lattice K into NS(Y) is fixed, there exists a unique
complex torus A compatible with the embedding of K. See [16] for a detailed
treatment of the classification problem for Kummer structures on a K3 surface.

For the remainder of this section we shall restrict our attention to Kummer sur-
faces Km(A) associated to abelian surfaces A = E1 × E2 realized as a Cartesian
product of two elliptic curves.

Let us first introduce the basic criterion for an abelian surface A to have this
property. According to the Hodge index theorem, the Néron–Severi lattice of A,
NS(A), is an even lattice of signature (1, r) with 0 ≤ r ≤ 3. If A splits as a Carte-
sian product E1 × E2 of two elliptic curves, then the cohomology classes of the
two curves E1 and E2 span a rank-2 hyperbolic sublattice of NS(A). The converse
of this statement also holds.

Proposition 3.17. Let A be an abelian surface.

(a) The surface A can be realized as a product of two elliptic curves if and only if
there exists a primitive lattice embedding H ↪→ NS(A).

(b) For every primitive lattice embedding e : H ↪→ NS(A), there exist two ellip-
tic curves E1 and E2 (unique up to permutation) and an analytic isomorphism
A � E1 × E2 such that Im(e) is spanned by the cohomology classes of E1

and E2.

Proof. This is a lattice-theoretic version of Ruppert’s criterion for an abelian sur-
face to be isomorphic to a Cartesian product of two elliptic curves. For proofs see
[31] and [4, Chap. 10, Sec. 6].

Note that it is possible for an abelian surface A to be represented as a Cartesian
product of two elliptic curves in two or more nonequivalent ways. One can see
that this phenomenon happens only when the Picard rank of A is maximal (pA =
4). In such a case, the number of nonequivalent representations A = E1 × E2 has
an interesting interpretation in the context of the class group theory of imaginary
quadratic fields [15].

Let us assume now that a splitting A = E1 × E2 has been fixed. In this con-
text, the Cartesian product structure of A gives rise to a special configuration of 24
curves on the Kummer surface Km(A). In order to introduce this curve configura-
tion, let {x0, x1, x2, x3} and {y0, y1, y2, y3} be the two sets of points of order 2 on
E1 and E2. Denote by H i and Gj (0 ≤ i, j ≤ 3) the rational curves on Km(A) ob-
tained as the proper transforms of the images, under the quotient map, of E1×{yi}
and {xj} × E2, respectively. Let also E ij be the exceptional curve on Km(A) as-
sociated to the double point (xi, yj ) of A. Then one has the following intersection
numbers:
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H i · Gj = 0,

Hk · E ij = δki,
Gk · E ij = δkj .

Definition 3.18. The configuration of 24 rational curves

{H i, Gj , E ij | 0 ≤ i, j ≤ 3} (22)

is called the double Kummer pencil of Km(A). The minimal primitive sublattice
of NS(Km(A)) containing the classes of the curves in (22) is called the double
Kummer lattice of Km(A).We denote the isomorphism class of this lattice by DK.

Remark 3.19. By standard lattice theory (see e.g. [27, Thm. 1.14.4]), the double
Kummer lattice DK has a unique primitive embedding into the K3 lattice up to an
overall isometry. The orthogonal complement of any such embedding is isomor-
phic to

H(2)⊕ H(2).

Let us also note that the double Kummer lattice DK contains a natural finite-index
sublattice that is isomorphic to

K ⊕ H(2).

The LHS term is, of course, the minimal primitive sublattice of NS(Km(A)) con-
taining the sixteen exceptional curves E ij , while the factor on the RHS is spanned
by the two classes

2H i +
3∑
j=0

E ij and 2Gj +
3∑
i=0

E ij . (23)

These two classes do not depend on the indices i and j. Moreover, one can verify
that the two classes of (23) are precisely the images of the cohomology classes in
H2(A, Z) associated to E1 and E2 under the morphism π∗ of Proposition 3.14.

In summary, we have seen that every Kummer surface Z = Km(E1 × E2) as-
sociated to an abelian surface that can be realized as a Cartesian product of two
genus-1 curves comes equipped with a natural primitive lattice embedding DK ↪→
NS(Z). In fact, one can see that the existence of such an embedding is a suffi-
cient criterion for a K3 surface Z to be a Kummer surface associated to a product
abelian surface.

Proposition 3.20. Let Z be a K3 surface. Assume that a primitive lattice em-
bedding e : DK ↪→ NS(Z) has been given. Then there exist two elliptic curves E1

and E2 and a Hodge isometry α of H2(Z, Z) such that

Z = Km(E1 × E2),

and Im(α�e) is the double Kummer lattice associated to the Kummer construction.
The two elliptic curves E1 and E2 are unique (up to permutation) and canonically
defined.
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Proof. This proposition is a consequence of the results presented earlier in this
section. Let

e : DK ↪→ NS(Z)

be a primitive lattice embedding. Then there exists a primitive embedding of
the Kummer lattice K in e(DK). Moreover, by standard lattice theory (see [27,
Sec. 15]), this embedding is unique up to an overall Hodge isometry of H2(Z, Z).
Therefore, by Nikulin’s criterion, one has a canonical Kummer structure on Z . In
other words, Z = Km(A) with A uniquely defined. Then, according to Proposi-
tion 3.14, we have the Hodge isometry

H2(A, Z)(2)
p∗� H2

Z. (24)

But H2
Z contains a canonical primitive sublattice of type H(2), the orthogonal com-

plement of the Kummer lattice in e(DK). The preimage of this lattice in H2(A, Z)
is primitively embedded in NS(A) and is isomorphic to H. Hence, by Proposi-
tion 3.17, the abelian surface splits canonically as a product of two elliptic curves.

3.5. Proof of Theorem 3.13

We are now in position to give detailed proofs for the statements of Theorem 3.13.
Let us begin by observing that β is a Nikulin involution. Ifω is a given holomor-

phic two-form on X, then either β∗ω = ω or β∗ω = −ω. But the latter possibility
implies (see e.g. [36]) that either β has no fixed locus (a case that is ruled out by
Remark 3.11) or that the fixed locus of β is a union of curves (a case that is ruled
out because β acts without fixed points on the smooth fibers of 2). Therefore the
only possibility that can occur is β∗ω = ω, which by definition means that β is a
Nikulin involution.

Remark 3.21. As is well known (see e.g. [28, Sec. 5] for a proof ), the fixed lo-
cus of a Nikulin involution always consists of eight distinct points. The eight fixed
points associated to β appear nicely in the context of the alternate fibration 2. As
noted in Remark 3.11, two of them lie on the smooth rational curve S1 (the mid-
dle curve of the dual diagram (15), also the section of the standard fibration  1).

The additional six fixed points lie on the singular fibers of  2. For instance, in
the generic case, the alternate elliptic fibration 2 has (in addition to the I∗

12 fiber)
another six singular fibers of Kodaira type I1, each consisting of a reduced ratio-
nal curve with one node. The extra six fixed points of β are precisely the nodes of
those fibers.

Let then Y be the K3 surface obtained as the minimal resolution of the quotient of
X through β. We show now that Y is a Kummer surface. In order to carry out our
argument, we denote by F1,F2, . . . ,F8 the eight exceptional curves that arise after
resolving the eight rational singularities. Assume that F1 and F2 are associated to
the two fixed points of β that lie on the I∗

12 fiber of  2.

Recall that the alternate elliptic fibration  2 is left invariant by the involution
β. Therefore,  2 induces a new elliptic fibration on Y; we denote this fibration
by )2.



370 Adrian Clingher & Charles F. Doran

X

 2 ��
��

��
��

�
π ��������� Y

)2����
��

��
�

P1

(25)

It is then not hard to see that the I∗
12 fiber of  2 becomes a singular fiber of Ko-

daira type I∗
6 in the fibration )2. We represent its irreducible components in the

following dual diagram.

R2•
��

��
�

F1•
��

��
�

R3•
��

��
�

R5• R6• R7• R8• R9• S̃1•
		

		
	

R4• F2•

(26)

The curves Ri, 1 ≤ i ≤ 9, are the images of the curves Ci (and also Di) of X (re-
call diagram (15)). The curve S̃1 in (26) is the quotient of the rational curve S1 of
diagram (15) by the involution β. Note also that R1 is a section in )2 while the
unaccounted-for exceptional curves F3,F4, . . . ,F8 are disjoint from R1 and form
irreducible components in the additional singular fibers of )2.

R1• R2•
��

��
�

F1•
��

��
�

R3•
��

��
�

R5• R6• R7• R8• R9• S̃1•
		

		
	

R4• F2•

(27)

F3• F4• F5• F6• F7• F8• (28)

Lemma 3.22. Let L(Y) be the minimal primitive sublattice of NS(Y) contain-
ing the classes associated to the eighteen curves Ri (1 ≤ i ≤ 9), Fj (1 ≤ j ≤ 8),
and S̃1. The lattice L(Y) is isomorphic to the double Kummer lattice DK.

Proof. Denote by N the minimal primitive sublattice of NS(Y) containing the
eight exceptional curves Fi, 1 ≤ i ≤ 8. The lattice N can also be regarded (see
[24, Lemma 5.4]) as the span of the nine classes

F1,F2, . . . ,F8,
1

2

8∑
i=1

Fi.

This is the so-called Nikulin lattice (see [24, Sec. 5]). It has rank 8 and has the
same discriminant group and discriminant form as H(2)⊕ H(2)⊕ H(2).

Denote by H2
Y the orthogonal complement of N in H2(Y, Z). Then, as de-

scribed in Section 3.1, the Shioda–Inose construction induces the natural push-
forward morphism
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π∗ : H2(X, Z)→ H2
Y ↪→ H2(Y, Z).

Adopting the notation of diagram (15), we have π∗(S1) = 2S̃1 + F1 + F2 and
π∗(Cj ) = π∗(Dj ) = Rj for 1 ≤ j ≤ 9. In particular, the image under π∗ of the
class of the elliptic fiber of the standard fibration  1 on X is

2R1 + 4R2 + 6R3 + 3R4 + 5R5 + 4R6 + 3R7 + 2R8 + R9. (29)

We consider then the following sublattices of H2
Y:

(a) E = the span of the curves Rj , 1 ≤ j ≤ 8;
(b) H = the the span of π∗(S1) and (29);
(c) Q = π∗(i(M)⊥).

Using Remarks 3.2 and 3.12, we deduce that sublattices (a)–(c) are orthogonal to
each other. Moreover, E is isomorphic to E8 (hence unimodular), H is isomor-
phic to H(2), and Q is isomorphic to H(2) ⊕ H(2). Hence, the discriminant of
E ⊕ H ⊕ Q is 26. But the lattice H2

Y has the same discriminant as its orthogonal
complement N, which in turn has discriminant 26. Because E ⊕H⊕Q is clearly a
sublattice of H2

Y, the equality of the two discriminants allows us to conclude that

H2
Y = E ⊕ H ⊕ Q. (30)

In particular, Q must be primitively embedded in H2(Y, Z).
Now, by standard lattice theory [27, Thm. 1.14.4], up to an overall isometry there

exists a unique primitive lattice embedding of H(2)⊕H(2) into the K3 lattice. By
Remark 3.19, the orthogonal complement of such an embedding is isomorphic to
the double Kummer lattice DK. Hence we see that Q⊥ is isomorphic to DK.

At this point, let us also note the primitive embedding L(Y) ⊂ Q⊥. In order
to show that L(Y) = Q⊥, we need only verify that the two lattices involved have
the same rank. The rank of Q⊥ is 18, since it is isomorphic to DK. By definition,
rank(L(Y)) ≤ 18. But

N ⊕ E ⊕ H ⊂ L(Y)
and so rank(L(Y)) ≥ 18. It follows that L(Y) = Q⊥ and therefore L(Y) is iso-
morphic with the double Kummer lattice DK.

Lemma 3.2 shows that, by construction, Y is endowed with a canonical primitive
lattice embedding DK ↪→ H2(Y, Z). This, in connection with Proposition 3.20,
implies that there exist two canonically defined elliptic curves E1, E2 (unique up
to permutation) such that

Y = Km(E1 × E2). (31)

Moreover, Proposition 3.20 together with a weak form of the global Torelli the-
orem [2, Sec. 8, Thm. 11.1] implies that L(Y) is precisely the double Kummer
lattice associated to the Kummer construction (31).

In order to check Theorem 3.13(c), consider the diagram of rational maps

X
π��� Y

p��� E1 × E2, (32)
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where π is the map induced by the Shioda–Inose construction and p is the map
associated with the Kummer construction. The K3 surface X carries the lattice po-
larization i(M) ⊂ H2(X, Z), whereas the abelian surface E1 × E2 is H-polarized
by the sublattice P ⊂ H2(E1 × E2, Z) spanned by the classes of E1 and E2. In
both cases, the orthogonal complement of the polarizing lattice is isomorphic to
H ⊕ H. One then has the push-forward morphisms

H2(X, Z)
π∗−→ H2(Y, Z)

p∗←− H2(E1 × E2, Z). (33)

From the proof of Lemma 3.22 it follows that π∗(i(M)⊥) = Q = L(Y)⊥. By
Proposition 3.14, p∗(P⊥) = L(Y)⊥. Moreover, the restrictions of π∗ on i(M)⊥
and of p∗ on P⊥ induce isomorphisms of Hodge structures:

i(M)⊥(2)
π∗� L(Y)⊥, P⊥(2)

p∗� L(Y)⊥.
Taking (p∗)−1 �π∗, one thus obtains a canonical isomorphism of polarized Hodge
structures,

i(M)⊥
π∗� P⊥,

between the surfaces X and E1 × E2.

4. An Explicit Computation

In the first half of this paper we described a geometric correspondence,

(X, i) �→ A(X) = E1 × E2,

that associates to any given M-polarized K3 surface X an abelian surface A(X)
realized as a Cartesian product of two elliptic curves. In this second half of the
paper we shall make the correspondence explicit. In other words, we shall com-
pute the J-invariants of the two elliptic curves E1 and E2.

Observe that, by the Hodge-theoretic equivalence underlying the correspon-
dence, the modular invariants of an M-polarized K3 surface (X, i) can be writ-
ten as

σ(X, i) = J(E1)+ J(E2),

π(X, i) = J(E1) · J(E2).

Therefore, as an immediate application of the calculation of the two J-invariants
of E1 and E2, we shall obtain formulas for the modular invariants associated to an
explicitly defined M-polarized K3 surface.

4.1. The Inose Form

In his 1977 paper [17], Inose introduced an explicit two-parameter family of K3
surfaces that carry canonical M-polarizations. The surfaces in this family are de-
fined as follows.

Let a, b ∈ C. Denote by Q(a, b) the surface in P3 (with homogeneous coordi-
nates [x, y, z,w]) defined by the quartic equation
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y2zw − 4x3z+ 3axzw2 − 1
2 (z

2w2 + w4)+ bzw3 = 0. (34)

We shall refer to the polynomial on the left side of (34) as the Inose form. The
surface Q(a, b) has only rational double point singularities and its minimal reso-
lution, denoted X(a, b), is a K3 surface. Moreover, by construction, the surface
X(a, b) has a canonical M-polarization. In order to see this, let us note that the in-
tersection of Q(a, b) with the hyperplane {w = 0} is a union of two lines L1 ∪L2,
where

L1 := {z = w = 0}, L2 := {x = w = 0}.
Moreover, by standard singularity theory, the points [0,1, 0, 0] and [0, 0,1, 0] are
rational double point singularities on Q(a, b) of types A11 and E6, respectively. As
a result, on the minimal resolution X(a, b) we have the following configuration of
rational curves.

a1• a2• a3• a4• a5• a6• a7• a8• a9• a10• a11• L2• e1• e2• e3• e5• e6•
L1• e4•

(35)
Note the similarity to diagram (15). The lattices spanned by

{a1, a2,L1, a3, a4, a5, a6, a7},
{a11,L2, e1, e2, e3, e4, e5, e6},

{a9, 2a1 + 4a2 + 3L1 + 6a3 + 5a4 + 4a5 + 3a6 + 2a7 + a8}
are mutually orthogonal, and they are also isomorphic to E8, E8, and H, respec-
tively. As a consequence, their direct sum provides a canonical primitive lattice
embedding M ↪→ NS(X(a, b)).

4.2. The Main Formula

In the balance of this section we prove the following theorem.

Theorem 4.1. Let E1 and E2 be the two elliptic curves associated to the M-
polarized K3 surface X(a, b) by the correspondence of Theorem 3.13. Then J(E1)

and J(E2) are the two solutions of the quadratic equation

x 2 − (a3 − b2 + 1)x + a3 = 0. (36)

As mentioned previously, two consequences of this theorem are as follows.

Corollary 4.2. The modular invariants of the M-polarized K3 surface X(a, b)
are given by

π = a3 and σ = a3 − b2 + 1. (37)

Corollary 4.3. Every M-polarized K3 surface is isomorphic to X(a, b) for
some a, b ∈ C. (Here we mean an isomorphism of M-polarized K3 surfaces.)
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Our strategy for proving Theorem 4.1 relies on a detailed analysis of the two basic
algebraic invariants associated with the elliptic fibration )2 on the Kummer sur-
face Y: the functional and homological invariants.

4.3. Invariants Associated to an Elliptic Surface

Let X be a smooth compact complex analytic surface and let ϕ : X → C be a
proper analytic map to a smooth curve such that the generic fiber of ϕ is a smooth
elliptic curve. Assume also that ϕ does not have multiple fibers. Kodaira [19; 20]
associated two fundamental invariants to a such a structure. We present them here
following the exposition of Friedman and Morgan in [12, Sec. 1.3.3].

(a) The functional invariant is an analytic function Jϕ : C → P1. It can be de-
fined in the following manner. Let U be the complement in C of the critical
values of ϕ. Then Jϕ is the meromorphic continuation of the composite map

U
e−→ H/PSL(2, Z)

J−→ C,

which takes a smooth elliptic fiber to its associated point in the moduli space
of elliptic curves and then evaluates the classical elliptic modular function at
that respective point. (Recall that J is normalized such that the two orbifold
points of H/PSL(2, Z) are mapped to 0 and 1.)

(b) The homological invariant is, by definition, the sheaf Gϕ = R1ϕ∗ZX. The re-
striction of Gϕ on U is locally constant and oriented, and its stalk at every point
is isomorphic with Z ⊕ Z. Moreover, ϕ has no multiple fibers and so Gϕ =
i∗(Gϕ|U), where i : U ↪→ C and hence Gϕ is determined by its restriction on
U. The latter sheaf is, however, fully determined by the conjugacy class of its
monodromy map:

ρϕ : π1(U, t)→ SO(H1(ϕ−1(t), Z)). (38)

We may therefore regard the homological invariant of ϕ as an element in
Hom(π1(U), SL(2, Z)) modulo conjugation.

The two invariants are not unrelated. Assume for simplicity that Jϕ is not con-
stant, since the cases of interest to us will definitely satisfy this condition. Then
set U0 ⊂ U as the open subset for which Jϕ /∈ {0,1}, and denote by H0 the set
of elements of the upper half-plane H for which the associated elliptic modular
function is neither 0 nor 1. Pick t ∈ U0. The composition

U0
i
↪→ U

e−→ H/PSL(2, Z)

induces a morphism of fundamental groups:

π1(U0, t)
(e�i)#−−−→ π1(H0/PSL(2, Z)) � PSL(2, Z). (39)

The compatibility between the two invariants asserts that (39) agrees, modulo con-
jugation, with

π1(U0, t)
i#−→ π1(U, t)

ρϕ−→ SL(2, Z) −→ PSL(2, Z). (40)
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The compatibility condition (40) can be introduced independently of the actual
elliptic fibration over C. Given a (nonconstant) meromorphic function J : C → C

with no poles on U and a morphism of Z-modules ρ : π1(U)→ SL(2, Z), the pair
(J, ρ) is said to be compatible if the associated maps (39) and (40) agree modulo
conjugation. One then has the following classical theorem of Kodaira.

Theorem 4.4 [20]. For a compatible pair (J, ρ) as just described, there is—up
to an isomorphism of elliptic surfaces—exactly one elliptic fibration ϕ : X → C,
admitting a section, with functional and homological invariants given by J and ρ.

Theorem 4.4 gives us a powerful tool for classifying Jacobian fibrations. The func-
tional invariant J describes the smooth part of an elliptic fibration but does not
provide enough information to establish the topological type of the total surface
X. The homological invariant ρ, which is essentially a lifting of the local mon-
odromies from PSL(2, Z) to SL(2, Z), complements J, and the pair (J, ρ) fully
classifies the elliptic fibration. (For explicit details see [12, Secs. 1.3.3, 1.3.4].)
The effectiveness of Kodaira’s criterion is further enhanced by the fact that, given
a Jacobian fibration as before, the monodromy ρ(γ ) of a small loop γ circling a
critical value of ϕ in a manner agreeing with the orientation of C is determined
modulo conjugation by the Kodaira type of the associated singular fiber [19]. This
discussion yields the following particular consequence.

Corollary 4.5. Let ϕ and ψ be two Jacobian fibrations on two K3 surfaces X
and X′.

X

ϕ
��

��
��

��
� X′

ψ
��













P1

(41)

The two Jacobian fibrations are isomorphic if and only if there exists a projective
automorphism q of P1 such that (a) q maps bijectively the singular locus of ϕ to
the singular locus of ψ, Jϕ = Jψ � q, and (b) for any t in the singular locus of
ϕ, the Kodaira type of a singular fiber ϕ−1(t) is the same as the Kodaira type of
the singular fiber ψ−1(q(t)).

Our strategy for proving Theorem 4.1 is structured as follows. We first compute
the functional invariants and Kodaira types of singular fibers of the alternate fi-
bration  2 on X(a, b) and also of the induced Jacobian fibration )2 on the K3
surface Y(a, b). Then—switching our attention to the other side of the correspon-
dence—we show that, for any two elliptic curves E1 and E2, the Kummer surface
Km(E1 × E2) possesses a canonical Jacobian fibration ϒ2 with the same types of
singular fibers as )2. Finally, using Corollary 4.5, we prove that the two elliptic
fibrations)2 and ϒ2 are equivalent if and only if J(E1) and J(E2) are solutions to
the quadratic equation (36).
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4.4. The Alternate Fibration  2

It is quite easy to observe the fibration  2 on the surface X(a, b). The alternate
fibration is induced by the projection to [x,w] from the quartic Q(a, b). Indeed,
one can easily verify the following facts.

(a) The generic fiber of the projection to [x,w] from Q(a, b) is an elliptic curve. In
fact, the fiber over [λ,1] can be seen as the cubic curve in P2(y, z,w) given by

 λ2 :=  −1
2 ([λ,1]) = {2y2z− (8λ3 − 6aλ− 2b)zw2 − z2w − w3 = 0}.

(42)
This is a smooth cubic as long as 4λ3 − 3aλ− b != ±1.

(b) After resolving the singularities of Q(a, b), the projection to [x,w] induces an
elliptic fibration on the K3 surface X(a, b).

(c) The singular fiber ∞
2 :=  −1

2 ([1, 0]) is of Kodaira type I∗
12. In the context of

diagram (35),  ∞
2 appears as the divisor:

a2 + L1 + 2(a3 + a4 + · · · + a11 + L2 + e1 + e2 + e3)+ e4 + e5.

(d) The curves a1 and e6 are sections of  2.

So let us now compute the functional invariant of the elliptic fibration  2. In
order to simplify further calculations, we introduce the polynomial

P(X) = 4X3 − 3AX − B.
With this in place, one can rewrite the cubic equation in (42) in a standard Weier-
strass form as

(√
2yz

)2 =
(
z+ 2

3
P(λ)

)3

+ g2(λ)

(
z+ 2

3
P(λ)

)
+ g3(λ), (43)

where the terms g2(λ) and g3(λ) are given by

g2(λ) = 1 − 4

3
P2(λ), g3(λ) = 16

27
P3(λ)− 2

3
P(λ).

The discriminant of Weierstrass form (43) is then

2 2(λ) = 4g3
2(λ)+ 27g2

3(λ) = 4(1 − P2(λ)).

In the same manner, the functional invariant of  2 can be computed as

J 2(λ) = 4g3
2(λ)

2 2(λ)
= (3 − 4P2(λ))2

9(1 − P2(λ))
.

The explicit formulas for g2(λ), g3(λ), and2 2(λ) allow us to determine not only
the location but also the Kodaira type of the singular fibers of  2. Using Tate’s
algorithm [34] then yields the following.

Proposition 4.6. The singular fibers of  2 are located at [1, 0] (the I∗
12 fiber)

and at the points [λ, 1], where λ belongs to the subset

� := {λ | P(λ)2 = 1}. (44)
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The following five cases can occur.

1: a3 != (b±1)2. In this case, the polynomials P(X)−1 and P(X)+1 each have
three distinct roots. The subset � consists of six distinct points, each of which
corresponds to a singular fiber of type I1 in  2.

2: a3 = (b+ 1)2 with b != 0 and a != 0. In this case, P(X)+ 1 has three distinct
roots. However, the polynomial P(X)−1 has a root of order 2 at −(b+1)/2a
and a simple root at (b + 1)/a. The subset

� =
{−(b + 1)

2a
,
b + 1

a

}
∪ {λ | P(λ) = −1}

consists of five distinct points. The first value corresponds to a singular fiber
of type I2 in  2; the remaining four points correspond to fibers of type I1.

3: a3 = (b−1)2 with b != 0 and a != 0. In this case, the polynomial P(X)−1 has
three distinct roots. However, P(X)+ 1 has a root of order 2 at −(b − 1)/2a
and a simple root at (b − 1)/a. As in the previous case, the subset

� =
{−(b − 1)

2a
,
b − 1

a

}
∪ {λ | P(λ) = 1}

consists of five distinct values. The first value corresponds to a singular fiber
of type I2 in  2; the remaining four points correspond to fibers of type I1.

4: a = 0 and b = ±1. Then

� = {0} ∪
{

1

21/3
θ | θ3 = b

}
.

The value λ = 0 corresponds to a singular fiber of type I3 in  2, and the re-
maining three values of � correspond to fibers of type I1.

5: a3 = 1 and b = 0. In this case,

P(X)− 1 = (2X − a2)2(X + a2),

P(X)+ 1 = (2X + a2)2(X − a2).

Accordingly,

� =
{
a2

2
, −a

2

2
, −a2, a2

}
.

The first two values correspond to singular fibers of type I2, and the last two
values correspond to fibers of type I1.

Next, we describe explicitly the involution β on X(a, b). Note that, in each of the
smooth cubics  λ2 of (42), the point [1, 0, 0] is an inflection point. If one chooses
this point as the origin of the cubic group law on  λ2 , then the point [0,1, 0] is a
point of order 2 with respect to this law. Moreover, when regarding  λ2 as an el-
liptic fiber in X(a, b), we see that [1, 0, 0] and [0,1, 0] are the intersections with a1

and e6. Thus the effect of β on  λ2 can be seen, in the coordinates of (42), as the
analytic continuation of

 λ2\{[1, 0, 0], [0,1, 0]} →  λ2\{[1, 0, 0], [0,1, 0]},
[y, z,w] �→ [−yz,w2, zw].

(45)
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Finally, the full β is induced from the analytic involution:

β1 : Q(a, b)\(L1 ∪ L2)→ Q(a, b)\(L1 ∪ L2),

β1([x, y, z,w]) �→ [xz, −yz,w2, zw].
(46)

4.5. The Elliptic Fibration )2

Let Y(a, b) be the Kummer surface obtained from X(a, b) through the Shioda–
Inose construction. Recall from Section 3.5 that the alternate fibration  2 sur-
vives on Y(a, b) in the form of a new elliptic fibration )2.

As we already know, the fiber )∞
2 has Kodaira type I∗

6. In this section, we
describe the location and Kodaira type of the other singular fibers and write an
explicit formula for the functional invariant J)2 .

Note that the smooth fibers )λ2 are quotients of the cubics  λ2 of (42) by the
involution (45). By then taking affine coordinates [y, z,1] on  λ2 and defining

u = y2 − P(λ), v = 1

2
y

(
z− 1

z

)
,

we obtain an affine description of )λ2 as

v2 = (u+ P(λ))(u− 1)(u+ 1). (47)

This can then be easily transformed to a Weierstrass form

v2 =
(
u+ 1

3
P(λ)

)3

−
(
u+ 1

3
P(λ)

)(
1

3
P2(λ)+ 1

)
+ 2

27
P3(λ)− 2

3
P(λ), (48)

which has as discriminant

2)2(λ) = −4(P2(λ)− 1)2.

It follows that the functional invariant of the elliptic fibration )2 is

J)2(λ) = (P2(λ)+ 3)2

9(P2(λ)− 1)2
. (49)

As in the previous section, this information allows us also to describe the location
and Kodaira type of the singular fibers of )2.

Proposition 4.7. The singular fibers of the elliptic fibration )2 on Y(a, b) are
located at [1, 0] (the I∗

6 fiber) and at the points [λ, 1], where λ belongs to the subset

� := {λ | P(λ)2 = 1}. (50)

The following cases can occur.

1: a3 != (b±1)2. In this case, the polynomials P(X)−1 and P(X)+1 each have
three distinct roots. The subset � consists of six distinct points, each of which
corresponds to a singular fiber of type I2 in  2.

2: a3 = (b+ 1)2 with b != 0 and a != 0. In this case, P(X)+ 1 has three distinct
roots. However, the polynomial P(X)−1 has a root of order 2 at −(b+1)/2a
and a simple root at (b + 1)/a. The subset
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� =
{−(b + 1)

2a
,
b + 1

a

}
∪ {λ | P(λ) = −1}

consists of five distinct points. The first value corresponds to a singular fiber
of type I4 in  2; the remaining four points correspond to fibers of type I2.

3: a3 = (b−1)2 with b != 0 and a != 0. In this case, the polynomial P(X)−1 has
three distinct roots. However, P(X)+ 1 has a root of order 2 at −(b − 1)/2a
and a simple root at (b − 1)/a. As in the previous case, the subset

� =
{−(b − 1)

2a
,
b − 1

a

}
∪ {λ | P(λ) = 1}

consists of five distinct values. The first value corresponds to a singular fiber
of type I4 in  2; the remaining four points correspond to fibers of type I2.

4: a = 0 and b = ±1. Then

� = {0} ∪
{

1

21/3
θ

∣∣ θ3 = b
}
.

The value λ = 0 corresponds to a singular fiber of type I6 in  2, and the re-
maining three values of � correspond to fibers of type I2.

5: a3 = 1 and b = 0. In this case,

P(X)− 1 = (2X − a2)2(X + a2),

P(X)+ 1 = (2X + a2)2(X − a2).

Accordingly,

� =
{
a2

2
, −a

2

2
, −a2, a2

}
.

The first two values correspond to singular fibers of type I4, and the last two
values correspond to fibers of type I2.

4.6. A Special Elliptic Fibration on Km(E1 × E2)

As we already know from Theorem 3.13, the surface Y(a, b) can be realized in a
canonical way as the Kummer surface Km(E1 × E2) associated to the product of
two elliptic curves. Moreover, in this context, the elliptic fibration )2 on Y(a, b)
can be derived directly from the Kummer construction.

Recall from Section 3.4 that the surface Km(E1×E2) has a canonical 24-curve
configuration {H i, Gj , E ij | 0 ≤ i, j ≤ 3} called the double Kummer pencil.

Lemma 4.8. Consider the divisor D on Km(E1 × E2) defined as

D = E21 + E31 + 2(G1 + E 01 + H0 + E 00 + G0 + E10 + H1)+ E12 + E13. (51)

Then D2 = 0 and |D| is a pencil inducing an elliptic fibration

ϒ2 : Km(E1 × E2)→ P1.

The divisor D is a singular fiber for ϒ2 and has Kodaira type I∗
6. The four smooth

rational curves H2, H3, G2, and G3 form four disjoint sections of ϒ2.
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H2• E21•
��

��
�

E12•
��

��
�

G2•
G1•

��
��

�
E 01• H0• E 00• G0• E10• H1•

��
��

�

H3• E31• E13• G3•

Proof. The lemma is a consequence of a classical theorem due to Pjateckiı̆-Šapiro
and Šafarevič [30, Chap. 3, Thm. 1].

Remark 4.9. A different selection of the double Kummer pencil curves defin-
ing the divisor (51) alters the elliptic fibration ϒ2 by an analytic automorphism of
Km(E1 × E2). The equivalence class of ϒ2 is therefore well-defined.

Remark 4.10. In [29], Oguiso classified all Jacobian fibrations on a Kummer
surface associated to a product of two nonisogenous elliptic curves. The elliptic fi-
brationϒ2 defined in Lemma 4.8 appears as J5 in Oguiso’s classification. It is the
only Jacobian fibration on such a surface that admits a singular fiber of Kodaira
type I∗

6.

By virtue of the geometric correspondence

X(a, b)→ E1 × E2

described in the first part of the paper, we have (as an intermediate step) an
isomorphism

Y(a, b) � Km(E1 × E2)

that maps the Jacobian fibration )2 on Y(a, b) to the Jacobian fibration ϒ2 on
Km(E1 × E2).

This fact allows one to realize an explicit relation between the Inose parameters
a, b of the M-polarized K3 surface X(a, b) and the J-invariants of the two result-
ing elliptic curves E1 and E2. In light of Corollary 4.5, the two Jacobian fibrations
)2 on Y(a, b) andϒ2 on Km(E2 × E2) are equivalent if and only if (a) their func-
tional invariant and singular locus differ by a projective transformation and (b) the
Kodaira types of their singular fibers match.

We have already described in detail the functional invariant and the location and
type of the singular fibers of )2. In what follows we shall perform a similar analy-
sis for ϒ2. The comparison between these two pieces of data will then allow us to
prove the main statement of Theorem 4.1.

Claim 4.11. The elliptic fibrations )2 and ϒ2 have equivalent functional and
homological invariants if and only if

J(E1)+ J(E2) = a3 − b2 + 1 and J(E1) · J(E2) = a3.

4.7. Description of the Elliptic Fibration ϒ2 on Km(E1 × E2)

It is a standard fact that any given elliptic curve can be realized as a projective
Legendre cubic
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{y2w = x(x − w)(x − λw)} ⊂ P2

for some λ ∈ C \ {0,1}. We shall therefore assume that α,β ∈ C are chosen such
that E1 and E2 are isomorphic with the foregoing cubics for λ = α and λ = β,
respectively. The J-invariants of the two curves can then be computed as

J(E1) = 4(α2 − α + 1)3

27α2(α − 1)2
, J(E2) = 4(β2 − β + 1)3

27β2(β − 1)2
.

In this context, an explicit model for the Kummer surface Km(E1 × E2) can be
constructed (see [7; 17]) by taking the minimal resolution of the quartic surface

{z2xy = (x − w)(x − αw)(y − w)(y − βw)} ⊂ P3. (52)

Note that, generically, the quartic surface (52) has seven rational double point sin-
gularities, located at

[1, 0, 0, 0], [0,1, 0, 0], [0, 0,1, 0],

[1,1, 0,1], [α,1, 0,1], [1,β, 0,1], [α,β, 0,1].

The first three are rational double points of type A3; the last four are singulari-
ties of type A1. One can therefore reconstruct the double Kummer pencil on the
minimal resolution of (52) by taking:

H0 + E 00 + G0 = A3 configuration associated to [0, 0,1, 0],

E21 + G1 + E31 = A3 configuration associated to [1, 0, 0, 0],

E12 + H1 + E13 = A3 configuration associated to [0,1, 0, 0],

E22 = A1 curve associated to [1,1, 0,1],

E32 = A1 curve associated to [α,1, 0,1],

E23 = A1 curve associated to [1,β, 0,1],

E33 = A1 curve associated to [α,β, 0,1],

H2 = proper transform of {x = w, z = 0},
H3 = proper transform of {x = αw, z = 0},
G2 = proper transform of {y = w, z = 0},
G3 = proper transform of {y = βw, z = 0},
E 01 = proper transform of {x = w = 0},
E10 = proper transform of {y = w = 0},
E11 = proper transform of {w = 0, z2 = xy},
E 02 = proper transform of {x = 0, y = w},
E 03 = proper transform of {x = 0, y = βw},
E20 = proper transform of {y = 0, x = w},
E30 = proper transform of {y = 0, x = αw}.
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A simple analysis of the curves H i and Gj and the locations of intersections with
E ij allows one to conclude that the minimal resolution of (52) is canonically iso-
morphic to Km(E1 × E2).

Remark 4.12. The birational morphism Km(E1×E2)→ P3 whose image is the
quartic surface (52) can also be defined directly from the double Kummer pencil
by taking the projective morphism associated to the basepoint-free linear system
|V| given by

V = E12 + 2H1 + E13 + E10 + G0 + E 00 + H0 + E 01 + 2G1 + E21 + E31 + 2E11.

E21•
��

��
�

E12•
��

��
�

G1•




























E 01• H0• E 00• G0• E10• H1•

��
��

�

�����������������

E31• E11• E13•

The advantage of realizing Km(E1 × E2) as the quartic surface (52) follows be-
cause, in this context, one can explicitly construct the Jacobian fibration ϒ2 of
Lemma 4.8. This elliptic fibration is induced by the rational map

[x, y, z,w] �→ [R(x, y,w), xy],

where R(x, y,w) is a quadratic polynomial:

R(x, y,w) =
(
− 1

α

)
x 2 +

(
− 1

β

)
y2 +

(
α + 1

α

)
xw +

(
β + 1

β

)
yw − w2.

The I∗
6 fiber ofϒ2 appears over the point [1, 0].Away from this location, the generic

smooth elliptic fiber

ϒλ2 := ϒ−1
2 ([µ,1])

can be regarded as the double cover of the projective conic in P2(x, y,w),

R(x, y,w) = µxy, (53)

branched at the four points

[1, (1 − µ)β + 1,1], [α, (1 − µα)β + 1,1],

[(1 − µ)α + 1,1,1], [(1 − µβ)α + 1,β,1].
(54)

One encounters singular fibers if the conic (53) is singular or if at least two of the
four branch points in (54) coincide. This argument allows us to conclude that the
points on the base of the fibration ϒ2 associated to singular fibers (away from the
I∗

6 fiber) are of type [µ,1], with µ belonging to the set

�ϒ2 :=
{

1,
1

α
,

1

β
,

1

αβ
,
αβ + 1

αβ
,
α + β
αβ

}
.
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Remark 4.13. For generic choices of α and β, the set �ϒ2 contains six distinct
points, each of which determines an I2 fiber in ϒ2. However, it may happen that
two (or more) of these six values coincide. This happens precisely when

β ∈
{
α,

1

α
,1 − α,

1

1 − α ,
α

α − 1
,
α − 1

α

}
, (55)

a condition that is also equivalent to J(E1) = J(E2).

Lemma 4.14. The functional invariant of the Jacobian fibration ϒ2 has the form

Jϒ2(µ) = 4(α4β 4 D(µ)+ (α − 1)2(β − 1)2)3

27α8β8(α − 1)4(β − 1)4 D2(µ)
, (56)

where

D(µ) := (µ− 1)

(
µ− 1

α

)(
µ− 1

β

)(
µ− 1

αβ

)(
µ− αβ + 1

αβ

)(
µ− α + β

αβ

)
.

Proof. We accomplish the computation of Jϒ2(µ) via the following sequence of
steps.

1. Construct an explicit isomorphism iµ between the conic (53) and P1.

2. Perform a projective automorphism of P1 such that the images through iµ of
the four branch points (54) are sent to [0,1], [1,1], [r,1], and [1, 0].

3. Evaluate Jϒ2(µ) as
4(r 2 − r + 1)3

27r 2(r − 1)2
. (57)

In order to complete the first step, let us note that

R(x, y,w)− µxy

= −
[
w −

(
α + 1

2α

)
x −

(
β + 1

2β

)
y

]2

+
(
α − 1

2α

)2

x 2 +
(
β − 1

2β

)2

y2 +
(
(α + 1)(β + 1)

2αβ
− µ

)
xy

= −
[
w −

(
α + 1

2α

)
x −

(
β + 1

2β

)
y

]2

+
[(
α − 1

2α

)
x +

(
(α + 1)(β + 1)

2αβ
− µ

)(
α

α − 1

)
y

]2

+
[(
β − 1

2β

)2

−
(
(α + 1)(β + 1)

2αβ
− µ

)2(
α

α − 1

)2]
y2

= −
[
w −

(
α + 1

2α

)
x −

(
β + 1

2β

)
y

]2

+
[(
α − 1

2α

)
x +

(
(α + 1)(β + 1)

2αβ
− µ

)(
α

α − 1

)
y

]2

+
[(
(α − 1)(β − 1)

2αβ

)2

−
(
(α + 1)(β + 1)

2αβ
− µ

)2](
α

α − 1

)2

y2 =
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= −
[
w −

(
α + 1

2α

)
x −

(
β + 1

2β

)
y

]2

+
[(
α − 1

2α

)
x +

(
(α + 1)(β + 1)

2αβ
− µ

)(
α

α − 1

)
y

]2

−
[(
µ− α + β

αβ

)(
µ− αβ + 1

αβ

)](
α

α − 1

)2

y2

=
[
w − 1

α
x −

(
µ− β + 1

αβ

)(
α

α − 1

)
y

]

×
[
−w + x −

(
µ− β + 1

β

)(
α

α − 1

)
y

]

−
[(
µ− α + β

αβ

)(
µ− αβ + 1

αβ

)](
α

α − 1

)2

y2.

Assume the following change in projective coordinates:

x1 = −w + x −
(
µ− β + 1

β

)(
α

α − 1

)
y, y1 =

(
α

α − 1

)
y,

w1 = w − 1

α
x −

(
µ− β + 1

αβ

)(
α

α − 1

)
y.

Then we may rewrite the conic (53) as

x1w1 = 2y2
1,

where

2 =
(
µ− α + β

αβ

)(
µ− αβ + 1

αβ

)
.

This yields the parameterization of (53) via the embedding

P1 ↪→ P2,

[u, v] �→ [u2, uv,2v2],

with the inverse map iµ given by the analytic continuation of [x1, y1,w1] �→
[x1, y1]. This procedure results in an identification between the conic (53) and
P1 that sends the four branch points (54) to

[β + 1 − βµ,β], [αβ2,β + 1 − µαβ],

[αβ + 1 − µαβ,β], [α + β − µαβ,β].

In accordance with the plan presented earlier, we take

r = ((αβ + 1 − µαβ)− (β + 1 − βµ))((αβ2)− (α + β − µαβ))
((αβ + 1 − µαβ)− (α + β − µαβ))((αβ2)− (β + 1 − βµ))

= (µ− 1)(µαβ − 1)(µαβ − α − β)
(α − 1)(β − 1)

.

Then the functional invariant is computed as
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Jϒ2(µ) = 4(r 2 − r + 1)3

27r 2(r − 1)2
= 4(α4β 4 D(µ)+ (α − 1)2(β − 1)2)3

27α8β8(α − 1)4(β − 1)4 D2(µ)
.

The preceding discussion also provides the homological invariant data of the fi-
bration ϒ2.

Corollary 4.15. In addition to the I∗
6 singular fiber that appears over the point

[1, 0], the elliptic fibration ϒ2 has singular fibers at the points [µ, 1], with µ be-
longing to the set

�ϒ2 = {µ | D(µ) = 0}.
The following cases can occur.

(a) J(E1) != J(E2). In this case, �ϒ2 has six distinct points and each of them
corresponds to an I2 singular fiber.

(b) J(E1) = J(E2) /∈ {0,1}. In this case the polynomial D(µ) has five distinct
roots, one of which is of order 2. The order-2 root corresponds to a singular
fiber of type I4; the remaining four roots correspond to I2 fibers.

(c) J(E1) = J(E2) = 1. In this case the polynomial D(µ) has four distinct roots,
two of which have order 2. The two roots of order 2 correspond to singular
fibers of type I4, and the remaining two roots correspond to fibers of type I2.

(d) J(E1) = J(E2) = 0. In this case the polynomial D(µ) has four distinct roots,
one of which is of order 3. The order-3 root corresponds to singular fiber of
type I3, and the remaining three roots correspond to fibers of type I2.

4.8. Proof of Claim 4.11

Recall the analysis of Sections 4.5 and 4.7. Both fibrations )2 and ϒ2 have the I∗
6

singular fiber located over the point [1, 0], and their respective functional invari-
ants, as described in (49) and (56), are

J)2(λ) = (P2(λ)+ 3)2

9(P2(λ)− 1)2
, P(λ) = 4λ3 − 3aλ− b, (58)

Jϒ2(µ) = 4(α4β 4 D(µ)+ (α − 1)2(β − 1)2)3

27α8β8(α − 1)4(β − 1)4 D2(µ)
. (59)

The main polynomial in the denominator of J)2(λ) is P2(λ)− 1. Its (generic) six
roots are naturally divided into two sets of three roots, with each three-set having
the sum of its elements equal to zero. A similar feature can be observed in the de-
nominator of Jϒ2(µ). The main polynomial present there is D(µ), whose (generic)
six roots can be partitioned into two sets of three with identical sum:{

1,
1

α
,

1

β
,

1

αβ
,
αβ + 1

αβ
,
α + β
αβ

}
=

{
1,

1

αβ
,
α + β
αβ

}
∪

{
1

α
,

1

β
,
αβ + 1

αβ

}
. (60)

The two fibrations )2 and ϒ2 have equivalent functional invariant and homolog-
ical invariant data if and only if there exists an invertible affine transformation
5(λ) = qλ+ p with p, q ∈ C (q != 0) such that

J)2(λ) = Jϒ2(5(λ)) (61)
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and 5 sends the roots of P(λ)± 1 to the two subsets in (60) while preserving the
homological type.

As a first observation, we note that it follows that p = (α + 1)(β + 1)/3αβ.
Let then

D1(µ) = (µ− 1)

(
µ− 1

αβ

)(
µ− α + β

αβ

)
,

D2(µ) =
(
µ− 1

α

)(
µ− 1

β

)(
µ− αβ + 1

αβ

)
.

Two possibilities can occur:

(a) q3(P(λ)− 1) = 4D1(qλ+ p) and q3(P(λ)+ 1) = 4D2(qλ+ p);
(b) q3(P(λ)− 1) = 4D2(qλ+ p) and q3(P(λ)+ 1) = 4D1(qλ+ p).
Making the constant terms coincide implies that, in each case,

b = ± (α − 2)(α + 1)(2α − 1)(β − 2)(β + 1)(2β − 1)

27α(α − 1)β(β − 1)
and

q3 = −2(α − 1)(β − 1)

α2β2
. (62)

The first equality, in turn, requires the a priori condition

b2 = (α − 2)2(α + 1)2(2α − 1)2(β − 2)2(β + 1)2(2β − 1)2

729α2(α − 1)2β2(β − 1)2

= (J(E1)− 1)(J(E2)− 1). (63)

Continuing the argument, we observe that imposing the equality of the linear
terms in the preceding cases leads one to

a = 4(α2 − α + 1)(β2 − β + 1)

9α2β2q2
. (64)

This constraint, in connection with (62), requires a second a priori condition:

a3 = 16(α2 − α + 1)3(β2 − β + 1)3

729α2(α − 1)2β2(β − 1)2
= J(E1) · J(E2). (65)

Then, depending on the case in question, one can eventually solve for q, yielding

q = −9a(α − 1)(β − 1)

2(α2 − α + 1)(β2 − β + 1)
.

The equivalence (61) of functional invariants is immediately verified. To finish the
proof of Claim 4.11, we note that conditions (63) and (65) are equivalent to

J(E1)+ J(E2) = a3 − b2 + 1, J(E1) · J(E2) = a3. (66)

4.9. Connections with the Hodge Conjecture

Consider X(a, b) as before and let A(a, b) = E1×E2, where E1 and E2 are the two
corresponding elliptic curves. The general form of the Hodge conjecture predicts
in this case (see e.g. [24, Sec. 7]) the existence of a special correspondence,
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Z ⊂ A(a, b)× X(a, b), (67)

inducing the canonical Hodge isomorphism between the M-polarized Hodge struc-
ture of X(a, b) and the natural H-polarized Hodge structure of A(a, b). The cor-
respondence Z gives, in turn, a class:

[Z ] ∈ H4(A(a, b)× X(a, b)) ∩ H4(A(a, b)× X(a, b), Q). (68)

The computation undertaken in this section leads to an explicit description of Z.
Recall that X(a, b) is the minimal resolution of the quartic surface

Q(a, b) ⊂ P3(x, y, z,w)

defined by (34). On the other hand, E1 and E2 are given by the Legendre presen-
tations

{y2
1w1 = x1(x1 − w1)(x1 − αw1)} ⊂ P2(x1, y1,w1),

{y2
2w2 = x2(x2 − w2)(x2 − βw2)} ⊂ P2(x2, y2,w2),

where the parameters α,β are related to a, b by the conditions (66). The cor-
respondence Z is then the pull-back on A(a, b) × X(a, b) of the intersection
between E1 × E2 × Q(a, b) and two special hypersurfaces in P2(x1, y1,w1) ×
P2(x2, y2,w2)× P3(x, y, z,w).

In order to describe these two hypersurfaces, we note that the rational double
cover map

E1 × E2 → Km(E1 × E2)

is induced by the rational map

κ : P2 × P2 → P3, (69)

κ([x1, y1,w1], [x2, y2,w2 ]) = [x 2
1 x2w2, x1x

2
2w1, y1y2w1w2, x1x2w1w2 ],

where the image κ(E1 × E2) is given by the quartic surface

{z2
3x3y3 = (x3 − w3)(x3 − αw3)(y3 − w3)(y3 − βw3)}

⊂ P3(x3, y3, z3,w3). (70)

The surfaces X(a, b) and Km(E1 ×E2) carry the special elliptic fibrations 2 and
ϒ2, respectively. By Sections 4.4 and 4.6, these fibrations are induced by the ra-
tional maps

 ̃2 : P3 → P1,  ̃2([x, y, z,w]) = [x,w];
ϒ̃2 : P3 → P1, ϒ̃2([x3, y3, z3,w3]) = [R(x3, y3,w3), x3y3].

We therefore have the following diagram.

E1 × E2

��
�
�
�

� � �� P2(x1, y1,w1)× P
2(x2, y2,w2 )

κ

��
�
�
�

P
3(x, y, z,w)

π̃

��
�
�
�

 ̃2

��

���
��
�

� � � �

X(a, b)��

π

		�
�

�
�

 2



Km(E1 × E2)

ϒ2

������������������
��
P

3

ϒ̃2

��
�
�
� WP

3(4, 6,1,1)

)̃2

��
�
�
�

Y(a, b)��

)2
�����������

P
1

P
1

5

��
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The first hypersurface in P2(x1, y1,w1) × P2(x2, y2,w2) × P3(x, y, z,w) is ob-
tained by identifying the two base spaces of the birational projections ϒ̃2 � κ and
 ̃2. As explained in Section 4.8, this is achieved via the isomorphism

5 : P1 → P1, 5([λ1, λ2 ]) = [qλ1 + pλ2, λ2 ],

p = (α + 1)(β + 1)

3αβ
, q = −9a(α − 1)(β − 1)

2(α2 − α + 1)(β2 − β + 1)
.

We thus have the correspondence

{(µ, λ)∈ P1 × P1 | 5(λ) = µ},
and the pull-back of this through (ϒ̃2 × κ)×  ̃2 yields the degree-8 hypersurface

{H1 = 0} ⊂ P2(x1, y1,w1)× P2(x2, y2,w2)× P3(x, y, z,w), (71)

H1(x1, y1,w1, x2, y2,w2, x, y, z,w)

= x 2
1 x

2
2 [qαβxx1x2w1w2 + w(αx2w

2
1 (x2 − w2)+ βx1w

2
2(x1 − w1)

+ αβw1w2(w1w2 − x1w2 − x2w1 + px1x2))].

The second hypersurface cutting out the Hodge cycle can be obtained by, essen-
tially, making a fiberwise identification between the elliptic fibrations ϒ2 and )2.

By the discussion in Section 4.5, the double cover rational map π : X(a, b) ���
Y(a, b) closes the commutative diagram

X(a, b)
π ���������

 2


�

��
��

��
��

Y(a, b)

)2
����

��
��

��
�

P1 ,

which is induced by the diagram of rational maps

P3(x, y, z,w)
π̃ ���������

 ̃2
���

��������� WP3(4, 6,1,1)

)̃2
�������������

P1

with

π̃([x, y, z,w]) = [
z4w(y2w − P(x,w)), 1

2yz
5w4(z2 − w2), zw, zx

]
,

P(x,w) = 4x3 − 3axw2 − bw3,

 ̃2([x, y, z,w]) = [x,w], )̃2([u, v, t, r]) = [r, t].

The K3 surface Y(a, b) appears as the resolution of the degree-12 weighted Le-
gendre surface

v2 = (u+ tP(r, t))(u+ t 4)(u− t 4).
Fixing then [λ,1] ∈ P1, the elliptic fiber of )2 over [λ,1] can be seen naturally as
the double cover of P1 branched at

[−4λ3 + 3aλ+ b,1], [1,1], [1, −1], and [0,1]. (72)
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By Section 4.8, the corresponding elliptic fiber onϒ2 is the one over5([λ,1]) =
[qλ + p,1] and, according to Section 4.7, this fiber appears in P3(x3, y3, z3,w3)

as the intersection of the two surfaces

z2
3x3y3 = (x3 − w3)(x3 − αw3)(y3 − w3)(y3 − βw3) and

R(x3, y3,w3) = µx3y3,

where µ = qλ+ p and

R(x3, y3,w3) =
(
− 1

α

)
x 2

3 +
(
− 1

β

)
y2

3 +
(
α + 1

α

)
x3w3 +

(
β + 1

β

)
y3w3 −w2

3.

This elliptic curve is then naturally the double cover of the conic

{R(x3, y3,w3) = µx3y3} ⊂ P2(x3, y3,w3). (73)

Moreover, as computed in Section 4.7, under the change of projective coordinates

x4 = −w3 + x3 −
(
µ− β + 1

β

)(
α

α − 1

)
y3,

y4 =
(
α

α − 1

)
y3, (74)

w4 = w3 − 1

α
x3 −

(
µ− β + 1

αβ

)(
α

α − 1

)
y3,

the conic (73) becomes

{x4w4 = 2y2
4 } ⊂ P2(x4, y4,w4), 2 =

(
µ− α + β

αβ

)(
µ− αβ + 1

αβ

)
,

and one can naturally identify it with P1 through the the restriction of the rational
map [x4, y4,w4] �→ [x4, y4]. This (noncanonical) procedure realizes the elliptic
curve in question as the double cover of P1 branched at the four points

[β + 1 − βµ,β], [αβ2,β + 1 − µαβ],

[αβ + 1 − µαβ,β], [α + β − µαβ,β].
(75)

In order to identify the two elliptic curves (of the fibrations )2 and ϒ2, respec-
tively), one must choose µ = qλ+ p and then construct an isomorphism,

χ : P1 → P1,

that maps the four branch points in (72) to the four points of (75).
Note that the conditionµ = qλ+p is equivalent to the equality of the cross-ratio

of the two quadruples (72) and (75), so any isomorphism mapping three points to
three points will automatically map the remaining fourth point on one side to the
fourth point on the other side.

An isomorphism χ : P1 → P1 such that

χ([0,1]) = [β + 1 − βµ,β], χ([1,1]) = [αβ + 1 − µαβ,β],

χ([−1,1]) = [α + β − µαβ,β]
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is given by χ([λ1, λ2 ]) = [Aλ1 + Bλ2,Cλ1 +Dλ2 ], where

A = 2αβ(µ− 1)(µβ − 1)− βµ− β2(µ− 1)+ 1

β − 1
,

B = β + 1 − µβ, C = β(β + 1 − 2βµ)

β − 1
, D = β.

(76)

The identification of the two elliptic fibers therefore requires

µ = qλ+ p and

[A(y2w − P(x,w))+ Bw3,C(y2w − P(x,w))+Dw3] = [x4, y4],

with x4, y4 defined as in (74). The first condition leads to the hypersurface H1 de-
scribed in (71). The second condition leads to a second hypersurface:

{H2 = 0} ⊂ P2(x1, y1,w1)× P2(x2, y2,w2)× P3(x, y, z,w), (77)

H2(x1, y1,w1, x2, y2,w2, x, y, z,w)

= x4(C(y
2w − P(x,w))+Dw3)− y4(A(y

2w − P(x,w))+ Bw3).

5. A String Duality Point of View

Following the works of Vafa [35] and Sen [32] in 1996, it was noted that the ge-
ometry underlying elliptic K3 surfaces with section is related to the geometry of
elliptic curves endowed with certain flat principal G-bundles and an additional pa-
rameter called the B-field. This nontrivial connection appears in string theory as
the eight-dimensional manifestation of the phenomenon called F-theory/heterotic
string duality. Over the past ten years, the correspondence has been analyzed ex-
tensively [6; 10] from a purely mathematical point of view. As it turns out, the
correspondence leads to a beautiful geometric picture that links together moduli
spaces for these two seemingly distinct types of geometrical objects: elliptic K3
surfaces with section and flat bundles over elliptic curves.

In brief, what happen is this. On the F-theory side, we have the moduli space
MK3 of elliptic K3 surfaces with section. This is a quasi-projective analytic vari-
ety of complex dimension 18. Although MK3 is not compact, there exists a nice
smooth partial compactification MK3 ⊂ MK3 that consists of an enlargement of
the original space by adding two Type II Mumford boundary divisors D1 and D2.

Geometrically, the points of the two compactifying divisors correspond to Type II
stable elliptic K3 surfaces. These are special degenerations of K3 surfaces real-
ized as a union V1 ∪ V2 of two rational surfaces meeting over a common elliptic
curve E that is anticanonical on both V1 and V2.

On the heterotic side, we must consider two moduli spaces MG
het of triples

(E, P, B) consisting of elliptic curves, flat G-bundles, and B-fields. There are two
choices of Lie groups G,

(E8 × E8)� Z2 and Spin(32)/Z2. (78)
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The moduli space ME,G associated to the first two components (E, P) of the triples
is (as described in [14]) a quasi-projective analytic space of complex dimension
17. The actual heterotic moduli space MG

het (described in [8]) fibers naturally as a
holomorphic C∗ fibration over ME,G.

In this context, the mathematical facts underlying the string duality can be sum-
marized as follows. Each of the two moduli spaces ME,G associated to the two
choices of possible Lie groups on the heterotic side is naturally isomorphic to one
of the corresponding Type II Mumford boundary divisors D1 and D2 from the F-
theory side. Moreover, there exists a holomorphic identification between an open
subset of MG

het neighboring the cusps of the C∗-fibration over ME,G and a special
subset (of large complex structures) of MK3 that makes an open neighborhood
of the corresponding boundary divisor. We refer the reader to [9; 10] for further
details and proofs.

However, this holomorphic identification between the appropriate regions of
MK3 and MG

het is defined Hodge-theoretically and is therefore not fully satisfac-
tory from a geometer’s point of view. As with any string duality, one would like to
have a purely geometrical pattern that connects the spaces and structures appear-
ing on the two sides of the duality correspondence.

Such a geometric connection (in the context of the duality discussed here) has
been known for some time, but only in the stable limit—that is, on the boundary of
the moduli spaces [1; 13]. As mentioned previously, on the F-theory side this limit
corresponds to stable K3 surfaces, whereas on the heterotic side it corresponds to
B = 0. Given a Type II stable K3 surface V1 ∪ V2, one can obtain the heterotic
elliptic curve E simply by taking the common curve V1 ∩ V2, and the heterotic
G-bundle can also be derived explicitly from the geometry of the rational surfaces
V1 and V2.

It is natural to ask whether there exists a geometrical transformation under-
lying the Hodge theoretic duality away from the stable boundary—that is, in the
bulk of the two moduli spaces involved (MK3 and MG

het) or at least in the large
complex structure region [9]. The simplest case to consider is the restriction on
the heterotic side to the P = 0 locus. From the Hodge-theoretic correspondence,
one knows that this restriction corresponds on the F-theory side to K3 surfaces
with a special lattice polarization of type M = H ⊕ E8 ⊕ E8. These are pre-
cisely the M-polarized K3 surfaces that are the main focus of this paper. On the
heterotic side, under the vanishing of the flat bundle, the B-field has the same
properties as a second elliptic curve. Hence this special case of the duality can
be regarded as relating Hodge-theoretically M-polarized K3 surfaces to pairs of
elliptic curves:

X ←→ (E, B).

This is the precisely the Hodge-theoretic identification from equation (10).
From this point of view, the transformation described in Section 3—and for

which we have computed explicit formulas in Section 4—provides the proper ge-
ometrical description of the F-theory/heterotic string duality for M-polarized K3
surfaces.
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