Michigan Math. J. 47 (2000)

Singular Integrals Related to
Homogeneous Mappings

LesLIE C. CHENG

1. Introduction

Letn,m e Nandd = (dy, ..., d,) € R™. Define the family of dilationgs,};- o
onR™ by
$(x1, vy X)) = (tMxq, L, 197 xy). @

We say thatd: R" — R™ is a (nhonisotropic) homogeneous mapping of degree
dif

(1) = 8:(P(y)) 2
holds for all > 0 andy € R".

Let S"~! denote the unit sphere iR" that is equipped with the normalized
Lebesgue measutkr. For a Calderon—-Zygmund kernel &7,

Q
K(y) = 22, @)
|yl
where2 is homogeneous of degree 0 and satisfies
| 2mdot =0 (4)
Sll*
we define the singular integral operafef  onR™ by
(To.0 f)(x) =p.v. | flx = P(y)K(y)dy )

Rll
for x e R™.
The operators defined in (5) have their roots in the classical Calderon—-Zygmund
operators

(Ta.1 f)(x) = IO-V-/R” Jf(x =K (y)dy, (6)

which correspondsto = m, d = (1,...,1), and® = I = idga_g«. In their
fundamental work on the theory of singular integrals, Calderon and Zygmund
[1] proved that the operatork, ; in (6) are bounded od?” for1 < p < oo if

Q e Llog" L(S*Y). Their result is nearly optimal in the sense that the space
Llog" L(S"1) cannot be replaced by any other Orlicz spaéeS"—1) with a ¢

that is increasing and satisfies
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lim AU =0
t—oo tint
(e.9.,0() = t(Inr)1~2).

In the ensuing development, an improvement of the result of Calderén and Zyg-
mund was obtained by Connet [4] and Ricci and Weiss [12], who proved inde-
pendently that the.” boundedness df_; still holds if @ € HY(S"1). Here,
HY(S"~1) denotes the Hardy space on the unit sphere and cortadings” L(S" 1)
as a proper subspace. Their result can be stated as follows.

THEOREM A. Let Q € HY(S"1) satisfy(4), and let/ denote the identity map-
ping fromR" to itself. Then, for every € (1, 00), there exists &, > 0 such
that

ITa, 1 fliLrcrny < Cpll fllLrrny- (7

Fan, Guo, and Pan [6] have studied ftieboundedness of singular integrals along
homogeneous surfaces with rough kernels.

THEOREM B [6]. LetQ e HY(S" 1) satisfy(4). Let¢: R” — R be homogeneous
of degreer withh > 0and ®(y) = (v, ¢(y)). Let T, o be defined as i5). If
¢ is real-analytic then, for every € (1, co), there exists &, > 0 such that

1Te.0 fLrrntry < Cpll fllLocrnty. (8)

One of our main results in this paper is the following theorem.

gn-1

TueorEM 1. LetQ e HY(S" 1) satisfy(4). Letd: R" — R™ be a homogeneous
mapping of degred = (dy, ..., dn) Withds, ..., d,, > 0. LetTq o be defined as
in (5). If ®|g,_,is real-analytic then, for every € (1, o), there exists &, > 0
such that

1Tq, o fllLrrmy < Cpll fllLem). (9)

REMaRkS. (1) The functionTq o f is defined initially for f in a dense subset of
LP(R™), sayS(R™). Once (9) is established for afl € S(R"), the operatofig ¢
can be extended to the full’(R") in the usual manner.

(2) Theorem B can now be seen as a special case of Theorem 1 by setting
n+1 ®(y) = (y,¢(y),andd = (1, ...,1 k). It should be mentioned that the
caseh < 0 was also addressed in [6]. We shall treat the dase(ds, ...,d,) ¢
(R4)™in Theorem 2.

(3) One may combine Theorem 1 with the method described in [15, Chap. XI,
Sec. 2.4] to obtain th&? boundedness df, ¢ When® is a polynomial (or gen-
eralized polynomial) mapping arfd e H1(S"1). See also [7] and [14].

The main tools used in this paper come from Duoandikoetxea and Rubio de Francia
[5], Fan and Pan [7], and Ricci and Stein [10]. The paper is organized as follows.
A few definitions and lemmas will be recalled or proved in Section 2. Section 3
contains the proof of Theorem 1. Section 4 discusses extensions of Theorem 1 by
allowing thed; to be negative.

Throughout the rest of this paper, the letfewill stand for a constant but not
necessarily the same one in each occurrence.
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2. Some Definitions and Lemmas

The Hardy spac&/*(S"1) has many equivalent definitions, one of which is given
in terms of the following radial maximal operator 84~:

PT: f— sup
t€[0,D

whereP, (y) = @ — [u[®/]y — ul".

| Putof)dol,

DeFINITION 2.1 An integrable functiory on S*~1is in the spaced(S"?) if
I flls-2 = I1P*fll sy < o0

Next we shall recall the atomic decomposition #8#(S"~%). Forz € S"~! and
r>0,weletD(z,r) =S"tNn{yeR":|y—z| <r}

DEFINITION 2.2. A functiona: S"~! — C is an H* atom if the following are
satisfied:

(i) supp(a) € D(z, r) for somez € S**andr > 0;
(i) Nalloo <r=9;
(iii) fD(“) a(y)do(y) =0.

The following result is well known (see e.g. [2; 3]).

Lemma 2.3, If Qe HY(S" 1) satisfieg4), then there existc;};cn € C and H?
atoms{a;} jen such that

o0 o0
Q= cha, and |||yt ~ Z|cj|.
j=1 Jj=1

In part of our analysis we shall encounter oscillatory integrals with generalized
polynomials as their phase functions. Thus we need the following lemma of van
der Corput type, which was proved by Ricci and Stein [10].

LEMMA 2.4. Letne N, uy, ..., u, € R, anddy, ..., d, be distinct positive real
numbers. Let = min{1/d;, 1/n}. Then there exists a positive constahtinde-
pendent of{.:;}, such that

T
i d dn
/ it gt )I//(t)dt
§

holds for0 < 8 < < landy e CY([0, 1]).

< CIM1|€<IW(T)I+/S Il/f'(t)ldt) (10)

LEMMA 2.5. Lethq, ..., h; > 0be distinct and
Ot u) = 1" > " agu + Y t"w;(u),
lor|<s j=2

wherer € R, u = (ug, ..., u,—1) € R"L a e (NU{OD" L a, € R, and w; (")
are real-valued. Let > 0andb(x) be a measurable function da-r, r]"~* that
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satisfies||b|l < r~"~V. Then there exist positive constaritsand y indepen-
dent of {a.}, {w; ()}, b(-), r such that

1
/ f Uy du
0 [—r,r]"’l

Proof. We shall establish (11) by employing the ideas in [6] in conjunction with
Lemma 2.4. By using a dilation and a rotation (if necessary) we may assume that
r=21and

dr < c(rf > |aa|>_y. (11)

loe|=s

a0, 0 X Y laal. 12)

|la|=s

Letn = (uo, ..., u,_1) andR(u) = Z|OI|SS aqu®. Then

1
/ f " b(u) du
0 |J[-1qn-1
1 .
f 't (uy, 1) dug

1 2 \12
Lol '
-1y-2\Jo [J1
141 2
5/ </ f I(ug, vy, T))duldvl> dn,
(-1gr-2\Jo1

1
/ el uL, =0, v1,m] 4y
0

dt

where

I(uy, v1, ) =

< C|R(u1, n) — Rwy, )|~
with 2y = min{1/h4,1/1,1/(s + 1)}. Since
R(u1, n) = ags.o.....ou; + lower powers inuy,

we may apply an inequality proved by Ricci and Stein [10, p. 182] and (12) to

obtain
1 —2y
/ I(uy, va, ) duy < c( > |aa|>
-1

loe|=s

uniformly in vy andn. Therefore,

1
/ / e CUOb ) du
0 [-1171

which proves (11). O

dr < c( Y laa |)_y,

|la|=s

LEmMA 2.6. For j € {1, 2}, letU; be adomain irR" andK; a compact subset of
U;. Leth(-, -) be areal-analytic function oy, x U such that:(-, z) is a nonzero
function for every; € U,. Then there exists a positive numliee= §(h, K;, K»o)
such that

sup | |h(w, 2)| 7 dw < oo. (13)

zeKp JK1
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Proof. By the compactness ok; and K it suffices to show that, for every
(wo, zo) € U1 x Uy, there exist positive numbers= r(wg, zo0), s = s(wo, 20),
ands = §(wog, zo) such that

sup lh(w, 2)| % dw < oo. (14)
|z—zol<s J [w—wol<r
Clearly we may assume thabg, zg) = (0, 0) andk (0, 0) = 0. Sinceh(-, 0)
is not identically zero, there existscae N such that

P h(w, 0) B
Jwh ‘w:O -
for every multi-indexg = (B4, ..., B,,) Satisfying| 8| < k and
3%h(w, 0)
—_ 0

JwY |w=0 #

for somex = (a1, ..., ayy) With || = k. Thus, there exists a unit vectgrsuch
that

0

(- V) h(w, 0| _, #0.

By using a rotation (in thev variable) if necessary, we may assume that
14,0,...,0). Then

o'h

—(0,00=0

owy

forO</<k—-1and
" 0,000
owk '

Letw = (wy, ..., w,). By the Malgrange preparation theorem [8] there exist
o > 0 and smooth functions(w, z), bo(w, z), ..., br_1(w, z) on{|lw| < p} x
{|z] < p} such that

h(w, 2) = c(w, D)[wk + b1, 2)wi ™+ -+ - + bo(W, )]

andc(w, z) # 0 for |w|, |z] < p. Therefore,

p/2
sup [h(w, 2)]Y*D g, < .
[, 1z1<p/2 J=p/2
By selectingr = s = p/2 and$ = 1/(k + 1), we see that (14) holds. This com-
pletes the proof of (13). O

We shall rely heavily on the following result in [6], which was established on the
basis of earlier work by Duoandikoetxea and Rubio de Francia.

LEMMA 2.7. Letg > 1, I,meN,and{o,, : 1<s <l+1andk € Z} bea
family of measures oR™ with 0,41, = O for everyk e Z. Let{a,; 11 <s </,
J=12}C(0,00), {As :1<s <1} C(0,00\{1}, {M;:1<s<I}CN,and
{L® :1<s <1} c L(R",RM), whereL(R", RMs) denotes the space of linear
transformations fronR™ into RMs. Suppose that
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(1) llogill <lforkeZandl=<s <I;
(i) 165k (®)] < COLILWEN™2 forE eR™ keZ, andl<s <1
(iii) 1654 (5) — G111 (B < CAAILDEN ™ forE eR™, keZ,andl<s <1
(iv) for 1 < s < I, ¢} is a bounded operator o?(R™), whereo(f) =
SUR.ez (05, kl * | f])-
Then, for2q /(g +1) < p < 2q/(q — 1), there exists &, > 0independent of
{L®}_, such that

Y orixf < Gyl fllLormy (15)
kez LP(R™)
and
1/2
H (Z o, * f|2> < Cpll Fllrcem (16)
LP(R™)

kezZ
hold for all f € LP(R™).

We shall adopt some of the notation used in [6] and [7]. ®#oR"\{0} — R™,
Q: S"1 - C, andk € Z we useoq_ o« to denote the measure given by

f(x)dog ok = f

2k<|y|<2k+l

f(<b<y>)9<1>|y|"dy. 17)

R Iyl

3. Proof of Theorem 1

In this section we shall leb be a homogeneous mapping fréthto R™ of degree

d=(dy,...,d,). We also assume the following:

(a) dy,....d, > 0;

(b) ®|q,. is real-analytic;

(c) there ard,/ e Nsuchthal < <m, {j :1< j <mandd;, = di} =

{1,....0}, and{®y, ..., &} forms a basis for spdy, ..., ®;}.

Conditions (a) and (b) imposed dnare exactly the same as given in Theorem 1,

while (c) can be satisfied by a simple reorderingbaf ..., ®,, (if necessary) un-

less{®; : d; = d1} = {0}. Foré = (&, ..., &,) € R™ we shall le = (&, L ED.
Under the foregoing assumptions, we have the following lemma.

Lemma 3.1. There exist, A > 0Oand L € L(R!, R) such that
160,04 (E)] < ARM|LED Q2 (18)
holds whenevet € Z, £ e R, and Q € L3(S"1).

Proof. By assumption there exists d&n= (Ly, ..., L;) € L(Rf, R’) such that

s=1

] l
D gD =Y (L D). (19)
j=1

Defineh: S"tx S - R by
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1
h(y, @) =y (),
j=1

wherey € S"tandw = (w1, ..., w;) € S'7L Since{®, ..., ®;} is linearly inde-
pendent/i(-, w) is a nonzero function for every € S'~1. By Lemma 2.6, there
exists af; > 0 such that

sup |h(y,a))|_51da = A1 < 00.
weS/-1 Jsn-1

By lettinge = min{1/d;, 1/m, 8;/2} and using Lemma 2.4,

2 1
206 S (L By, (y)rh
/Sn—l(/l exp{,[ SX:;( s&) D5t

m d
5 o ]| L)oo

j=I+1

160, 0,k (6)] =

< Ap2edit f 120) do(y)
Sn—

1
D LB D)
s=1
< (A1A) QUM LE) Q1 L2 O

Proof of Theorem 1Let p € (1, o). By the atomic decomposition @f(S"~ 1),
it suffices to prove that

ITq,o fllLermy < Apll fllLe@rmy (20)

wheng2 satisfies

(i) supp() € D(zo, r) for somezg € S"*andr € (0, 2];
(i) 1Rl < =P,
(i) fo1Q(y)do(y) =0.

We shall begin by assuming th@tsatisfiegi)—(iii) withzo = (0, ..., 0, 1) and
0 < r < 1/4. An application of Lemma 3.1 gives

160,0.k(5)] < AQM|LE) = r~ "2, (21)

Forl< j <landu| = |(uy, ..., us,1)| <r, let

¢;(u) = &;(u, 1 — [ul®HY?).

Let 1 5%
j
w=——2(0
“ a! du” ©

fori<j <landla| <M =[(n—1)/(2¢)] +1
Next we introduce the mappings™®, ..., w™+D : R"\{0} — R™ by

vD(y) = d(y)
and
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\If‘”<y>=(|y|dl Yo aw()% T Y aR ()

lo|<M—s+1 lal<M—s+1
Di (), -, <I>m(y)>

forl<s < M+1 wherey = (y,..., y,) # 0andy’ = (y1/Iyl, ..., yo-1/1¥D-
Thus, for ally satisfying # < |y| < 2**andy/|y| € suppQ),

WO(y) — W@ (y)| < C285 00/ (22)
and

|\Ij(x)(y) _ ‘Ij(x-k—l)(y)' < CzdlkrM—X+1 (23)
whenl<s < M. 5 y

Forl<s < M +1lleto,, = oy gy Let LOE = r=/@ILg whereLg

is given as in Lemma 3.1. Ford s < M, letn,; denote the number of monomi-
alsu® = ug*---u)" of degreda| = M — s +1and letR™ be labeled by (i.e.,
R™ = {(xa)}ajem—st+1). FOrs =2,..., M, defineL® € L(R™, R™) by

I
L(‘Y)E — (rMs+lZaja§j>
j=1

It follows from (19), (22), and (23) that

la|<M—s+1

|65k (8) — Gy41x ()] < CRU|LWE]) (24)
fors =1,..., M. We claim that
|6,k (8)] < CQRUA LD (25)

holds for 1< s < M and some positive exponents
Clearly, fors = 1, (25) follows from (21) with the choicg; = ¢. Forl<s <
M, let

] m
Qut, y, &) =t Y (Z%%)(y')“ + ) 1 D).
la|<M—s+1" j=1 j=l+1

Then it follows from Lemma 2.5 that, for some > 0,

2
16,18 < /
1

< C<2d1krMs+l Z

la|=M—s+1

dt

/ eiQk(ZktquE)Q(y)dO'(y)
gn-1

i
Z ajo§;

j=1

Vs
) = CMILOE)™

holds for allk € Z. Thus (25) holds fos =1,..., M.
In addition to (24) and (25), we have
losell < C (26)

and
|suption i 10| < Cuf, @)

forl<s < Mandl< p < oo, the latter of which comes as a consequence of
the L? boundedness of the maximal operator
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2k+1

| F(xy— 1%, . xp — t9)| dt
keZ Pt / flx
established in [11] and [16]. Observe that

W (y) = (191" @1(z0), - 191D D7 (20), Proa(D), -0 Pu()).
By repeating the preceding arguments we can find additional mappings
WM+ ) (VD

from R"\{0} to R™ such that

WV (y) = (y18D1(20). ... [¥17 Bu(20)) (28)

and (24)—(27) hold fob, , = oy .« (With appropriate choices af”, y, and
with d; replaced by the;), M +1 < s < N. It follows from (28) and

LHQ(y) do(y) =0

thatoy,1, = O forallk € Z. Applying Lemma 2.7 then gives

Zﬁl.k * f

keZ

1Te.o fllLrrmy =

< Coll fllLrrm
LP(R™)
forl< p < o0.

Finally, let us point out that the restrictiag = (0, ..., 0, 1) can be lifted by
using an appropriate rotation @ ~% For 1/4 < r < 2 the entire process can be
greatly simplified because the factor” /2 in (21) becomes harmless; we omit
the details. This ends the proof of Theorem 1. O

4. Further Results

In this section we discuss how the boundedness result in Theorem 1 can be ex-
tended to cover the case where some or all otfihare negative.
The first step is to obtain the following variant of Lemma 2.4.

LEmMMA 4.1. Letn e N, us, ..., u, €R, anddy, ..., d, be distinct nonzero real
numbers. Then there exists a positive constaimtdependent of it;} such that

g i(uat M e 2 )
e'ttt Hal ™ (1) dt
o

holds forl/2 <o < 8 < landy € CY([1/2,1]).

B
< Clmll/"<|1/f(ﬂ)| +/ II/f/(t)Idt>

Lemma 4.1 can be verified by using the Ricci—Stein [10] arguments in Section 3.
Combining Lemma 4.1 with the method used in Section 3 allows us to obtain the
following.

TueorREM 2. LetQ e HY(S" 1) satisfy(4). Let®: R" — R™ be ahomogeneous
mapping of degre€ = (dy, ..., d,,) withd; # Ofor 1 < j < m. Supposeb

gn-1



416 LEsLIE C. CHENG

is real-analytic and seTq o f = D, 0o, 0.1 * f (in the sense of distributign
Then for every € (1, oo) there exists &, > 0 such that

1Tq, o fllLecemy < Coll fllLerm
forall f e S(R™).
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