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The Algebra of K-Invariant Vector Fields
on a Symmetric Space G/K

Ilka Agricola & Roe Goodman

1. Introduction

In this paper we study the infinite-dimensional Lie algebra of K-invariant vector
fields on a reductive symmetric space G/K. Our motivation was the investigation
of the algebra of invariant differential operators for nontransitive group actions on
smooth affine varieties and, in particular, the abstract Howe duality theorem one
has for this situation (see e.g. [A2, Satz 2.2]). Correspondingly, we shall work in
the algebraic category—that is, where G is a complex connected reductive linear
algebraic group and K consists of the fixed points of an involutory automorphism
θ of G (thus G/K is the complexification of a Riemannian symmetric space).

There is a canonical G-module isomorphism between the space X(G/K) of
regular algebraic vector fields on G/K and the algebraically induced representa-
tion IndG

K(σ), where σ is the isotropy representation of K. In particular, the space
X(G/K)K of K-invariant vector fields on G/K corresponds to the K-fixed vectors
in the induced representation. When G is simple and simply connected, Richard-
son’s results [Ri2] imply that X(G/K) is a free module over the algebra J of
K-biinvariant functions on G. In Theorem 2.2 we obtain an explicit set of free
generators for a localization X(G/K)Kψ for some ψ ∈J.

We next study X(G/K)K as a Lie algebra and, in Section 3, obtain a formula for
the commutator of K-invariant vector fields in terms of the associated K-covariant
mappings. The Cartan embedding G/K → P ⊂ G given by gK �→ gθ(g)−1 is
a fundamental tool in the study of symmetric spaces, and it is natural to use it to
study X(G/K)K. Invariant vector fields on G/K whose horizontal lifts to G are
tangent to P are called flat (in fact, the Cartan embedding induces a priori two
different notions of flatness, which we show to be equivalent). We obtain a com-
mutator formula with no curvature term for the action on P of these vector fields.
For G simple and simply connected, we prove (Theorem 3.1) that every element
of X(G/K)K is flat if and only if K is semisimple (i.e., G/K is not the complexi-
fication of a hermitian symmetric space).

In Section 4 we study the conjugation action of a semisimple group G on itself.
This is an example of the Cartan embedding of a symmetric space for the group
G × G and involution θ(g, h) = (h, g). In this case, all conjugation-invariant
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vector fields on G are flat. Assuming G is simply connected, we show that the
gradients of the characters of the fundamental representations of G give a free basis
for the conjugation-invariant vector fields on all of G, with no localization needed
(Theorem 4.1). In the special case of SL(n, C) we calculate the commutators of
an explicit basis of conjugation-invariant vector fields. When G = SL(2, C), we
construct a C-basis for X2 = X(G)Ad G and compute the commutators and the
action on invariants of this basis. We show that X2 is isomorphic to a subalge-
bra of the Witt algebra (Theorem 4.5) and find the highest weight vectors inside
C[SL(2, C)].

Section 5 establishes a separation-of-variables theorem for SL(2, C). More pre-
cisely, using the preceding results, we construct explicitly a conjugation-invariant
differential operator on SL(2, C) whose kernel H realizes the isomorphism

C[SL(2, C)] ∼= C[SL(2, C)]Ad SL(2,C) ⊗H.

This result (Theorem 5.3) is the global version of the separation of variables in the
isotropy representation going back to Kostant [K] and Kostant and Rallis [KR].
However, our proof requires extensive representation-theoretic calculations and
does not seem to extend to arbitrary conjugation actions or symmetric spaces in
any obvious way.

A preliminary version of some of the results in this article (in particular, Theo-
rem 5.3) appeared in the first author’s dissertation [A1]. While writing this paper,
the first author learned from P. Michor (Vienna) that he and B. Kostant had ob-
tained results concerning the conjugation action of an algebraic reductive group G

on itself. In the preprint [KM], conjugation-equivariant maps and their properties
are studied using an approach that is somewhat similar to our description via spher-
ical representations. They also obtain an explicit algebraic separation-of-variables
theorem for SL(n, C).

Acknowledgments. We thank Thomas Friedrich (Humboldt-Universität zu
Berlin) for many valuable discussions on the topic of this paper. We also thank
Siddhartha Sahi (Rutgers University) for his insights and suggestions concerning
spherical representations as well as Friedrich Knop (Rutgers University) for help-
ful comments concerning differential forms and quotient varieties.

2. K-Invariant Vector Fields on G/K

2.1. Vector Fields on G and G/K

Let G be a connected complex reductive linear algebraic group, and let θ be an
involutive automorphism of G. Let K be the fixed point set Gθ. We denote the de-
composition of the Lie algebra g into the±1-eigenspaces of θ by g = k+p. Since
G/K is an affine variety, we can identify the regular functions on G/K with the
right K-invariant regular functions on G.

We denote by X(G) (resp. X(G/K)) the regular (i.e. algebraic) vector fields on
G (resp. G/K). We fix a trivialization of the tangent bundle TG ∼= G× g so that
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a regular vector field X on G corresponds to a regular map � : G → g while a
left-invariant vector field corresponds to a constant map. The relation between X

and � is given by

Xf(g) = d

dt
f
(
g(1+ t�(g))

)∣∣∣∣
t=0

(1)

for all f ∈ C[G]. (We may assume G ⊂ GL(n, C); then f is the restriction to
G of a regular function on GL(n, C) and so the right side makes sense, with the
sums and products being matrix operations.)

Proposition 2.1. Let σ be the isotropy representation of K on p, and let IndG
K(σ)

be the space of regular mappings � : G → p satisfying the right K-covariance
condition

�(gk) = σ(k)−1�(g) for all k ∈K and g ∈G. (2)

Let G act by left translations on IndG
K(σ). Then X(G/K) ∼= IndG

K(σ) as a G-
module, where the vector field X ∈ X(G/K) corresponding to � ∈ IndG

K(σ) acts
by formula (1) on f ∈C[G/K]. In particular, the K-invariant regular vector fields
on G/K correspond to the K-fixed elements in IndG

K(σ).

Proof. The inclusion C[G/K] ⊂ C[G] and the bundle isomorphism

T(G/K) ∼= G×K p

imply that a regular vector field X on G/K can be identified with a map � ∈
IndG

K(σ) by formula (1). The covariance condition (2) on � implies that Xf ∈
C[G/K] for all f ∈ C[G/K]; the assumption that � has values in p then makes
the correspondence � �→X bijective.

2.2. Some Finiteness Results

Let J = C[G/K]K be the algebra of K-biinvariant regular functions on G. Then
X(G/K) and IndG

K(σ) are J-modules under pointwise multiplication. Further-
more, if X ∈ X(G/K) corresponds to the map � : G → p then, for f ∈ J, the
vector field fX corresponds to the map g �→ f(g)�(g).

Fix a maximal θ -anisotropic algebraic torus A ⊂ G with Lie algebra a. Let M
be the centralizer of A in K and let M ′ be the normalizer of A in K. Let W =
M ′/M be the “little Weyl group”. Then, under the restriction map, J ∼= C[A]W

(see [Ri2, Cor. 11.5]).

Theorem 2.1. Let G be semisimple. Assume that C[A]W is a polynomial alge-
bra (this is always true if G is simply connected ). Then the space X(G/K)K of
K-invariant vector fields on G/K is a free J-module of rank dim(pM).

Proof. We have X(G/K)K ∼= IndG
K(σ)K as a J-module. But

IndG
K(σ)K = MorK(K\G, p),

the space of K-equivariant regular maps from the right coset space K\G to p. By
[Ri2, Thms. 12.3, 14.3], there is a K-stable vector subspace E of C[K\G] such
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that the pointwise multiplication map J ⊗ E → C[K\G] is a vector-space iso-
morphism. Furthermore, the multiplicity of the isotropy representation σ in E is
q = dim(pM). Since K is reductive, it follows that there are maps �1, . . . , �q

from K\G to p that are linearly independent over J and span MorK(K\G) as a
J-module.

Remark 2.1. In [Ri2, Sec. 15], Richardson indicates how to determine all pairs
(G, θ), with G semisimple, such that C[A]W is a polynomial algebra.

2.3. K-Invariant Vector Fields and Spherical Functions

Given ψ ∈J, we use the trivialization of the tangent bundle of G from Section 2.1
to identify the differential of ψ with the map dψ : G→ g∗ defined by

dψ(g)(X) = d

dt
ψ(g(1+ tX))

∣∣∣∣
t=0

for X ∈ g.

Since dψ(g)(X) = 0 for X ∈ k, we can view g �→ dψ(g) as a map from G to p∗.
From the K-biinvariance of ψ it is clear that

dψ(kgk ′)(X) = dψ(g)(Ad(k ′)X) for k, k ′ ∈K. (3)

We fix a bilinear form on g invariant under Ad G and θ. This defines an isomor-
phism p ∼= p∗ as a K-module, and we let grad ψ(g) ∈ p be the element corre-
sponding to dψ(g) ∈ p∗. From (3) we see that grad ψ ∈ IndG

K(σ)K. Hence, by
Proposition 2.1, grad ψ determines a K-invariant regular vector field Xψ on G/K.

If (πλ, Vλ) is a finite-dimensional irreducible K-spherical representation of G

with highest weight λ, then the dual representation (π∗λ, V ∗
λ ) is also K-spherical.

We fix vλ ∈V K
λ and vλ∗ ∈V ∗K

λ , normalized so that 〈vλ, vλ∗〉 = 1, and we let

ψλ(g) = 〈πλ(g)vλ, vλ∗〉
be the corresponding spherical function on G. Then ψλ ∈ J and hence deter-
mines a K-invariant regular vector field that we denote by Xλ. Recall that, if g
is simple and (g, k) is a symmetric pair, then k is either semisimple or else has a
one-dimensional center [H1].

Theorem 2.2. Assume that G is simply connected, g is simple, and G/K has rank
r. Let ϕ1, . . . , ϕr be algebraically independent generators for J, and let X1, . . . , Xr

be the corresponding K-invariant vector fields on G/K. Then there is a nonzero
function ψ ∈ J such that the following holds (where Jψ and X(G/K)Kψ denote
localizations at ψ).

(i) If the Lie algebra k is semisimple, then X1, . . . , Xr generate the Jψ -module
X(G/K)Kψ .

(ii) If the center of k is nonzero and has basis J with (ad J )2 = −1, let Yi

be the vector field corresponding to the map g �→ (ad J ) grad ϕi(g). Then
X1, . . . , Xr, Y1, . . . , Yr generate the Jψ -module X(G/K)Kψ .

Proof. We use a modification of arguments from [St, Thm. 8.1], [SB], and [So].
We first observe that



The Algebra of K-Invariant Vector Fields on a Symmetric Space G/K 611

grad ϕ(A) ⊂ a for all ϕ ∈J. (4)

This is a consequence of the KAK polar coordinate decomposition of G, and (4)
holds for any reductive G. For the sake of completeness, we give a proof. Con-
sider the restricted root space decomposition

g = m+ a+
∑
α

gα,

where m = Lie(M). We claim that

dϕ(a)(X) = 0 for all a ∈A and X ∈ gα. (5)

To prove this, observe that X + θX ∈ k, so dϕ(a)(X + θ(X)) = 0. The left K-
invariance of ϕ gives

0 = d

dt
ϕ(a + t(X + θX)a)|t=0 = dϕ(a)(Ad(a)−1(X + θX))

= dϕ(a)(a−αX + aαθX).

Since we already know that dϕ(a)(aαX + aαθX) = 0, we conclude that

(aα − a−α)dϕ(a)(X) = 0.

Thus (5) holds on the dense open set in A where aα �= a−α, and hence it holds on
all of A. But (5) implies that grad ϕ(A) ⊂ (m+ a)∩ p = a, proving assertion (4).

Now assume that G is simply connected. Then the set '+ of K-spherical high-
est weights is a free monoid generated by dominant weights µ1, . . . , µr in a∗. Let
' = Zµ1 + · · · + Zµr be the lattice generated by these weights. For λ ∈ '+,
define the monomial symmetric function mλ ∈C[A]W by

mλ(a) =
∑

µ∈W·λ
aµ.

Put a partial order ≺ on ' by µ ≺ λ if λ− µ is a sum of positive restricted roots
with nonnegative coefficients. If λ∈'+, the spherical function ψλ is given on A

by a character sum of the form

ψλ(a) = c0mλ(a)+
∑

µ∈'+
µ≺λ

cµmµ(a), (6)

where c0 �= 0 ([V]; see also [H3, Prop. 9.4]). When λ = µi, we write ψλ = ψi.

Let ωi be the character ωi(a) = aµi of A. Then

, = dω1

ω1
∧ · · · ∧ dωr

ωr

is a nowhere-vanishing top-degree differential form on A. By (4) we can write

dψ1 ∧ · · · ∧ dψr |A = f,, (7)

where f is a regular function on A that we can calculate using the differentials of
ψi |A. Set ρ = µ1+ · · · + µr. From (6) we see that
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f(a) = caρ +
∑
µ∈'
µ≺ρ

cµa
µ,

with c �= 0. Hence f �= 0, so we conclude from formulas (3) and (7) that
{dψ1, . . . , dψr} is linearly independent on a dense open set in G. Now

dϕ1 ∧ · · · ∧ dϕr = ∂(ϕ1, . . . , ϕr)

∂(ψ1, . . . , ψr)
dψ1 ∧ · · · ∧ dψr.

Since ϕ1, . . . , ϕr are assumed to generate J, the Jacobian factor is nonzero. Hence
the differentials dϕ1, . . . , dϕr are also linearly independent on a dense open set
in G.

When k is semisimple, p is an irreducible K-module and pM = a has dimension
r by [B-J, Prop. 5.14]. Let {Z1, . . . , Zr} be a set of free generators for X(G/K)K

given by Theorem 2.1. Then there are functions ψij ∈J such that

Xj =
∑

i

ψijZi.

Set ψ = det[ψij ]. Then ψ �= 0, since the vector fields X1, . . . , Xr are linearly in-
dependent on a dense open set of G/K. This implies statement (i) of the theorem.

Now assume that k has center CJ with ad(J )2 = −1. The vector fields Yi in
statement (ii) of the theorem are K-invariant. Since pM = a ⊕ ad(J )a by [B-J,
Lemma 5.7, Prop. 5.14], the vector fields X1, . . . , Xr, Y1, . . . , Yr are linearly inde-
pendent on a dense open set of G/K by the preceding argument. Hence statement
(ii) of the theorem follows from Theorem 2.1 and the argument used for state-
ment (i).

3. Lie Algebra Structure

3.1. Commutator Formula on G/K

The symmetric space G/K is the base of a holomorphic principal K-fiber bundle
with total space G. The canonical connection Z : TG → k on G has horizontal
space

T h
g G = {X ∈ TgG : Z(X) = 0} = {X ∈ TgG : dLg−1(X)∈ p} = dLg(p)

at the point g ∈G. Since we are working in the context of linear algebraic groups,
we can take the differential of left and right translation as usual matrix multiplica-
tion; thus we write dLg(X) = g ·X (matrix product) for g ∈G and X ∈ g.

Let X, Y be vector fields on G/K corresponding to maps �,2 in IndG
K(σ), and

let X∗, Y ∗ be their horizontal lifts to vector fields on G. It is clear from the defini-
tion of the canonical connection Z that the horizontal lift X∗ of X to a vector field
on G is given by formula (1). If f is any regular function on G then by definition
we have

(X∗Y ∗f )(g) = d 2

ds dt
f
(
(g + sg�(g))(1+ t2(g + sg�(g)))

)∣∣∣∣
s=t=0

.
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Taking a first-order Taylor expansion of 2 to determine the coefficient of st in the
argument of f on the right side of this equation, we find that

(X∗Y ∗f )(g) = d

dr
f
(
g(1+ rH(g))

)∣∣∣∣
r=0

,

where H(g) = �(g)2(g) + d2g(g�(g)). Using the same formula again with
the order of X and Y interchanged, we conclude that, for any regular function f

on G,

[X∗, Y ∗ ]f(g) = d

dr
f
(
g(1+ r[�(g),2(g)]+ r� � 2(g))

)∣∣∣∣
r=0

, (8)

where we have set

� � 2(g) := d2g(g�(g))− d�g(g2(g)). (9)

In formula (8), the term [�(g),2(g)] is in k and arises from the curvature of the
canonical connection. When f is right K-invariant, however, this term can be
omitted and we obtain the commutator of X and Y as vector fields on G/K. Thus
we have proved the following.

Proposition 3.1. Let X and Y be vector fields on G/K corresponding (respec-
tively) to the maps � and 2 in IndG

K(σ). Then the commutator [X, Y ] corresponds
to the map � � 2 defined in formula (9).

Remark 3.1. Each term on the right side of (9) satisfies the right K-covariance
condition (2). Indeed, if x ∈ p, then

d�gk(gkx) = d

dt
�(gk(1+ tx))

∣∣∣∣
t=0

= d

dt
�(g(1+ t Ad(k)x)k)

∣∣∣∣
t=0

= Ad(k−1) d�g(gAd(k)x)

by the K-covariance property of �. Hence

d�gk(gk2(gk)) = Ad(k−1) d�g(gAd(k)2(gk)) = Ad(k−1) d�g(g2(g))

as claimed. Likewise, if � and 2 are left K-invariant, then so is the map g �→
d�g(g2(g)).

Remark 3.2. The commutator formula (9) can also be obtained from Cartan’s
structural equation for the canonical connection by using the fact that this connec-
tion is torsion-free.

3.2. Cartan Embedding and Flat Vector Fields

The Cartan embedding of the symmetric space G/K into G furnishes an alternate
description of vector fields on G/K. This will allow us to discuss the properties of
Lie algebra X(G/K)K in more detail in some cases. The algebraic group version
of this embedding is treated in [Ri2] (see also [GW, Sec. 11.2.3]). We summarize
the results as follows.
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Proposition 3.2 (Cartan Embedding). For g, y ∈ G, the formula g 6 y =
gyθ(g)−1 defines an action of G on itself. The orbit of the identity P = G 6 e =
{gθ(g)−1 : g ∈G} is a closed irreducible subset of G that is isomorphic to G/K

as a G-space (relative to this action).

This embedding will be denoted by j : G/K → P ⊂ G, gK �→ gθ(g)−1. Thus
we have a commutative diagram

G/K

j

��

G

����������
�� P ,

where the map G → P is g �→ gθ(g)−1 and the map G → G/K is g �→ gK.

The 6-action of K on P is the usual conjugation action. By abuse of notation, we
shall often write Ad g for the conjugation action of G on G as well as for the ad-
joint representation of G on g. We also denote by θ the involution on g as well as
on G. At any point y of P, one has the inclusion of tangent spaces TyP ⊂ TyG.

Set θy = (Ad y)−1θ. This is an involution on g, and we define ky and py to be the
±1-eigenspaces of θy :

ky = {X ∈ g : θyX = +X}, py = {X ∈ g : θyX = −X}.
Let κy and πy be the projections on these spaces:

κy = 1
2 (1+ θy), πy = 1

2 (1− θy).

Then py is exactly the tangent space TyP, viewed as a subspace of g via left trans-
lation by y−1 [GW, Sec. 11.2.7], and may be realized as

TyP = py = {Ad y−1X − θ(X) : X ∈ g}.
The group K permutes the subspaces py, leaving pe invariant. More precisely,
Ad k maps py to pkyk−1 in an equivariant way, as follows.

Lemma 3.1. The following diagram is commutative:

pe

πy
��

Ad k

��

py

Ad k

��

pe π
kyk−1

�� pkyk−1 .

Proof. If X is in py and Y = Ad kX, then

θ(Y ) = θ(Ad kX) = Ad θ(k)θ(X) = −Ad kAd yX

= −Ad(kyk−1)Ad kX = −Ad(kyk−1)Y.

Hence Ad k maps py to pkyk−1, as claimed. The commutativity of the diagram is
as easily verified.
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If � : P → g is any regular map, then we can define a regular vector field �̃ on
P by

�̃f(y) = d

dt
f(y + tyπy�(y))

∣∣∣∣
t=0

for f ∈ C[P ] and y ∈ P. Now assume that �(y) ∈ p for all y ∈ P. Since
θ(�(y)) = −�(y) in this case, we can write

yπy�(y) = 1
2 (y�(y)+ y Ad(y−1)�(y)) = {y,�(y)},

where {a, b} = (1/2)(ab+ba) is the (normalized) anticommutator of the matrices
a, b. This gives the alternate formula

�̃f(y) = d

dt
f(y + t{y,�(y)})

∣∣∣∣
t=0

(10)

for maps � with values in p. If we assume that � is K-equivariant,

�(kyk−1) = Ad(k)�(y) for all k ∈K and y ∈P,

then a brief calculation (using Lemma 3.1) shows that �̃ is a K-invariant vector
field on P.

Definition 3.1. The vector field �̃ is said to be flat if

(i) � : P → p is K-equivariant and
(ii) Ad(y)�(y) = �(y) for all y ∈P.

Since {y,�(y)} = y�(y) for a flat field, formula (10) becomes

�̃f(y) = d

dt
f(y + ty�(y))

∣∣∣∣
t=0

(11)

in this case.

Lemma 3.2. Let � : P → p be a regular, K-equivariant map. Then the follow-
ing are equivalent:

(i) �̃ is flat;
(ii) �̃y ∈ Ty(P ) for all y ∈P ;

(iii) �(A) ⊂ a.

Proof. (i) ⇔ (ii) From the identification of TyP with a subspace of g, condition
(ii) is equivalent to

πy�(y) = �(y) for all y ∈P.

But �(y)∈ p when y ∈P, so θ�(y) = −�(y) and hence

πy�(y) = 1
2 (1+Ad(y))�(y).

This gives the equivalence of (i) and (ii).
(i) ⇒ (iii) Let a ∈ A be a regular element. Then �(a) ∈ a if and only if

Ad(a)�(a) = �(a). In particular, (i) implies that � maps the regular elements
of A into a. Since the regular elements are dense in A, this implies (iii).
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(iii) ⇒ (i) Let a ∈A and k ∈K. Set y = kak−1. Then �(y) = Ad(k)�(a) by
the K-covariance properties of �, so Ad(y)�(y) = Ad(k)Ad(a)�(a). Now use
(iii) and the K-covariance again to obtain

Ad(y)�(y) = Ad(k)�(a) = �(y).

Since Ad(K)A is dense in P, this equation holds everywhere on P and hence �̃

is flat.

Proposition 3.3. Let X(P )Kflat be the set of all flat vector fields on P.

(i) X(P )Kflat is a J-submodule of X(P )K.

(ii) If X, Y ∈X(P )Kflat correspond to the maps �,2 (respectively) then [X, Y ] =
Z, where Z is the flat vector field corresponding to the map � � 2. Hence
X(P )Kflat is a Lie subalgebra of X(P )K.

Proof. (i) This is obvious from the definition.
(ii) If � and 2 are any regular maps from P to p, then a straightforward calcula-

tion as in the proof of formula (8) shows that [�̃, 2̃] = �̃#2, where �#2 : P →
g is defined by

�#2(y) = d2y({y,�(y)})− d�y({y,2(y)})+ 1
2 [�(y),2(y)]. (12)

Note, however, that �#2 generally has values in g rather than p, so formula (12)
does not define a Lie algebra structure on the set of regular maps from P to p.
The projection onto TyP of the k component 1

2 [�(y),2(y)] in formula (12) is the
curvature term.

Now assume that � and 2 correspond to flat vector fields X and Y. Let a ∈A.

Then the pointwise commutator [2(a),�(a)] = 0 by Lemma 3.2(iii). Hence

[2(kak−1),�(kak−1] = Ad(k)[2(a),�(a)] = 0 for k ∈K

by K-covariance. Since Ad(K)A is dense in P, it follows that [2(y),�(y)] = 0
for all y ∈P. Hence the curvature term is zero, {y,�(y)} = y�(y), and �#2 =
� � 2. It is clear that � � 2 satisfies (iii) of Lemma 3.2, so [X, Y ] is a flat vec-
tor field.

Definition 3.2. Let X ∈ X(G/K)K and let X∗ be the horizontal lift of X to a
vector field on G. Then the vector field X is said to be horizontally flat if X∗

y ∈
Ty(P ) for all y ∈P.

If X is a horizontally flat K-invariant vector field on G/K and if f is a regular
function on G that vanishes on P, then X∗f |P = 0 also. Hence X∗ restricts to a
well-defined vector field on P that we denote by X:. If X is defined by a map �∈
IndG

K(σ)K then we see from (1) and (11) that X: = �̃. We note that � is uniquely
determined by its restriction to P, since KP is dense in G, so X is determined by
X: when X is horizontally flat. Also, �(kyk−1) = �(y) for k ∈ K and y ∈ P.

Thus, by Lemma 3.2, the flatness of X is equivalent to the condition �(A) ⊂ a.
In this case, X: ∈X(P )Kflat.
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Proposition 3.4. Let ϕ ∈J. Then Xϕ is a horizontally flat vector field.

Proof. This follows from formula (4), Lemma 3.2, and the remarks just made.

Let j ∗ : C[P ] → C[G/K] be the algebra isomorphism obtained from the Cartan
embedding (j ∗f = f � j for f ∈ C[P ]). Define the push-forward vector field
j∗(X) = j ∗−1 �X � j ∗ for X ∈X(G/K). Then j∗ gives an isomorphism between
X[G/K]K and X[P ]K. Suppose X ∈ X(G/K)K is defined by a map � : G → p.
The left K-invariance of � and the isomorphism G/K ∼= P given by the Cartan
embedding imply the existence of a regular map 2 : G→ p such that

2�(g) = 2(θ(g)−1g) for all g ∈G.

Let f ∈C[P ] and y ∈P. Since j−1(y2) = y for y ∈P, we have

j∗(X)f(y2) = X(j ∗f )(y) = d

dt
f
(
y(1+ t�(y))2y

)∣∣∣∣
t=0

= d

dt
f
(
y2(1+ t(Ad y)−12(y2))

)∣∣∣∣
t=0

(13)

(note that t �→ (1+ t�(y))θ(1+ t�(y))−1 is tangent to t �→ 1+ 2t�(y) at t =
0). Equation (13) uniquely determines j∗(X), since the map y �→ y2 is surjective
on P.

When X ∈ X(G/K)K is horizontally flat, it determines two vector fields on
P—namely, X: and j∗(X). It is evident from (13) that these vector fields are not
the same. However, the two notions of flatness are related as follows.

Lemma 3.3. Let X∈X(G/K)K. Then X is horizontally flat if and only if j∗(X)∈
X(P )Kflat.

Proof. Suppose j∗(X)∈X(P )Kflat. Then j∗(X) = 2̃, where 2 : P → p is a reg-
ular K-covariant map such that Ad(y)2(y) = 2(y) for y ∈ P. From equation
(13) we see that

2�(y) = 2(y2) for all y ∈P.

It follows that Ad(y)�(y) = �(y) for y ∈ P, so X is horizontally flat by
Lemma 3.2.

Conversely, if X is horizontally flat, then Ad(y)�(y) = �(y) for all y ∈ P.

Let the map 2 be as in equation (13). Since Ad(y)2(y2) = 2(y2) for all y ∈ P,

we see that j∗(X) = 2̃ by (13). The right K-covariance of � and the surjectivity
of the map y �→ y2 on P imply that

2(kyk−1) = Ad(k)2(y) for k ∈K and y ∈P.

Thus 2̃ ∈X(P )Kflat.

In light of Lemma 3.3, we shall simply use the term flat in the rest of the paper
to refer either to a horizontally flat vector field X ∈X(G/K)K or to an element in
X(P )Kflat.
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Theorem 3.1. Assume that G is simply connected and that g is simple. The fol-
lowing statements are equivalent.

(i) k is semisimple.
(ii) Every K-invariant regular vector field on G/K is flat.

Furthermore, if (ii) holds then X(P )K = X(P )Kflat.

Proof. Let ϕ1, . . . , ϕr be a set of algebraically independent generators for J. If
k is semisimple, then the K-invariant vector fields corresponding to grad ϕ1, . . . ,

grad ϕr are a Jψ -module basis for X(G/K)Kψ by Theorem 2.2. These vector fields
are flat by Proposition 3.4. Hence all K-invariant vector fields on G/K are flat
by Proposition 3.3 (the property of flatness is invariant under localization). On
the other hand, if k is not semisimple, then ad(J ) grad ϕi(A) �⊂ a, so the corre-
sponding vector field Yi is not flat by Lemma 3.2. The last statement follows from
Lemma 3.3.

Remark 3.3. When k is not semisimple, the space G/K is the complexification
of a hermitian symmetric space. From Theorem 2.2 we have a direct sum decom-
position

X(G/K)Kψ = X+Y,

where X is the Lie algebra of flat rational vector fields generated over Jψ by the
gradient fields Xi and where Y is generated over Jψ by the (nonflat) fields Yi. We
have not determined the commutation relations between Xi and Yj .

We finish this section with an easy example of a trivial K-action, yielding the Witt
algebra of algebraic vector fields on the 1-sphere.

Example 3.1 (Witt Algebra). The (complexified) 1-sphere C∗ is, in Cartan’s
classification, a symmetric space of type BDI with the following involution:

C∗ = SO(2, C)/S(O(1, C)× O(1, C)), θ

[
a b

−b a

]
=

[
a −b

b a

]
.

One checks that K = {1,−1}, P = SO(2, C), and thus g = p = so(2, C) ∼= C.

Because the K-action on P is by conjugation it is trivial, so any regular map P ∼=
C∗ → p ∼= C induces a K-invariant vector field on the sphere. Those maps are
spanned by fn(x) = xn for n ∈ Z, with differential (dfn)x(a) = naxn−1. Since
the projection πx is trivial, the commutator formula (9) gives

fn � fm(x) = (dfm)x(x · fn(x))− (dfn)x(x · fm(x))

= (m− n)xn+m = (m− n)fm+n(x).

This is the well-known commutator relation of the Witt algebra. The linear com-
binations kn = fn − f−n and pn = pn + p−n satisfy the relations

kn � km = (m− n)kn+m − (n+m)km−n,

pn � pm = (n−m)kn+m + (n+m)kn−m,

pn � km = (n−m)pn+m − (n+m)pn−m.
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The Witt algebra thus carries a Z2-graduation, which we shall encounter again in
Theorem 4.5.

4. The Conjugation Action

4.1. Conjugation-Invariant Vector Fields

Consider the conjugation action of a connected reductive algebraic group G on it-
self. This action fits into the general scheme by choosing Ḡ = G × G with the
involution θ(g, h) = (h, g). Then K = {(g, g) : g ∈G} is the diagonal embed-
ding of G in G×G, and the Cartan embedding

j : Ḡ/K = (G×G)/G→ G×G, (g, h)K �→ (g, h)θ(g, h)−1 = (gh−1, hg−1)

realizes P as {(g, g−1) : g ∈ G}, to which there corresponds p = {(X,−X) :
X ∈ g} on the Lie algebra side. The regular functions on Ḡ/K are of the form
ϕ(g, h) = f(gh−1), where f ∈C[G]. In particular, on P the function ϕ is given
by ϕ(g, g−1) = f(g2) (cf. the proof of Lemma 3.3).

The K action on P is by conjugation in each component, so we may restrict
attention to the first component. Thus C[G] ∼= C[P ], where f ∈ C[G] gives
the function F(g, g−1) = f(g). Conjugation-invariant algebraic vector fields then
correspond to conjugation-equivariant regular maps from G to g, and we denote
them by X(G)Ad G. With this identification, the spherical functions become the
irreducible characters of G and the representation σ becomes the adjoint repre-
sentation of G on g. The algebra J consists of the regular class functions on G.

Theorem 4.1. Assume G is simply connected and g is semisimple of rank r. Let
ϕ1, . . . , ϕr be the characters of the fundamental representations of G. Then the vec-
tor fields X1, . . . , Xr on G corresponding to grad ϕ1, . . . , grad ϕr are a J-module
basis for X(G)Ad G. Furthermore, all conjugation-invariant vector fields are flat.

Proof. Let T ⊂ G be a maximal torus. We may take

A = {(t, t−1) : t ∈ T }, M = {(t, t) : t ∈ T }.
The action of M on p is equivalent to the adjoint action of T on g, hence dim pM =
dim T = r. By [St, Thm. 8.1], the vector fields X1, . . . , Xr are linearly indepen-
dent on the set of regular elements of G. Hence the function ψ in Theorem 2.2
never vanishes on the set of regular elements, so its zero set is contained in the set
Q of irregular elements of G. But Q is a Zariski closed set of codimension 3 by
[St, Thm. 1.3]. Hence ψ must be constant. For � : G → g a conjugation equi-
variant map, we have Ad(y)�(y) = �(y2y−1) = �(y) for all y ∈G. Thus the
vector field �̃ is flat.

Remark 4.1. Let N ∼= Cr be the cross-section for the set of regular elements of
G constructed in [St, Thm. 1.4]. Then Theorem 4.1 applies to any set {ϕ1, . . . , ϕr}
of generators for J if it is known that {dϕ1, . . . , dϕr} is linearly independent at
every point of N.
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4.2. Invariant Vector Fields on SL(n, C)

We now apply some of our general results to SL(n, C). The same method applies
to other classical groups and symmetric spaces using Theorems 2.2 and 3.1 and
the generators for the invariant polynomials given in [GW, Sec. 12.4.2].

Theorem 4.2. Let G = SL(n, C). Define maps �k : G→ g by

�k(g) = gk − (1/n) tr(gk) · 1 for g ∈G.

Then X(G)Ad G is generated (as a module over C[G]Ad G) by the vector fields
�̃1, . . . , �̃n−1.

Proof. Define ϕk(g) = (1/k) tr(gk) for g ∈G. Then, for X ∈ g, we calculate that

dϕk(g)(X) = d

dt
ϕk(g(1+ tX))

∣∣∣∣
t=0

= tr(gkX) = tr(�k(g)X).

Using the trace form to identify g with g∗, we see that grad ϕk = �k. The re-
striction of ϕk to the diagonal is a multiple of the power sum of degree k, so
ϕ1, . . . , ϕn−1 generate the G-invariant regular functions. The matrices

X =




c1 −c2 · · · (−1)n−2cn−1 (−1)n−1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




give a cross-section N for the regular elements of G as [c1, c2, . . . , cn−1] ranges
over Cn−1 [St, Sec. 7.4]. It is easy to see that X,X2, . . . , Xn−1 are linearly inde-
pendent. Hence the maps �1, . . . , �n−1 are linearly independent at all points of
N. The result now follows from Remark 4.1.

We compute the commutators of the vector fields in Theorem 4.2. Since all the
conjugation-invariant vector fields are flat (by Theorem 4.1), it suffices by Propo-
sition 3.3 to calculate the maps �k � �l.

Theorem 4.3. The maps �k satisfy the commutation relations

�k � �l(g) = (l − k) ·�k+l(g)+ k

n
· tr(g l)�k(g)− l

n
· tr(gk)�l(g).

Proof. One obtains for the differential

(d�k)g(X) = Xgk−1+ gXgk−2 + · · · + gk−1X − k

n
tr(Xgk−1),

which implies that
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(d�k)g(g ·�l(g))

= k

(
gl+1− 1

n
tr(g l)g

)
gk−1− k

n
tr

((
gl+1− 1

n
tr(g l)g

)
gk−1

)

= k

(
gk+l − 1

n
tr(gk+l)

)
− k

n
tr(g l)

(
gk − 1

n
tr(gk)

)

= k ·�k+l − k

n
tr(g l)�k.

Now apply formula (9).

In particular, the relation

�1 � �−1(g) = 1

n
(tr(g)�−1(g)+ tr(g−1)�1(g))

shows that �1 and �−1 generate a finite Lie ring over the ring of invariants.

4.3. Invariant Vector Fields on SL(2, C)

We consider the case G = SL(2, C) in more detail.

Theorem 4.4. Every conjugation-invariant map 2 : G = SL(2, C) → g =
sl(2, C) is a multiple of the map 21 : g �→ g − g−1 by an element of C[G]Ad G.

Proof. The representation of G on C2 is self-dual, so its character χ satisfies

2χ(g) = tr(g + g−1).

Hence 2dχ = 21 by the calculation in the proof of Theorem 4.2. The result now
follows from Theorem 4.1.

In order to obtain a C-basis of the space X(SL(2, C))Ad SL(2,C) = X2, it thus suf-
fices to choose any convenient basis of the space of invariants. The traces on sym-
metric tensor powers of the fundamental representation V of G turned out to yield
the simplest formulas.

Proposition 4.1. Let g be an element of G = SL(2, C), and denote by S kV the
(k + 1)-dimensional irreducible representation of G. Then

gk+1− g−k−1 = tr(g)|S kV · (g − g−1).

Furthermore,

tr(g)|S kV = tr(gk)+ tr(gk−2)+ · · · +
{

1, k even,

tr(g), k odd.

Proof. We first prove the second formula on the maximal torus T of G, chosen as
before. For h = diag(x,1/x)∈ T, one has

tr(h)|S kV = xk + xk−2 + · · · + x 2−k + x−k.
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Since tr(hn) = xn + x−n, the formula follows immediately on T . The case dis-
tinction for the last term depends on whether the number of summands is even or
odd. Since the trace is conjugation-invariant, the formula is valid on the dense set
of all conjugates of T and thus also holds on G. For the first formula, we note that[

a b

c d

]
+

[
d −b

−c a

]
= (a + d) · 1

implies gn + g−n = tr(gn) · 1, so the algebraic identity

gk+1− g−k−1 = (gk + gk−2 + · · · + g2−k + g−k) · (g − g−1)

finishes the proof.

Corollary 4.1. The vector fields defined by the maps 2k(g) = gk − g−k for
k ≥ 1 are a basis for X2 as a vector space over C.

We compute the commutation relations for this basis. For notational simplicity,
we write 2k for the conjugation invariant vector field defined by the map g �→
2k(g).

Theorem 4.5. The vector fields 2k satisfy the commutator relations

[2k,2l] = (l − k)2k+l − (k + l )2l−k.

In particular, the algebra X2 of conjugation-invariant vector fields on SL(2, C)

is isomorphic to a subalgebra of the Witt algebra, and the vector fields with even
index {22k}k≥1 span a subalgebra of X2.

Proof. We compute the differential

(d2k)g(X) = Xgk−1+ gXgk−2 + · · · + gk−1X

+ g−1Xg−k + g−2Xg−k+1+ · · · + g−kXg−1,

from which we obtain

(d2k)g(g ·2l(g)) = k · (gk+l − g−k−l + gl−k − gk−l)

= k · (2k+l(g)+2l−k(g)).

The commutator formula (9) and Proposition 3.3 then imply the result.

The action of the vector fields 2k on the invariants is of particular interest. The
three most important bases for the invariant functions are:

χm(g) = tr(g)|SmV , Im(g) = tr(gm), Jm(g) = tr(g)m.

Only the action of 2k on the power sum Im is given by a simple formula. For this
reason, we restrict our attention to k = 1 in the other two cases.

Theorem 4.6. The vector field 2k acts on invariants in C[SL(2, C)]Ad SL(2,C) as
follows:
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2k(Im) = m(Im+k − Im−k);
21(χm) = mχm+1− (m+ 2)χm−1,

21(Jm) = m(Jm+1− 4Jm−1).

Proof. For the invariant Im, the computation is straightforward using formula (1):

2k(Im) = d

dt
Im(g + tg2k(g))

∣∣∣∣
t=0

= d

dt
tr[(g + t(g1+k − g1−k))m]

∣∣∣∣
t=0

= d

dt
tr[gm + tmgm−1(g1+k − g1−k)+ · · · ]

∣∣∣∣
t=0

= d

dt
tr[gm + tm(gm+k − gm−k)]

∣∣∣∣
t=0

= m(tr(gm+k)− tr(gm−k)) = m(Im+k − Im−k).

Since χm = Im + Im−2 + · · · by Proposition 4.1, the second formula is easily
proved by induction. The last formula is shown using an argument similar to that
used for the first; at one stage it requires the identity tr(g2) = tr(g)2 − 2, which
is immediately verified on matrices.

From the point of representation theory, the infinite-dimensional Lie algebra X2

comes with two natural representations (and, in fact, many more; see Section 5).
The commutator formula (Theorem 4.5) describes the structure of the adjoint
representation of X2 and shows in particular that it has no (nontrivial) finite-
dimensional subalgebras. The action on invariants contains a trivial summand (the
constant function, annihilated by all 2k). The rest is indecomposable in the fol-
lowing sense: for any fixed m �= 0, the linear hull V1 of the invariants

Im, Im±2, Im±4, . . . , Im+1− Im−1, Im±3 − Im±1, Im±5 − Im±3, . . .

is invariant under the action of X2, but its complement V2 spanned by

Im+1+ Im−1, Im±3 + Im±1, Im±5 + Im±3, . . .

is not. The second claim is immediately clear, since 21 maps V2 into V1. For the
first, Theorem 4.6 implies that 2k maps Im into a multiple of Im+k − Im−k, which
is a linear combination of elements of V1. The same applies to the image of all
differences Im+k − Im−k.

Remark 4.2. The example G = SL(2, C) is treated in detail in Section 3 of
[KM], whose authors obtain similar formulas.

5. A Separation-of-Variables Theorem for SL(2, C)

5.1. Harmonic Cofree Actions

We recall that an action of a reductive group G on an irreducible affine variety M

is called cofree if there exists a G-invariant subspace H of C[M ] such that the
multiplication map
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H ⊗ C[M ]G → C[M ], h⊗ f �→ h · f (14)

is an isomorphism of vector spaces. Let M//G be the algebraic quotient of M by
G (the affine variety such that C[M//G] ∼= C[M ]G), and let π : M �→ M//G be
the canonical projection (see [Kr]). By using the solution to the Serre conjecture
concerning algebraic vector bundles on Cn, Richardson [Ri1] was able to establish
a general algebraic criterion for an action to be cofree.

Theorem 5.1 (Richardson). Let G be an algebraic group with reductive iden-
tity component and M a smooth irreducible affine G-variety. Then this action is
cofree whenever the following two conditions are both satisfied:

(i) the algebra of invariants C[M ]G is a polynomial ring;
(ii) the fiber π−1(x) has dimension dim M − dim M//G for all x ∈M//G.

Let G be a simply connected semisimple algebraic group, T a maximal torus in
G, and W the Weyl group of G relative to T . Then, in particular, the following
group actions are cofree:

(a) the conjugation action of G on itself ;
(b) the action of W on T ;
(c) the K-action on the symmetric space G/K, where K is the fixed point set of

some involution θ of G.

However, Richardson’s proof gives no explicit realization of the space H.

Classical results by Kostant [K] and Kostant and Rallis [KR] state (among
other things) that the isotropy representation p of a symmetric space G/K is al-
ways cofree. Furthermore, in the factorization (14) in this case, the K-invariant
subspace H may always be realized as the intersection of the kernels of a finite
number of K-invariant differential operators with constant coefficients, thus gener-
alizing the notion of harmonic polynomials for SO(n). This justifies the following
definition.

Definition 5.1. A cofree action of a reductive algebraic group K on an irre-
ducible affine variety M will be called harmonic if there exist K-invariant differ-
ential operators D1, . . . , Dn on M such that the linear space

H =
n⋂

i=1

ker Di

realizes the isomorphism (14).

Example 5.1. We start with an easy example of a harmonic Weyl group action.

Theorem 5.2. The action of the Weyl group W = S2 on the maximal torus T ∼=
C∗ of G = SL(2, C) is harmonic.

Proof. The ring of regular functions of T is isomorphic to C[ez, e−z], and the non-
trivial element of S2 acts thereon as the inversion enz �→ e−nz. Thus the invariant
ring is exactly the polynomial ring generated by ez + e−z, and one easily shows
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that ∂z and C[ez, e−z] together generate the ring of algebraic differential operators
on T . The operator

D = (ez − e−z)∂z + (ez + e−z)∂ 2
z

is obviouslyW-invariant, and an easy calculation shows that its kernelH is spanned
by the functions 1 and ez−e−z. On the other hand, since the affine ring C[T ] splits
into the isotypic components of the trivial and the signum representation, we have

C[T ] = 1 · C[T ]W + (ez − e−z) · C[T ]W = H ⊗ C[T ]W

and the action is therefore harmonic.

Notice that (ez − e−z)∂z is just the W-invariant vector field induced by the W-
equivariant mapping T → h, h �→ h − h−1. It should be possible to extend this
example to wide classes of Weyl group actions.

5.2. Harmonicity of the SL(2, C) Conjugation Action

The remainder of this section is devoted to the proof that the conjugation action
of SL(2, C) on itself is harmonic. The strategy is to guess a good candidate for
the space H of harmonics (this is the easy part) and then to explicitly construct a
conjugation-invariant differential operator with kernel H.

Under the simultaneous left and right action of G, the affine ring of SL(2, C)

decomposes by Frobenius reciprocity into

C[SL(2, C)] ∼=
⊕
d≥0

S dV ⊗ (S dV )∗. (15)

The decomposition of C[SL(2, C)] under the conjugation action ofG then amounts
to decomposing each tensor product into G-irreducibles. By the Clebsch–Gordon
formula, we know that S dV ⊗ (S dV )∗ = S2dV ⊕ S2(d−1)V ⊕ · · · ⊕ S 0V, where
the trivial representation corresponds to the trace over S dV. Thus, we obtain

C[SL(2, C)] ∼=
⊕
d≥0

C[SL(2, C)]Ad N(d )⊗ S dV,

where the first factor denotes the matrix functions that are invariant under the lower
diagonal unipotent matrices N and of weight d. In [A2, Satz 2.2] it is shown that
the infinite-dimensional multiplicity spaces of the irreducible SL(2, C)-modules
in this decomposition are irreducible and pairwise inequivalent modules for the
canonical action of the algebra of conjugation-invariant differential operators;
this applies in particular to the ring of invariants itself (d = 0). The space
C[SL(2, C)]Ad N(d ) is spanned by the products of the dth power of the matrix
coefficient g12 with any invariant,

C[SL(2, C)]Ad N(d ) = (g12)
d · C[SL(2, C)]Ad SL(2,C).
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Thus we may choose for H the sum of all SL(2, C)-representations with high-
est weight vector (g12)

d for d = 0,1, 2, . . . . The problem then is to construct an
invariant differential operator D with

C[SL(2, C)]Ad N ∩ ker D = C[g12 ].

Remark 5.1. The space H coincides with the pull-back under the map g �→
2(g) of the harmonics on the Lie algebra g, defined as in [K]. In the preprint
[KM, 6.2] it is shown that this choice of a subspace H of harmonics works for
G = SL(n, C) for all n. Denote by H(g) the harmonics on g, and consider the
conjugation-invariant map �1(g) = g − tr(g) · 1/n already encountered in Theo-
rem 4.2. Then Kostant and Michor prove the isomorphism

C[G] ∼= C[G]Ad G ⊗�∗
1H(g).

We now turn to the construction of the differential operator D. Besides the vector
field 2 = 21 from Theorem 4.4, the Casimir operator E that generates the center
of U(g) will also play a crucial role. We normalize E such that

E|S dV⊗(S dV )∗ = d(d + 2) · id.
We need to keep track of the behavior of matrix functions under the transition from
the left and right to the conjugation action. For this we will use the explicit iso-
morphism of equation (15). Let u, v be a basis of V and let x, y be the dual basis
of V ∗. We choose the monomials ukvd−k (k = 0, . . . , d ) as a basis for S dV and
realize the isomorphism S d(V ∗) ∼= (S dV )∗ by

ϕ1 · · ·ϕd �→
[
v1 · · · vd �→ 1

d!

∑
σ∈Sd

ϕσ(1)(v1) · · ·ϕσ(d )(vd)

]
.

Then
(

d

k

)
xky d−k is the basis vector in (S dV )∗ dual to ukvd−k. Since confusions

cannot occur, we shall henceforth omit the tensor product sign for elements of
S dV ⊗ (S dV )∗. With this choice of dual bases, the trace over S dV is the total con-
traction and may be written

tr|S dV = (ux + vy)d =
d∑

k=0

(
d

k

)
xky d−k · ukvd−k.

Elements of SL(2, C) will be parameterized as g = [ α β

γ δ

]
. They act on V and

V ∗ by

g ·
[
u

v

]
=

[
αu+ βv

γu+ δv

]
, (g−1)t ·

[
x

y

]
=

[
δx − γy

−βx + αy

]
.

For illustration, we check that (ux + vy)d is G-invariant, thus reproving its
identification with the trace:

g · (ux + vy)d = [(αu+ βv)(δx − γy)+ (γu+ δv)(−βx + αy)]d

= [(αδ − βγ )(ux + vy)]d = (ux + vy)d.
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We then compute the function on G corresponding to the tensor (uy)d ∈ S dV ⊗
S dV ∗:

f(g) = y d(g · ud) = y d((αu+ βv)d) = y d(βdvd + dαβd−1uvd−1+ · · · )
= βd · 1+ αβd−1 · 0+ · · · + 0 = βd.

This is just the highest weight function (g12)
d.

Theorem 5.3. The kernel of the conjugation-invariant differential operator

D = −tr(g)3E+ tr(g)22 + (tr(g)2 + 4)2

on G = SL(2, C), when intersected with C[SL(2, C)]Ad N, consists of the lin-
ear hull of all the functions (g12)

n for n ∈ N. Hence the conjugation action of
SL(2, C) is harmonic.

Proof. The proof consists of a tedious computation; we only give an outline here.
As in Theorem 4.6, one shows that the vector field 2 acts on the matrix function
Jm,n(g) = Jm · gn

12 = (α + δ)mβn by

2(Jm,n) = (n+m)Jm+1,n − 4mJm−1,n.

Thus we obtain, for the square of its action,

22(Jm,n) = (n+m)(n+m+ 1)Jm+2,n

− 4(2m2 +mn+ n)Jm,n + 16m(m− 1)Jm−2,n.

For m = 0 this means in particular that

D(J0,n) = −tr(g)3n(n+ 2)J0,n + tr(g)[n(n+ 1)J2,n − 4nJ0,n]

+ (tr(g)2 + 4)nJ1,n = 0,

as needed.
The proof that DJm,n �= 0 for m �= 0 requires more work. The problem is

determining the function on G corresponding to the tensor (uy)m(ux + vy)n ∈
Sm+nV ⊗ Sm+nV ∗ in order to deduce the eigenvalue of E on Jm,n. In fact, a full
formula can be proved only for n = 0. In this situation, one first shows on the
maximal torus T of G the validity of the formula

tr(g)|SmV =
[m/2]∑
k=0

(−1)k
(

m− k

k

)
tr(g)m−2k.

Then, using E tr(g)|SmV = m(m+ 2) tr(g)|SmV , a lengthy induction proof yields

E tr(g)m = m(m+ 2) tr(g)m − 4m(m− 1) tr(g)m−2.

The explicit calculation may be found in [A1, pp. 54–55].
Since the action of 2 and 22 was determined before, one gets for the action

of D

D tr(g)m = −4m(m+ 1) tr(g)m+1+ 16m(m− 2) tr(g)m−1.
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The right-hand side vanishes exactly for m = 0, as it should. For the general case,
we show that the matrix function fm,n(g) corresponding to (uy)n(ux + vy)m has
the form

fm,n(g) = βn

[
tr(g)m + m(1−m)

n+m
tr(g)m−2 + R

]
,

where the remainder R is a sum of tr(g) to the powers m − 4,m − 6, . . . . The
main point here is in fact the precise value of the coefficient of tr(g)m−2, since the
general form of this Ansatz is obviously correct. For n = 0, we recover for the
second coefficient the old result 1−m = −(

m−1
1

)
. For the computation, we may

restrict fm,n(g) to the Borel subgroup B of all group elements with γ = 0. Then,
for b ∈B,

fm,n(b) = (αu+ βv)ny n[(αu+ βv)x + α−1vy]m

= (βnvn + nαβn−1uvn−1+ · · · )y n

·
[
vmym

αm
+m

vm−1ym−1

αm−1
(αu+ βv)x

+ m(m− 1)

2

vm−2ym−2

αm−2
(αu+ βv)2x 2 + · · ·

]
.

We sort this product by increasing powers of α, starting with α−m. The prod-
uct of the first summands in every factor yields the only contribution to α−m. The
two mixed products of the first summand in one factor and the second summand
in the other factor both yield contributions to α−(m−2) and α−(m−1). However, the
contribution to α−(m−1) is zero because vn+mxy n+m−1 = 0, since these two basis
elements are not dual to each other. Similarly, the product of βmvm in the first fac-
tor with the third summand in the second factor gives no contribution to α−(m−2),

because the basis vectors do not match. To summarize, we have the expansion

fm,n(b) = βn

[
vn+my n+m

αm
+ (m+ nm)

uvn+m−1xy n+m−1

αm−2
+ · · ·

]
.

The vector xy n+m−1 is dual to uvn+m−1 up to a correction factor of n+m, so we
finally obtain

fm,n(b) = βn

[
1

αm
+ m(n+ 1)

n+m

1

αm−2
+ · · ·

]
.

By its nature, fm,n(b) must be a product of βn times an invariant. Thus the ex-
pression inside the brackets is a linear combination of powers of (α+ α−1). Since
(α+α−1)m = α−m+mα−(m−2)+ · · ·, there exists a rearrangement of terms such
that

fm,n(b) = βn

[
(α + α−1)m +

(
m(n+ 1)

n+m
−m

)
(α + α−1)m−2 + · · ·

]
.

This is the desired expression, on which we can now study the action of the
Casimir operator. The function fm,n is an eigenfunction of E with eigenvalue
(n+m)(n+m+ 2), hence
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Eβn tr(g)m = (n+m)(n+m+ 2)fm,n − m(1−m)

n+m
Eβn tr(g)m−2 −ER,

and again Eβn tr(g)m−2 = (n+m−2)(n+m)βn tr(g)m−2+[lower-order terms].
Sorting by powers of tr(g) yields

Eβn tr(g)m = (n+m)(n+m+ 2)βn tr(g)m + 4m(1−m)βn tr(g)m−2 + R̃.

We conjecture that R̃ = 0, but we do not need this here. Notice that the second
coefficient does not depend on n. Going back to the definition of the operator D,

we sort the result again by decreasing powers of tr(g) to obtain

Dβn tr(g)m = −4m(n+m+ 1)βn tr(g)m+1+ · · · .
As a polynomial in tr(g), Dβn tr(g)m vanishes if and only if every coefficient is
zero, and a look on the second factor shows that this happens precisely for m =
0. Thus we have shown that Dβn tr(g)m �= 0 for m �= 0.
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