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Solvable Quotients of Kähler Groups

Alexander Brudnyi

1. Introduction

We first recall a definition from [AN].

Definition 1.1. A solvable group � has finite rank if there is a decreasing se-
quence � = �0 ⊃ �1 ⊃ · · · ⊃ �m+1 = {1} of subgroups, each normal in its
predecessor, such that �i/�i+1 is abelian and Q ⊗ (�i/�i+1) is finite-dimensional
for all i.

In this paper, Fr denotes a free group with the number of generators r ∈ Z+ ∪{∞}.
Our main result is as follows.

Theorem 1.2. LetM be a compact Kähler manifold. Assume that the fundamen-
tal group π1(M) is defined by the sequence

{1} −−→ F −−→ π1(M)
p−−→ H −−→ {1},

where H is a solvable group of finite rank of the form

{0} −−→ A −−→ H −−→ B −−→ {0}
with nontrivial abelian groups A,B such that Q ⊗A ∼= Qm and m ≥ 1. Assume
also that p−1(A) ⊂ π1(M) does not admit a surjective homomorphism onto F∞.
Then all eigencharacters of the conjugate action of B on the vector space Q ⊗A
are torsion.

In Lemma 3.3 we will show that the condition for p−1(A) holds if F does not ad-
mit a surjective homomorphism onto F∞.

Using Theorem 1.2, we prove the following result on solvable quotients of Käh-
ler groups.

Theorem 1.3. Assume that a Kähler group G is defined by the sequence

{1} −−→ F −−→ G
q−−→ H −−→ {1},

where F does not admit a surjective homomorphism onto F∞ andH is a solvable
group of finite rank. Then there exist normal subgroups H1 ⊃ H2 of H such that
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(a) H1 has finite index in H,
(b) H1/H2 is nilpotent, and
(c) H2 is torsion.

Example 1.4. LetG be an extension of a group H by a finitely generated group
F. Suppose thatH is an extension of Zn by Zm (n,m ≥ 1) such that not all eigen-
characters of the action of Zn on Q ⊗ Zm are torsion. Then Theorem 1.2 implies
that G is not a Kähler group.

Remark 1.5. This paper was motivated by the pioneering result of Arapura and
Nori [AN] and its generalization due to Campana [C]. In order to describe this re-
sult, let G be a Kähler group, let DG = D1G be the derived subgroup of G, and
let DiG = DDi−1G.

Theorem [AN, Thm. 4.9; C, Thm. 2.2]. Suppose that H := G/DnG (n ≥ 1)
is a solvable group of finite rank. Then H satisfies conditions (a)–(c) of Theo-
rem 1.3.

Note that the stated hypothesis for H implies that G does not have any quotient
isomorphic to Fr for 2 ≤ r < ∞. This is the crucial point in the proof. In some
sense our results are about groups that admit surjective homomorphisms onto Fr
for 2 ≤ r < ∞. Indeed, let R be the fundamental group of a compact complex
curve of genus 2. For any G,F satisfying the hypotheses of Theorem 1.3, define
G̃ = G× R and F̃ = F × R. Then G̃ is a Kähler group defined by

{1} −−→ F̃ −−→ G̃ −−→ H −−→ {1}.
Moreover, G̃ has a quotient isomorphic to F2, and F̃ does not have any quotient
isomorphic to F∞ (see Lemma 3.3). Theorem 1.3 claims that H satisfies condi-
tions (a)–(c), but any G̃/DnG̃ (n ≥ 2) is not of finite rank. Hence the conclusion
of Theorem 1.3 cannot be obtained solely from the result of [AN] and [C] along
with the fact that H is the quotient of some G̃/DnG̃, n ≥ 2.

2. A Preliminary Result

2.1

In what follows, Tn(C) ⊂ GLn(C) denotes the Lie group of upper triangular ma-
trices. Let T2 ⊂ T2(C) be the Lie group of matrices of the form(

a b

0 1

)
(a ∈ C∗, b ∈ C),

and let D2 ⊂ T2 and N2 ⊂ T2 be the groups of diagonal and unipotent matrices.
LetM be a compact Kähler manifold. For a homomorphism ρ ∈ Hom(π1(M), T2)

we let ρa ∈ Hom(π1(M),C
∗) denote the upper diagonal character of ρ. Assume

that f : M → C is a holomorphic surjective map with connected fibres onto a
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smooth compact complex curve C of genus g ≥ 1. As usual, f∗ : π1(M) →
π1(C) denotes the induced homomorphism of the fundamental groups. The fol-
lowing result is basic in the proof of Theorem 1.2.

Theorem 2.1. Assume that ρ ∈ Hom(π1(M), T2) satisfies Ker(f∗) ⊂ Ker(ρa)
but that Ker(f∗) �⊂ Ker(ρ). Then ρa is a torsion character.

The next several subsections contain results used in the proof of Theorem 2.1.

2.2

Let f : M → C be a holomorphic surjective map with connected fibres of a com-
pact Kähler manifoldM onto a smooth compact complex curve C. Consider a flat
vector bundle L on C of complex rank 1 with unitary structure group, and let E =
f ∗L be the pullback of this bundle toM. Let ω ∈"1(E) be a holomorphic 1-form
with values in E (by the Hodge decomposition, ω is d-closed).

Lemma 2.2. Assume that ω|Vz = 0 for the fibre Vz := f −1(z) over a regular
value z∈C. Then ω|V = 0 for any fibre V of f.

If V is not smooth, the lemma asserts that ω equals 0 on the smooth part of V.

Proof of Lemma 2.2. Denote by S ⊂ C the finite set of nonregular values of f. By
Sard’s theorem, f : M \ f −1(S) → C \ S is a fibre bundle with connected fibres.
According to our assumption there is a fibre Vz of this bundle such that ω|Vz = 0.
Then ω|V = 0 for any fibre V of f |M\f −1(S). In fact, for any fibre V there is an
open neighborhoodOV of V diffeomorphic to R2 ×V such that E|OV (∼= E|V ) is
the trivial flat vector bundle (hereE|V is trivial as the pullback of a bundle defined
over a point). Any d-closed holomorphic 1-form defined on OV that vanishes on
V is d-exact and so must vanish on each fibre contained in OV . Starting with a
tubular neighborhoodOVz and taking into account that ω|OVz can be considered as
a d-closed holomorphic 1-form (because E|OVz is trivial), we obtain that ω|V =
0 for any fibre V ⊂ OVz. Then the required statement follows by induction if we
cover M \ f −1(S) by open tubular neighborhoods of fibres of f and use the fact
that C \ S is connected.

Consider now fibres over the singular part S. Let Ox ⊂ C be the neighbor-
hood of a point x ∈ S such that Ox \ S = Ox \ {x} is biholomorphic to D \ {0}.
In particular, π1(Ox \ S) = Z. Without loss of generality we may assume that
V = f −1(x) is a deformation retract of an open neighborhood Ux of V and that
Wx := f −1(Ox) ⊂ Ux (such Ux exists, e.g., by the triangulation theorem of the
pair (M, V ); see [L, Thm. 2]). Since E|V is trivial, the bundle E|Ux is also trivial;
we can therefore regard ω as a d-closed holomorphic 1-form onUx. Moreover, we
have already proved that ω|F = 0 for any fibre F ⊂ Wx \ f −1(S), so ω equals 0
on each fibre of the fibration f : Wx \ f −1(S) → Ox \ S. This implies that there
is a d-closed holomorphic 1-form ω1 on Ox \ S such that ω = f ∗(ω1). Assume
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now that ω|V �= 0. Then integration of ω|Wx along paths determines a nontriv-
ial homomorphism hω,x : π1(Wx) → C whose image is isomorphic to Z. Indeed,
since embeddingWx \f −1(S) ↪→Wx induces a surjective homomorphism of fun-
damental groups, we can integrate ω by paths contained in Wx \ f −1(S) and so
obtain the same image in C. Furthermore, for any path γ ⊂ Wx \ f −1(S) we have∫
γ
ω = ∫

γ1
ω1, where γ1 is a path in Ox \ S representing the element f∗(γ ) ∈

π1(Ox \ S). But π1(Ox \ S) = Z and therefore hω,x(π1(Wx)) ∼= Z.

Any path inWx is homotopically equivalent inside Ux to a path contained in V,
so we can define hω,x by integrating ω|V . Thus we obtain a homomorphism h of
� := (π1(V )/Dπ1(V ))/torsion into C with the same image as for hω,x (i.e., ∼= Z).

We may assume without loss of generality that V is smooth (else we apply the ar-
guments that follow to each irreducible component of a desingularization of V ).
Integrating holomorphic 1-forms on V along paths, we embed � into some Ck as
a lattice of rank 2k. Then there is a linear holomorphic functional fω on Ck such
that h = fω|�. Since rk(h(�)) = 1, it follows that fω is equal to 0 on a subgroup
H ⊂ � isomorphic to Z2k−1. In particular, fω = 0 on the vector space H ⊗ R of
real dimension 2k − 1. But Ker(fω) is a complex vector space and so fω = 0 on
Ck, which implies that ω|V = 0. This contradicts our assumption and proves the
required statement for fibres over the points of S.

2.3

Next we prove that the character ρa in Theorem 2.1 cannot be nonunitary.

Proposition 2.3. Let ρ ∈ Hom(π1(M), T2) be such that ρa is a nonunitary char-
acter. Assume that ρa|Ker(f∗) is trivial. Then ρ|Ker(f∗) is also trivial.

Proof. Let pt : Mt → M be the Galois covering with transformation group
Tor(π1(M)/Dπ1(M)). Then ρ|π1(Mt ) determines a C∞-trivial complex rank-2
flat vector bundle on Mt, because ρa|π1(Mt ) = exp(ρ ′|π1(Mt )) for some ρ ′ ∈
Hom(π1(M),C). In particular, ρ|π1(Mt ) can be defined by a flat connection

" =
(
ω η

0 0

)
, d"−" ∧" = 0,

on Mt × C2, where ω is a d-harmonic 1-form on Mt lifted from M. Moreover,
since ρa|Ker(f∗) is trivial,ω is the pullback by f �pt of a d-harmonic1-form defined
on C. Let ω = ω1 + ω2 be the type decomposition of ω into the sum of holo-
morphic and antiholomorphic 1-forms lifted from C. Denote by Eρ the rank-1 flat
vector bundle on Mt with unitary structure group constructed by the flat connec-
tion ω2 − ω2, and denote by E0 = Mt × C the trivial flat vector bundle. Observe
that Eρ is the pullback of a flat bundle on C. In particular, Eρ |V is trivial for any
fibre V of f � pt . According to [Br, Thm. 1.2], the equivalence class of ρ|π1(Mt )

is determined by a d-harmonic 1-form θ with values in End(Eρ ⊕ E0) satisfying
the condition that θ ∧ θ represents 0 in H 2(Mt ,End(Eρ ⊕ E0)). More precisely,

θ =
(
ω1 η ′

0 0

)
,
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where η ′ is a d-harmonic 1-form with values in Eρ satisfying the condition that
ω1 ∧ η ′ represents 0 in H 2(Mt , Eρ). Let Mt

g1−→ M1
g2−→ C be the Stein factor-

ization of f � pt , where g1 is a morphism with connected fibres onto a smooth
curveM1 and g2 is a finite morphism. Then, for any fibre V ↪→ Mt of g1,we have
that pt |V : V → pt(V ) is a regular covering of the fibre pt(V ) of f with a finite
abelian transformation group.

Lemma 2.4. η ′|V = 0 for fibres over regular values of g1.

We first use this statement to finish the proof of the proposition; then we prove the
lemma. From the lemma and Lemma 2.2 it follows that η ′|W = 0 for any fibre
i : W ↪→ Mt of g1. Thus ρ|π1(Mt ) is trivial on i∗(π1(W )) ⊂ π1(Mt). But π1(W )

is a subgroup of a finite index in π1(pt(W )), and by assumption the image of
ρ|j∗(π1(pt(W ))) consists of unipotent matrices. (Here j : pt(W ) ↪→ M is embed-
ding.) Hence ρ|j∗(π1(pt(W ))) is trivial for anyW. Denote byE the flat vector bundle
on M associated to ρ. Then we have proved that E|W is trivial for any fibre W of
f. Further, let (Ui)i∈I be an open cover of C such that (a) Wi := f −1(Ui) is an
open neighborhood of a fibre Vi = f −1(xi), xi ∈ Ui, and (b) Wi is deformable
onto Vi. Since E|Vi is trivial, E|Wi is also trivial. In particular, E is defined by a
locally constant cocycle {cij} defined on the cover (Wi)i∈I . But then {cij} is the
pullback of a cocycle defined on (Ui)i∈I because the fibres of f are connected.
This cocycle determines a bundle E ′ on C such that f ∗E ′ = E. Then ρ is the
pullback of a homomorphism ρ ′ ∈ Hom(π1(C), T2) constructed by E ′.

This completes the proof of the proposition modulo Lemma 2.4.

Proof of Lemma 2.4. Observe that ω1 �= 0 in our definition of θ because ρa is
nonunitary. We also consider η ′ �= 0; otherwise, the image of ρ consists of diag-
onal matrices and the required statement is trivial. Let i : V ↪→ Mt be a fibre over
a regular value of g1. For any λ∈ C∗, consider the form

θλ =
(
λω1 η ′

0 0

)
.

Clearly, θλ∧θλ represents 0 inH 2(Mt ,End(Eρ⊕E0)) and thus, by [Br, Prop. 2.4],
it determines a representationρλ ∈ Hom(π1(Mt), T2)with the upper diagonal char-
acter ρλa defined by the flat connection λω1 + ω2. In particular, the family {ρλa}
contains infinitely many different characters. Assume that ρ|i∗(π1(V )) is not trivial;
then it can be determined by the restriction θ |i(V ). However, according to our as-
sumption ω1|i(V ) = 0 and Eρ |i(V ) is a trivial flat vector bundle. Thus ρ|i∗(π1(V ))

is defined by η ′|i(V ) ∈H1(i(V ),C). Let ψ ∈ Hom(i(V ),C) be a homomorphism
obtained by integration of η ′|i(V ) along paths generating π1(i(V )). Then

ρ|i∗(π1(V )) =
(

1 ψ

0 1

)
.

We also obtain that ρλ|i∗(π1(V )) = ρ|i∗(π1(V )) and so it is not trivial for any λ∈ C∗.
We will prove now that the family {ρλa} contains finitely many different charac-
ters. This contradicts our assumption and shows that ρ|i∗(π1(V )) is trivial and so
η ′|V = 0.
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Let H := i∗(π1(V )) be a normal subgroup of π1(Mt) (the normality follows
from the exact homotopy sequence for the bundle defined over regular values of
g1). Denote by Hab the quotient H/DH. Then Hab is an abelian group of a fi-
nite rank. Moreover, Hab is a normal subgroup of K := π1(Mt)/DH and the
group K1 := K/H ab is finitely generated. Note that ρλ induces a homomorphism
ρ̂λ : K → T2 for any λ ∈ C∗ with the same image as for ρλ because the image
of ρλ|H is abelian. In particular, ρ̂λ(H ab) is a normal subgroup of ρ̂(K). Since
by assumption ρ̂λ(H ab) is a nontrivial subgroup of unipotent matrices, from the
identity(

c b

0 1

)
·
(

1 v

0 1

)
·
(
c b

0 1

)−1

=
(

1 c · v
0 1

)
(c ∈ C∗, b, v ∈ C) (2.1)

it follows that the action of ρ̂λ(K) on ρ̂λ(H ab) by conjugation is defined by multi-
plication of nondiagonal elements of ρ̂λ(H ab) by elements of ρλa(π1(Mt)). Note
also that Tor(H ab) belongs to Ker(ρ̂λ) for any λ. Thus, if H ′ ∼= Zs is a maximal
free abelian subgroup of Hab then ρλa(π1(Mt)) consists of eigenvalues of matri-
ces from SL s(Z) obtained by the natural action (by conjugation) of K1 on H ′.
SinceK1 is finitely generated, the number of different ρλa is finite, which is false.

This contradiction completes the proof of the lemma.

2.4

Let f : M → C be a holomorphic map with connected fibres of a compact Käh-
ler manifold M onto a smooth compact complex curve C of genus g ≥ 1. Then
π1(M) is defined by the exact sequence

{1} −−→ Ker(f∗) −−→ π1(M) −−→ π1(C) −−→ {1}.
Let G ⊂ Ker(f∗) be a normal subgroup of π1(M). The quotient R := π1(M)/G

is defined by the sequence

{1} −−→ Ker(f∗)/G −−→ R −−→ π1(C) −−→ {1} .
Assume that

(1) H := Ker(f∗)/G is a free abelian group of finite rank k ≥ 1, and
(2) the natural action of Dπ1(C) on H is trivial.

From (2) it follows that the action s of π1(C) onH determines an action of Z2g ∼=
π1(C)/Dπ1(C) on H. Identifying H with Zk, we can think of H as a subgroup
(lattice) of Zk ⊗ C = Ck. Then s determines a representation s ′ : π1(C) →
GLk(C) such that Dπ1(C) ⊂ Ker(s ′) and s ′(g)|H = s(g) for any g ∈ π1(C).

Because s ′ descends to a representation Z2g → GLk(C), it admits a decomposi-
tion s ′ = ⊕m

j=1 sj, where sj is equivalent to a nilpotent representation π1(C) →
Tki (C) with a diagonal character ρj . Here

∑m
j=1 kj = k.

Proposition 2.5. All characters ρj are torsion.

Proof. By definition, R is an extension of π1(C) by H. It is well known (see e.g.
[G, Chap. I, Sec. 6]) that the class of extensions equivalent to R is uniquely de-
fined by an element c ∈H 2(π1(C),H ), where the cohomology is defined by the
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action s of π1(C) onH. Let f ∈Z2(π1(C),H ) be a cocycle determining c. Then
one can define a representative of the equivalence class of extensions as the direct
product H × π1(C) with multiplication:

(h1, g1) · (h2, g2) = (h1 + s(g1)(h2)+ f(g1, g2), g1 · g2);
h1, h2 ∈H, g1, g2 ∈π1(C).

The natural embedding H ↪→ Zk ⊗ C (= Ck) determines an embedding i of R
into the group R ′ defined as Ck × π1(C) with multiplication:

(v1, g1) · (v2, g2) = (v1 + s ′(g1)(v2)+ f(g1, g2), g1 · g2);
f ∈Z2(π1(C),H ), v1, v2 ∈ Ck, g1, g2 ∈π1(C).

Here we regard f as an element of Z2(π1(C),C
k) defined by the action s ′. From

the decomposition s ′ = ⊕m
j=1 sj it follows that there exists an invariant π1(C)-

submoduleVj ⊂ Ck of dimC Vj = k−1such thatWj = Ck/Vj is a one-dimensional
π1(C)-module and the action of π1(C) on Wj is defined as multiplication by the
character ρj . Then, by definition, Vj is a normal subgroup of R ′ and the quotient
group Rj = R ′/Vj is defined by the sequence

{1} −−→ C −−→ Rj −−→ π1(C) −−→ {1}.
Here the action of π1(C) on C is multiplication by the character ρj . Further,
the equivalence class of extensions isomorphic to Rj is defined by an element
cj ∈ H 2(π1(C),C) (the cohomology is defined by the action just displayed
of π1(C) on C). We will assume that the character ρj is nontrivial (for other-
wise, ρj is clearly torsion). Let us denote by tj the composite homomorphism
π1(M) −→ R

i−→ R ′ −→ Rj .

Let Eρj be a complex rank-1 flat vector bundle on C constructed by ρj ∈
Hom(π1(C),C

∗). Since C is a K(π1(C),1)-space, there is a natural isomor-
phism of the preceding group H 2(π1(C),C) and the Čech cohomology group
H 2(C,Eρj) of the sheaf of locally constant sections of Eρj (see e.g. [M, Chap. 1,
Complement to Sec. 2]). But each flat vector bundle on C is C∞-trivial, and each
homomorphism from Hom(π1(C),C

∗) can be continuously deformed inside of
Hom(π1(C),C

∗) to the trivial homomorphism. Hence, by the index theorem we
have

dimCH
0(C,Eρj)− dimCH

1(C,Eρj)+ dimCH
2(C,Eρj)

= χ(π1(C)) = 2 − 2g.

Note that H 0(C,Eρj) = 0 because ρj is nontrivial. Furthermore, H1(C,Eρj)

is in a one-to-one correspondence with the set of nonequivalent representations
ρ : π1(C) → T2 ⊂ T2(C) with the upper diagonal character ρj . Using the iden-
tity

∏g

i=1[ei, eg+i] = e for generators e1, . . . , e2g ∈ π1(C), we easily obtain that
dimCH

1(C,Eρj) = 2g − 2. Thus we have H 2(C,Eρj) = 0. This shows that
H 2(π1(C),C) = 0 and that Rj is isomorphic to the semidirect product of C and
π1(C); in other words, Rj = C × π1(C) with multiplication:
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(v1, g1) · (v2, g2) = (v1 + ρj(g1) · v2, g1 · g2);
v1, v2 ∈ C, g1, g2 ∈π1(C).

Let us determine a map φj of Rj to T2 by the formula

φj(v, g) =
(
ρj(g) v

0 1

)
.

Obviously, φj is a correctly defined homomorphism with upper diagonal character
ρj . Hence φj � tj : π1(M) → T2 is a homomorphism that is nontrivial on Ker(f∗)
by its definition. Now Proposition 2.3 implies that ρj is a unitary character. We
have thus proved that all characters of the action of π1(C) on H are unitary. This
means that each element of the action is defined by a matrix from SLk(Z) with
unitary eigenvalues. Applying to these eigenvalues the Kronecker theorem, which
asserts that an algebraic integer is a root of unity if and only if all its Galois conju-
gates are unitary (see e.g. [BS, Thm. 2, p. 105]), we obtain that each ρj is a torsion
character.

2.5

In this subsection we prove a result about the structure of Ker(f∗),where f : M →
C is a surjective holomorphic map with connected fibres of a compact Kähler man-
ifold M onto a curve C.

Using the Lojasiewicz triangulation theorem [L, Thm. 2], compactness of M,
and the fact that all fibres of f are connected, we can find an open finite cover
(Ui)1≤i≤s of C such that (a)Wi := f −1(Ui) is an open neighborhood of a fibre
Vi = f −1(xi), xi ∈Ui, and (b)Vi is a deformation retract of some open W̃i ⊃Wi.

Let us fix some points xi ∈ Vi and paths γi connecting x1 with xi, 1 ≤ i ≤ s. By
Gi we denote the image of γi · π1(Vi, xi) · γ−1

i in π1(M, x1). (Clearly, each Gi is
finitely generated.)

Lemma 2.6. Ker(f∗) is the minimal normal subgroup of π1(M, x1) containing
all Gi (1 ≤ i ≤ s).

Proof. Let R ⊂ π1(M, x1) be the minimal normal subgroup containing all Gi.
Clearly, R ⊂ Ker(f∗). We will prove the reverse inclusion. Let p : M1 → M

be the regular covering over M with the transformation group R1 := π1(M)/R.

Observe that p is a principal bundle overM with discrete fibre R1. We will prove
that the restriction of M1 to each W̃i is the trivial bundle. Since Vi is a deforma-
tion retract of W̃i, it suffices to prove that, for any closed path γ ⊂ Vi passing
through xi and for any point y ∈p−1(xi), the unique covering path γ ′ ⊂ M1 of γ
passing through y is closed. In order to prove this, let us consider the path s :=
γi · γ · γ−1

i . Let s1 ⊂ M1 be any path that covers s. Then s1 is closed, because s
represents an element of the normal subgroup R ⊂ π1(M). Let γ ′ be the covering
of γ with endpoints y and y ′. Then there exists an element g ∈R1 such that y ′ =
g(y). Let h and h′ be the unique covering paths of γi and γ−1

i passing through y
and y ′, respectively. Clearly h′ = g(h−1). Now s ′ = h · γ ′ · h′ covers s and so is
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closed. Then we have h′ = h−1, implying g = 1 and y = y ′. Thus we have proved
that M1 is trivial over each W̃i and, in particular, over each Wi. This means that
M1 is defined by a locally constant cocycle {cij} (with values in R1) defined on the
cover (Wi)i∈I of M. But then {cij} is the pullback of a cocycle defined on (Ui)i∈I
because the fibres of f are connected. This cocycle determines a principal bundle
C1 on C with the fibre R1 such that f ∗C1 = M1. In particular, C1 determines a
homomorphism q : π1(C) → R1 such that q � f∗ is the quotient homomorphism
π1(M) → R1. This implies that Ker(f∗) ⊂ R.

2.6

We use use Lemma 2.6 to prove the following result.

Lemma 2.7. Let ρ ∈ Hom(π1(M), T2) be such that Ker(f∗) ⊂ Ker(ρa), where
ρa is unitary. Then ρ(Ker(f∗)) ⊂ N2 is a free abelian group of finite rank.

Proof. Without loss of generality, we will assume that Ker(f∗) �⊂ Ker(ρ). Let
i : V ↪→ π1(M) be the fibre over a regular value of f, and let H = i∗(π1(V )) ⊂
π1(M) be the corresponding normal subgroup. First we prove that ρ|H is not triv-
ial. Indeed, let E be the flat vector bundle associated to ρa. By assumption we
have E = f ∗L, where L is a flat vector bundle on C with unitary structure group.
It is well known that the equivalence class of ρ is defined by a harmonic 1-form
η with values in E. Since the structure group of E is unitary, the Hodge decom-
position implies that η = ω1 + ω2, where ω1 is holomorphic and ω2 is antiholo-
morphic. From the proof of Lemma 2.4 we know that ρH is defined by integration
of η along closed paths of i(V ). Assume to the contrary that ρ|H is trivial. This
means that η|i(V ) represents 0 in H1(i(V ),C) and so ω1|i(V ) = ω2|i(V ) = 0. But
then Lemma 2.2 implies that ωi |V = 0 (i = 1, 2) for any fibre V of f. Let us
consider a path γ that represents an element of π1(Vi, xi) (the notation is as in
Lemma 2.6). Let γ ′ = γi · γ · γ−1

i . Then the monodromy argument shows that
ρ(γ ′) = C ·A · C−1, where C ∈ T2, A∈N2, and A is defined by integration of η
along γ. Therefore, ρ(γ ′) = 1∈N2. Let [γ ′ ] ∈π1(M) be the element defined by
γ ′. According to Lemma 2.6, Ker(f∗) is the minimal normal subgroup contain-
ing all such [γ ′ ] (for any i). The preceding argument then shows that ρ|Ker(f∗) is
trivial, which contradicts our assumption.

Next, we prove that ρa(π1(M)) consists of algebraic integers. Let Hf ∼= Zk

be the free part of Hab = H/DH. In what follows we identify Hf with Zk. Let
s : π1(M) → SLk(Z) be the representation induced by the action of π1(M) onH
by conjugation. Since ρ(Hf) = ρ(H ) is nontrivial and consists of unipotent ma-
trices, k ≥ 1 and (2.1) together imply that the action of ρ(π1(M)) on ρ(Zk) by
conjugation is defined by multiplication of nondiagonal elements of ρ(Zk) by ele-
ments of ρa(π1(M)). Let e1, . . . , ek be the standard basis in Zk. Identifying N2

with C, we obtain a nonzero vector v = (ρ(e1), . . . , ρ(ek)) ∈ Ck. Then a sim-
ple calculation shows that v is a nonzero eigenvector of s(g) with the eigenvalue
ρa(g), g ∈π1(M). This completes the proof.
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Now let us finish the proof of the lemma. Let {gj}, 1 ≤ j ≤ l, be the finite fam-
ily consisting of all generators of all Gi (as in Lemma 2.6). Then, according to
Lemma 2.6, ρ(Ker(f∗)) ⊂ ρ(π1(M)) is the minimal normal subgroup contain-
ing all hj := ρ(gj ). Since N2 is abelian, (2.1) shows that ρ(Ker(f∗)) is a discrete
abelian group generated by all elements ρa(g) · hj (g ∈ H1(M,Z), 1 ≤ j ≤ l ).

Let t1, . . . , tp be the family of generators of H1(M,Z). Then the foregoing argu-
ments imply that all ρa(ti) and ρa(−ti) (i = 1, . . . , p) are roots of polynomials
of degree k with integer coefficients and leading coefficients 1. Since any g ∈
H1(M,Z) can be written as

∑p

i=1 aiti +
∑p

i=1 bi(−ti) with ai, bi ∈ Z+, our pre-
vious remarks show that the abelian group ρ(Ker(f∗)) is generated (over Z) by
the elements

ρa(t1)
a1 · · · ρa(tp)ap · ρa(−t1)b1 · · · ρa(−tp)bp · hj,

where ai and bi are nonnegative integers satisfying 0 ≤ ai ≤ k − 1, 0 ≤ bi ≤
k−1, and 1 ≤ j ≤ l. Because the number of such generators is finite, ρ(Ker(f∗))
is finitely generated. It is also free as a subgroup of the free group N2.

The proof of the lemma is complete.

2.7. Proof of Theorem 2.1

Let ρ ∈ Hom(π1(M), T2) be such that Ker(f∗) ⊂ Ker(ρa) but Ker(f∗) �⊂ Ker(ρ).
According to Proposition 2.3, ρa is unitary. Then, according to Lemma 2.7,
ρ(Ker(f∗)) ⊂ N2 is isomorphic to Zr , r ≥ 1. We set G = Ker(f∗) ∩ Ker(ρ)
and R := π1(M)/G. Then R is defined by the sequence

{1} −−→ Ker(f∗)/G −−→ R −−→ π1(C) −−→ {1},
where Ker(f∗)/G ∼= ρ(Ker(f∗)) = Zr . Since ρ(Ker(f∗)) ⊂ N2, the displayed
definition implies that the natural action ofDπ1(C) on Ker(f∗)/G is trivial. Thus,
according to Proposition 2.5, all characters of the induced representationπ1(C) →
GL r (C) are torsion. In particular, ρa is torsion as one of these characters.

3. Proof of Theorem 1.2

We start with the following result.

Proposition 3.1. Assume that π1(M) is defined by the sequence

{1} −−→ F −−→ π1(M) −−→ H −−→ {1},
where the normal subgroup F does not admit a surjective homomorphism onto
F∞. Assume that ρ ∈ Hom(π1(M), T2) satisfies F ⊂ Ker(ρa) but that F �⊂
Ker(ρ). Then ρa is a torsion character.

Proof. Given a character ξ ∈ Hom(π1(M),C
∗), let Cξ denote the associated

π1(M)-module. Also, we define A1(M) to be the set of characters ξ such that
H1(π1(M),Cξ ) is nonzero. The structure of A1(M) was described in the conse-
quent papers of Beauville [Be], Simpson [Si], and Campana [C].
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BSC Theorem. There is a finite number of surjective holomorphic maps with
connected fibres fi : M → Ci onto smooth compact complex curves of genus ≥ 1
and torsion characters ρi, ξj ∈ Hom(π1(M),C

∗) such that

A1(M) =
⋃
i

ρif
∗
i Hom(π1(Ci),C

∗) ∪
⋃
j

{ξj}.

Further, the group N2 acts on T2 by conjugation. Any two homomorphisms from
Hom(π1(M), T2) belonging to the orbit of this action will be called equivalent.

Let ρ ∈ Hom(π1(M), T2) satisfy the conditions of Proposition 3.1. Then it is
well known that the class of equivalence of ρ is uniquely defined by an element
cρ ∈ H1(π1(M),Cρa ) (see e.g. [At, Prop. 2]). In particular, if cρ = 0 then ρ is
equivalent to a representation into D2. In our case, cρ �= 0 because F �⊂ Ker(ρ).
Thus ρa satisfies the conditions of the BSC theorem. If ρa coincides with one of
ξj then by this theorem ρa is torsion. So assume that ρa = ρif

∗
i φ for some tor-

sion character ρi and φ ∈ Hom(π1(Ci),C
∗). Let K := Ker(ρi) ⊂ π1(M) and

let p : M1 → M be the Galois covering of M corresponding to the finite abelian

Galois group π1(M)/K. Let M1
g−→ C

h−→ Ci be the Stein factorization of fi � p,
where g is a morphism with connected fibres onto a smooth curve C and h is a fi-
nite morphism. Assume, to the contrary, that ρa is not torsion. Then we prove the
following lemma.

Lemma 3.2. F ⊂ Ker(g∗).

Proof. Set G := (fi)∗(F ) ⊂ π1(Ci). According to the assumptions of Proposi-
tion 3.1, we have either (a) G is a subgroup of finite index in π1(Ci) or (b) G
is isomorphic to Fr with r < ∞. Let us consider (a). Since by definition F ⊂
Ker(ρa) and ρi is torsion, it follows that φ(G) is a finite abelian group. Then
G1 := Kerφ ∩ G is a subgroup of finite index in G. In particular, G1 is a sub-
group of finite index in π1(Ci) and thus is not free. Yet by our assumption, φ is not
torsion and so Ker(φ) ∼= F∞. Hence G1 is also free as a subgroup of F∞. This
shows that (a) never holds.

Consider now (b). Using the fact that (fi)∗ is a surjection, we conclude that G
is a normal subgroup of π1(Ci). Let S → Ci be a regular covering corresponding
toQ := π1(Ci)/G. If r ≥ 2 then the group Iso(S) of isometries of S (with respect
to the hyperbolic metric) is finite, and since Q is infinite we have r ≤ 1. If r = 1,
then any discrete subgroup of Iso(S) is virtually cyclic and in particular does not
act cocompactly on S. Thus r = 0,which means thatG = {e} and F ⊂ Ker(fi)∗.
Then the assumption of the proposition implies that F ⊂ K = π1(M1).

Now consider ρ̃ := ρ|π1(M1) with the upper diagonal character ρ̃a := ρa|π1(M1).

Since π1(M1) ⊂ π1(M) is a subgroup of finite index, ρ̃a is also not torsion. Set
φ̃ := h∗φ. Then ρ̃a = g∗φ̃. Let G1 := g∗(F ) ⊂ π1(C). Then the same argument
for G1 as for G (with ρ̃a and φ̃ instead of ρa and φ) yields F ⊂ Ker(g∗).

Resuming now the proof of Proposition 3.1, by assumption and Lemma 3.2
we have that ρ̃|Ker(g∗) is nontrivial and that ρ̃a is the pullback of a character from
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Hom(π1(C),C
∗). Then from Theorem 2.1 it follows that ρ̃a is torsion, and hence

ρa is torsion as well. This contradiction proves the proposition.

We are now ready to prove Theorem 1.2. According to the assumptions of the the-
orem, there is a homomorphism i of H into the Lie group R of the form

{0} −−→ Cm −−→ R −−→ B −−→ {0}
whose kernel is Tor(A). Here we identify Cm with C ⊗A. Consider the action
s : B → GLm(C) by conjugation. By the definition of π1(M), B is a finitely gen-
erated abelian group and so s = ⊕d

j=1 sj,where sj is equivalent to a nilpotent rep-
resentation B → Tmj (C)with a diagonal character ρj . Here

∑d
j=1mj = m. From

this decomposition it follows that there exists an invariant B-submodule Vj ⊂ Cm

of dimC Vj = m − 1 such that Wj = Cm/Vj is a one-dimensional B-module and
the action of B on Wj is defined as multiplication by the character ρj . By defini-
tion, Vj is a normal subgroup of R and the quotient group Rj = R/Vj is defined
by the sequence

{0} −−→ C −−→ Rj −−→ B −−→ {0}.
Here the action of B on C is multiplication by the character ρj . (As before, the
associated B-module is denoted by Cρj .) Let us denote by tj the composite homo-

morphism π1(M) −→ H
i−→ R −→ Rj . Also, the equivalence class of extensions

of B by C isomorphic to Rj is defined by an element cj ∈ H 2(B,Cρj ). We as-
sume that the character ρj is nontrivial (otherwise, ρj is clearly torsion). Then
H 2(B,Cρj ) = 0 (for the proof, see e.g. [AN, Lemma 4.2]). This shows that Rj
is isomorphic to the semidirect product of C and B, that is, Rj = C × B with
multiplication:

(v1, g1) · (v2, g2) = (v1 + ρj(g1) · v2, g1 · g2);
v1, v2 ∈ C, g1, g2 ∈B.

Let us determine a map φj of Rj to T2 by the formula

φj(v, g) =
(
ρj(g) v

0 1

)
.

Obviously, φj is a correctly defined homomorphism with upper diagonal char-
acter ρj . Hence φj � tj : π1(M) → T2(C) is a homomorphism that is nontrivial
on p−1(A) ⊂ π1(M) by its definition. Also, p−1(A) ⊂ Ker(ρj � tj ). Since by
assumption p−1(A) does not admit a surjective homomorphism onto F∞, Propo-
sition 3.1 applied to φj � tj implies that ρj is torsion. This completes the proof of
the theorem.

We now prove the following result.

Lemma 3.3. Assume that a group G is defined by the sequence

{1} −−→ G1 −−→ G −−→ G2 −−→ {1},
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whereG1,G2 do not admit surjective homomorphisms onto F∞. Then alsoG does
not admit such homomorphisms.

Proof. Assume, to the contrary, that there is a surjective homomorphism φ : G →
F∞. Then G̃1 := φ(G1) is a normal subgroup of F∞ and G̃2 := F∞/G̃1 is a quo-
tient ofG2. Now the assumption of the lemma implies that G̃1

∼= Fr with r < ∞.

We may assume without loss of generality that r �= 0; otherwise G̃2 = F∞,which
contradicts the hypothesis. Let X be a complex hyperbolic surface with π1(X) =
F∞ and let S → X be the regular covering corresponding to G̃2. Then π1(S) =
G̃1 and G̃2 is a discrete subgroup of the group Iso(S) of isometries of S (defined
with respect to the hyperbolic metric). If r ≥ 2, the group Iso(S) is finite. Also,
for r = 1, any discrete subgroup of Iso(S) is virtually cyclic. This implies that G̃2

is finitely generated (as well as G̃1). Therefore, F∞ should be finitely generated.
This contradiction proves the lemma.

4. Proof of Theorem 1.3

For a groupL, setLab := L/DL.We say that anL-moduleV is quasi-unipotent if
there is a subgroupL′ ⊆ L of finite index whose elements act unipotently on V. To
prove the theorem we will check the following condition from [AN, Lemma 4.8].

Lemma 4.1. Let H ′ ⊆ H be a subgroup of finite index. Then H ′ acts quasi-
unipotently on the finite-dimensional vector space Q ⊗ (H ′ ∩DH )ab.
Proof. We set K := H ′/(H ′ ∩ DH ), G′ := q−1(H ′), S := D(H ′ ∩ DH ), and
S ′ := q−1(S). Here K is a finitely generated abelian group. Indeed, H ′ is finitely
generated as a subgroup of finite index of the finitely generated group H (= the
image of the finitely generated groupG). ThusK is finitely generated as the image
ofH ′. The fact thatK is abelian follows directly from the definition. Furthermore,
since H ′ is a subgroup of finite index in H, it follows that G′ is a subgroup of
finite index in G; in particular, it is Kähler. Moreover, we have

{1} −−→ S ′ −−→ G′ −−→ L −−→ {1},
where L is a solvable group of finite rank defined by the sequence

{0} −−→ (H ′ ∩DH )ab −−→ L −−→ K −−→ {0}.
Now the statement of the lemma is equivalent to the fact that all eigencharacters
of the conjugate action of K on Q ⊗ (H ′ ∩ DH )ab are torsion. To prove this, it
suffices to (a) show that S ′ does not admit a surjective homomorphism onto F∞
and then (b) apply Lemma 3.3 and Theorem 1.2.

Note that S ′ is defined by the sequence

{1} −−→ F −−→ S ′ q−−→ S −−→ {1},
where S is a solvable group of finite rank. By our assumption, F does not admit
a surjective homomorphism onto F∞. Thus, by Lemma 3.3, S ′ satisfies the same
property.

Now Theorem 1.3 is the consequence of Lemma 4.1 and [AN, Lemma 4.8].



490 Alexander Brudnyi

References

[At] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math.
Soc. 85 (1957), 181–207.

[AN] D. Arapura and M. Nori, Solvable fundamental groups of algebraic varieties and
Kähler manifolds, Compositio Math. 116 (1999), 173–188.

[Be] A. Beauville, Annulation du H1 pour les fibrés en droites plats, Complex algebraic
varieties (Bayreuth, 1990), pp. 1–15, Springer-Verlag, Berlin, 1992.

[BS] A. I. Borevich and I. R. Shafarevich, Number theory, Pure Appl. Math., 20,
Academic Press, New York, 1966.

[Br] A. Brudnyi, Classification theorem for a class of flat connections and representations
of Kähler groups, Michigan Math. J. 46 (1999), 489–514.

[C] F. Campana, Ensembles de Green-Lazarsfeld et quotients resolubles des groupes de
Kähler, J. Algebraic Geom. 10 (2001), 599–622.

[G] A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie,
Cedic, Paris, 1980.

[L] S. Lojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa
Cl. Sci. (4) 18 (1964), 449–474.

[M] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research, Bombay;
Oxford University Press, London, 1970.

[Si] C. T. Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci.
École Norm. Sup. (4) 26 (1993), 361–401.

Department of Mathematics and Statistics
University of Calgary
Calgary, Alberta
Canada

albru@math.ucalgary.ca


