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Artin Groups of Finite Type
with Three Generators
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1. Introduction

LetW be a finite Coxeter group on three generatorsA,B,C, and consider the set
of all possible expressions of the Coxeter elementX = BAC in W as a product
of three reflections. In Section 3 we will construct a 3-dimensional CW-complex,
K(W ), which we can associate to this set in a natural way. (Daan Krammer has
informed us that he has also considered this complex and has obtained similar re-
sults.) We will show that this complex enjoys two remarkable properties. First,
the fundamental group ofK(W ) is isomorphic to the finite type Artin group deter-
mined byW ; second,K(W ) can be given a piecewise Euclidean (PE) metric of
nonpositive curvature. Thus, ifG is an Artin group of finite type with three gen-
erators, thenG acts cocompactly on a 3-dimensional PE complex of nonpositive
curvature.

The paper is arranged as follows. In Section 2, we make the corresponding con-
struction for two-generator Artin groups and prove that the associated 2-complex
has nonpositive curvature. In Section 3, we define the complexK and show that it
has the correct fundamental group. In Section 4, we giveK a PE metric and show
that it has nonpositive curvature.

We would like to thank the Mathematics Department at Brigham Young Uni-
versity, where most of this work was completed.

2. Artin Groups of Finite Type with Two Generators

LetW be a finite Coxeter group on two generatorsA andB; that is,W = Wm has
a presentation of the form

Wm = 〈A,B | A2 = B2 = (AB)m = 1〉.
ThusWm is the dihedral group of order 2m, which can be thought of as a finite
reflection group acting onR2. The elementsA andB act as reflections in lines
through the origin that make an angle ofπ/mwhile the elementAB acts by rotation
through 2π/m. The corresponding Artin group is the group with the presentation

Gm = 〈a, b | prod(a, b;m) = prod(b, a;m)〉,
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where prod(x, y; k) is the wordxyxyx . . . with a total ofk letters. There is a
canonical surjection fromGm to Wm takinga to A andb to B. We will exhibit
a different presentation forG and use it to construct a presentation 2-complex
whose universal cover is PE and has nonpositive curvature. The existence of such
a 2-complex is not surprising, since the Artin groups are virtually direct products
of free groups withZ. However, the construction here will motivate the construc-
tion for three-generator Artin groups and Proposition 2.1 will be used to prove the
equivalence of presentations in Section 3.

Define the abstract group0m by the presentation

0m = 〈y, a1, a2, . . . , am | y = a1a2 = a2a3 = · · · = am−1am = ama1〉.
We note that there is also a canonical surjection from0m to the reflection group
Wm that takesa1 toA, a2 toB, y to the rotationAB, and the otherai to the other
reflections inWm. In fact, the following proposition is shown in [4].

Proposition 2.1. For all m, the homomorphismGm ∼= 0m defined bya 7→ a1

andb 7→ a2 is an isomorphism with inverse defined by

y 7→ ab, a2k+1 7→ (ab)−ka(ab)k, a2k+2 7→ (ab)−kb(ab)k.

Next we see that the presentation 2-complex determined by0m can be given a
piecewise Euclidean metric of nonpositive curvature.

Theorem 2.2. The two-generator Artin groupsGm act cocompactly by isome-
tries on contractible2-complexes of nonpositive curvature.

Proof. LetKm be the presentation 2-complex for0m. ThusKm has a single 0-cell
and its 1-cells are labelledy, a1, . . . , am,with each 1-cell having both its endpoints
attached to the single 0-cell. For each relationy = rs in the presentation, we at-
tach a 2-cell by gluing the boundary along the path readingrsy−1 in the 1-skeleton.
We giveKm a PE metric by assigning lengths to the 1-cells. Each 1-cell labeled
ai is given length 1 and the 1-cell labeledy is given length

√
2, so that each 2-cell

becomes a Euclidean triangle with sides 1, 1, and
√

2. We know from [1], for ex-
ample, thatKm will have nonpositive curvature if the vertex link has no embedded
loops of length less than 2π. From Figure 1 we see that this is indeed the case.
The universal cover ofKm is now the desired 2-complex.

Note. This result can also be deduced from [4], where a slightly different metric
is used.

3. Artin Groups of Finite Type with Three Generators

LetW be a Coxeter group on three generatorsA, B, andC; that is,W = Wm,n,p

has a presentation of the form

Wm,n,p = 〈A,B,C | A2 = B2 = C2 = (AB)m = (BC)n = (CA)p = 1〉.
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Figure 1

The corresponding Artin group is the group with the presentation

Gm,n,p = 〈a, b, c | prod(a, b;m) = prod(b, a;m),
prod(b, c; n) = prod(c, b; n),
prod(c, a;p) = prod(a, c;p)〉.

There is a canonical surjection fromGm,n,p toWm,n,p takinga toA, b to B, and
c to C. The Artin groupGm,n,p is said to have finite type if the corresponding
Coxeter groupWm,n,p is finite. The groupsWm,n,p are finite when the exponents
(m, n, p) take on the values(3,3,2), (3,4,2), (3,5,2), and(2, n,2) for n ≥ 2.

These Coxeter groups have been much studied, and the following terminology
is used. The groupW3,3,2 is known as the Weyl groupA3 or the symmetric group
64. It is the complete symmetry group of the regular tetrahedron. The correspond-
ing Artin group is the braid group on four strands. The groupW3,4,2 is known as
the Weyl groupB3. It is the complete symmetry group of the regular cube or oc-
tohedron. The groupW3,5,2 is known asH3 and is the complete symmetry group
of the regular dodecahedron or icosohedron. The groupW2,n,2 is a direct prod-
uct of the dihedral group of order 2n, D2n = 〈b, c〉, with Z 2 = 〈a〉. Finally, we
note that when(m, n, p) = (2,2,2), both the Coxeter group(Z 2)

3 and the Artin
groupZ3 are abelian.

We will use the description ofW as a finite reflection group, where the reflec-
tions are across planes inR3 through the origin. In Figure 2 we show part of the
intersection pattern of the reflection circles on the 2-sphere for the groupW3,5,2.

The 2-sphere is cut open and flattened out onto the plane. The intersection patterns
for the other groups can be illustrated with similar diagrams.

Recall that any product of all the standard generators in a finite Coxeter group
is called aCoxeter element.These elements were first used by Coxeter in [6].
In Wm,n,p, any product of the three generatorsA,B,C is a Coxeter element. All
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Figure 2

Coxeter elements inW are conjugate inW (see [7, p. 74]), but we will always
mean the particular elementX = BAC.

In order to define the 3-complexes for the three-generator groups, we will use a
subset ofW that is a natural generalization of the set of generators used to define
the groups0m. We call an elementw ∈W allowableif

(a) w can be expressed as a product of one, two, or three reflections, and
(b) the product in (a) is a prefix of some expression for the elementX as a product

of three reflections.

We will say that an allowable element haslengthk if the expression in (a) hask
reflections. This notion of length is quite different from the usual length of a word
in a Coxeter group. In the symmetric group64, for example, this length coincides
with transposition length for allowable elements. We note thatX is the only allow-
able element of length 3.

For eachW = Wm,n,p, we define a 3-complexK = Km,n,p that is analogous
to the 2-complexes of Section 2. The complexK has a single 0-cell and a 1-cell
for each allowable element ofW. As before, each 1-cell has both its endpoints
attached to the 0-cell. Observe thatK has a 2-cell for each expression of an allow-
able element of lengthk as a product of two allowable elements, the sum of whose
lengths isk. The boundary of the 2-cell consists of three 1-cells, and this gives
the prescription for attaching the 2-cell to the 1-skeleton ofK. Finally, K has a
3-cell for each expression ofX as a product of three reflections. If the expression
isX = RST and we define the allowable elementsY = RS andZ = ST, then the
boundary of the 3-cell consists of the four 2-cells with boundary labelsY = RS,
Z = ST, X = YT, andX = RZ. This specifies the attaching map for the 3-cell.
For a specific triple(m, n, p), the cell structure ofK can be deduced from one of
Tables 1–5, which record all possible expressions for the elementX as a product
of three reflections. These tables were compiled using induction combined with
the following proposition.

Proposition 3.1. Each reflection is allowable. Moreover, every reflection is con-
jugate to one ofA, B, or C by some power of the Coxeter element.
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Table 1 G3,3,2

Reflections:A1, A2, A3, A4, B1, B2

Expressions for Coxeter element:
B1A1A3 A1A3B2 A3B2A2 B2A2A4 A2A4B1 A4B1A3 B1A3A1

A3A1B2 A1B2A4 B2A4A2 A4A2B1 A2B1A1 A3A2A1 A2A1A4

A1A4A3 A4A3A2

Table 2 G3,4,2

Reflections:A1, A2, A3, B1, B2, B3, C1, C2, C3

Expressions for Coxeter element:
B1A1C1 A1C1B2 C1B2A2 B2A2C2 A2C2B3 C2B3A3 B3A3C3

A3C3B1 C3B1A1 B1C1A1 C1A1B2 A1B2C2 B2C2A2 C2A2B3

A2B3C3 B3C3A3 C3A3B1 A3B1C1 C1A2A1 A2A1C2 A1C2A3

C2A3A2 A3A2C3 A2C3A1 C3A1A3 A1A3C1 A3C1A2

Table 3 G3,5,2

Reflections:A1, . . . , A5, B1, . . . , B5, C1, . . . , C5

Expressions for Coxeter element:
B1A1C1 A1C1B2 C1B2A2 B2A2C2 A2C2B3 C2B3A3 B3A3C3

A3C3B4 C3B4A4 B4A4C4 A4C4B5 C4B5A5 B5A5C5 A5C5B1

C5B1A1 B1C1A1 C1A1B2 A1B2C2 B2C2A2 C2A2B3 A2B3C3

B3C3A3 C3A3B4 A3B4C4 B4C4A4 C4A4B5 A4B5C5 B5C5A5

C5A5B1 A5B1C1 C1A2A1 A2A1C2 A1C2A3 C2A3A2 A3A2C3

A2C3A4 C3A4A3 A4A3C4 A3C4A5 C4A5A4 A5A4C5 A4C5A1

C5A1A5 A1A5C1 A5C1A2 A2A4A1 A4A1A3 A1A3A5 A3A5A2

A5A2A4

Proof. If W is reducible then this follows easily from the two-generator case, so
we will assume thatW is irreducible. First note thatB, A, andC are each allow-
able, since

X = BAC = AC(CABAC) = C(CBC)(CAC).
Next, sinceA andC commute, our choice of the Coxeter elementX = BAC

means thatX = X1X2, where the factors ofX1 = B are commuting reflections
and likewise the factors ofX2 = AC. Coxeter elements of this type were used to
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Table 4 G2,2k,2

Reflections:A1, B1, . . . , Bk, C1, . . . , Ck

Expressions for Coxeter element:
B1A1C1 A1C1B2 C1B2A1 . . . BkA1Ck A1CkB1 CkB1A1

B1C1A1 C1A1B2 A1B2C2 . . . BkCkA1 CkA1B1 A1B1C1

Table 5 G2,2k+1,2

Reflections:A1, B1, . . . , B2k+1

Expressions for Coxeter element:
B1A1Bk+2 A1Bk+2B2 Bk+2B2A1

B2A1Bk+3 A1Bk+3B3 Bk+3B3A1

...
...

...

B2k+1A1Bk+1 A1Bk+1B1 Bk+1B1A1

great advantage by Steinberg in [8]. For such a Coxeter element it follows from
[8, Cor. 4.6] that the reflections inW are

B,BAB,BACAB,BACBCAB,BACBABCAB, . . . ,

which can be rewritten as

B,XAX−1, XCX−1, XBX−1, X2AX−2, . . . .

Thus each reflection inW is a conjugate of one of three allowable reflections
(A, B, orC) by some power of the Coxeter elementX. However, each such ele-
ment is allowable, since wheneverX = RST we have

X = X−k(X)Xk = (X−kRXk)(X−kSXk)(X−kTXk).

We are now in a position to prove the analog of Proposition 2.1.

Theorem 3.2. If Wm,n,p is finite, thenπ1(Km,n,p) ∼= Gm,n,p.
Proof. Computingπ1(Km,n,p) from the 2-skeleton and eliminating the generators
corresponding to length-2 allowable elements, we find thatπ1(Km,n,p) has the fol-
lowing presentation. There is one generatorr for each reflectionR in W and an
extra generatorx corresponding to the Coxeter elementX = BAC in W. The re-
lations ofπ1(Km,n,p) are all of the formx = rst, wherer, s, t are generators that
correspond to allowable elements of length 1 for which the corresponding reflec-
tions inW satisfyX = RST .
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In each of the Artin groupsG under consideration, we definex = bac andri =
x1−irx i−1 for r ∈ {a, b, c}, so thata1= a, b1= b, andc1= c. Under the quotient
map fromG toW, x maps to the Coxeter element and eachri maps to a reflection.
We will refer tox as the lift of the Coxeter element and to each of theri as lifts of
reflections.

Our first step will be to establish a set of identities inG of the formx = rst,
wherer, s, t are lifts of reflections. SinceW is a homomorphic image ofG, each
such identity will give a factoring of the Coxeter element as a product of three
reflections. We will see that our list of identities exhausts the set of possible fac-
torings of the Coxeter element and thus we will have a well-defined surjective
homomorphism fromπ1(Km,n,p) toG.

First observe that, wheneverx = rst andx = stu,
rx = r(stu) = (rst)u = xu (1)

so thatu = x−1rx. Thus we can write

x = biaici = aicibi+1= cibi+1ai+1. (2)

Using thatac = ca in each Artin group, we deduce

x = biciai = ciaibi+1= aibi+1ci+1. (3)

Equating expressions forx (starting withci), we obtain

aibi+1= bi+1ai+1. (4)

We now look at each specific group in turn.

Case 1:G is irreducible. Since the group generated bybi+1 andai+1 is a two-
generatorArtin group of typeG3,we deduce from equation (4) and Proposition 2.1
that

aibi+1= bi+1ai+1= ai+1ai.

This yields more expressions forx:

x = ciai+1ai = ai+1aici+1= aici+1ai+2. (5)

Equating expressions forx starting withai, we have

ai−1ci = cibi+1= bi+1ci+1= ci+1ai+2. (6)

Case 1(a):G = G3,5,2. Here the group generated bybi+1 andci+1 is a two-
generator Artin group of typeG5, so we deduce from Proposition 2.1 and equa-
tion (6) that

ai−1ci = cibi+1= bi+1ci+1= ci+1ai+2 = ai+2ai−1.

This gives more expressions forx:

x = aiai+2ai−1= ai+2ai−1ai+1= ai−1ai+1ai+3. (7)

Equating expressions forx, starting withai once again, we obtain
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ai+2ai−1= ai−3ai−1= ai+2ai+4,

from which we concludeai = ai+5. From this and equation (5) it follows that
ci = ci+5, and from this and equation (2) we getbi = bi+5. Thus,x5 is central;
together with equations (2), (3), (5), and (7), this gives the expressions forx cor-
responding to Table 3.

Case 1(b):G = G3,4,2. Now the group generated bybi+1 andci+1 is a two-
generator Artin group of typeG4, so we deduce from Proposition 2.1 and equa-
tion (6) thatai−1= ai+2 orai = ai+3. Together with equation (5), this yieldsci =
ci+3 and from equation (2) we havebi = bi+3. Thusx3 is central, and together
with equations (2), (3), and (5) this gives the expressions forx corresponding to
Table 2.

Case 1(c):G = G3,3,2. Now the group generated bybi+1 andci+1 is a two-
generator Artin group of typeG3, so we deduce from Proposition 2.1 and equa-
tion (6) thatci = ai+2 andci+1 = ai−1. From this we conclude thatai = ai+4.

Finally, equation (3) gives

x = bi+2ci+2ai+2 = bi+2ai+4ci = bi+2aici;
together with equation (2), this givesbi+2 = bi. Thusx4 is central, and together
with equations (2), (3), and (5) this gives the expressions forx corresponding to
Table 1.

Case 2:G is reducible.Here the group generated bybi+1 andai+1 is a two-
generator Artin group of typeG2. Thus we deduce from Proposition 2.1 and equa-
tion (4) thatai+1= ai. Equating expressions forx starting withai yields

cibi+1= bi+1ci+1 (= ci+1bi+2 = bi+2ci+2).

However, the group generated bybi+1 andci+1 is a two-generator Artin group of
typeGn.

Case 2(a):n is even.If n = 2k thenbi+k = bi, ci+k = ci, andxk is central.
Together with equations (2) and (3), this gives the expressions forx corresponding
to Table 4.

Case 2(b):n is odd. If n = 2k+1 thenci = bi+k+1, bi+n = bi, andxn is cen-
tral. Together with equation (2), this gives the expressions forx corresponding to
Table 5.

These expressions correspond to all possible factorings of the Coxeter elementX

in W. For a givenW and a given reflectionR, we find at least one factoring with
first factorR by Proposition 3.1. IfW = RST then all the possible factorings
starting withR correspond to the number of ways of factoring the rotationST in
the dihedral group generated byS andT .

Hence we get a well-defined surjective homomorphism fromπ1(Km,n,p) toG
given by

ai → x1−iax i−1, bi → x1−ibx i−1, ci → x1−icx i−1,
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wherex = bac. The inverse homomorphism that is given bya → a1, b → b1,

andc → c1 is well-defined by Proposition 2.1 and is surjective by the proof of
Proposition 3.1.

4. The Piecewise Euclidean Metric onK

Since each 3-cell ofK is combinatorially a 3-simplex, we can giveK the structure
of a PE cell complex by specifying the lengths of 1-cells. Each 1-cell corresponds
to a generator that is an allowable element ofW of a given lengthk, wherek =
1, 2, or 3. We give the corresponding 1-cell the length

√
k. Thus each 3-cell inK

can be given the metric of the Euclidean simplex on the vertices(0,0,0), (1,0,0),
(1,1,0), and(1,1,1) in R3,where the 1-cells of length 1 correspond to reflections,
the 1-cells of length

√
2 correspond to allowable elements of length 2, and the

1-cell of length
√

3 corresponds tox. We note that this Euclidean tetrahedron is
part of a standard subdivision of the unit cube into six congruent tetrahedra.

Example. We note that, for the groupG2,2,2, there are precisely six 3-cells inK
corresponding to the six expressions forx in W2,2,2 asbac, bca, cba, cab, acb,
or abc. These six 3-cells fit together to give a subdivision of the usual flat 3-torus
with fundamental groupG2,2,2 = Z3.

Example. In general, the complexKn,2,2, is isometric to a product of the metric
2-complexKn described in Theorem 2.2 with a circle of length 1. The isometry
Kn×S1→ Kn,2,2 can be described at the level of 3-cells by subdividing the prod-
uct of a 2-cell with a 1-cell into three 3-cells—in the standard way that a triangular
prism is subdivided simplicially. Specifically, if the 2-cell fromKn is labeled by
Y = RS (= BA) and if the 1-cell is labeled by the central elementC, then the
corresponding 3-cell inKn × S1 is mapped to the union of the 3-cells labeled by
X = RSC, X = RCS, andX = CRS.
Next we establish two lemmas regarding the local geometry inK. (See [5] for def-
inition and properties of spherical joins.) Letv be the single vertex inK, and let
S be its star andL its link. Let x∗ be the vertex inL corresponding to the edgex
inK, let6 be the star of the vertexx∗ in L, and let3 be the link ofx∗ in L. Thus
each 1-cell in3 joins a vertex labeledRi to a vertex labeledRiRj, whereRi and
Rj are reflections andRiRj is allowable of length 2. The 1-complex3 is shown
in Figure 3 for the groupG3,5,2, where the allowable elements of length 2 are

Yi = BiAi = AiAi−1= Ai−1Bi,

Zi = BiCi = CiAi+1= Ai+1Ai−2 = Ai−2Ci−1= Ci−1Bi,

Wi = AiCi = CiAi.
We note that the 1-complex forG3,3,2 is precisely the link that occurs in [2].

Lemma 4.1. There is an isometry between the linkL and the spherical join of a
copy of the0-sphere with the1-complex3.
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Figure 3

Proof. It follows from equation (1) that the face with labelZ = ST of the 3-cell
corresponding to the expressionX = RST is incident on exactly one other 3-cell,
namely the one corresponding toX = STU, whereU = X−1RX. Similarily, the
face labeledY = RS is incident on the single other 3-cellX = QRS, where
Q = XTX−1. Thus the universal cover̃K ofK(G) is a union of infinite triangular
prisms. It is this structure that will give us the required isometry.

Let ṽ be a fixed vertex inK̃. We will study the star of̃v in K̃ since it is isometric
to the star ofv inK. Every 1-cell of3 joins a vertex corresponding to a reflection
R to a vertex corresponding to an allowable elementRS. SinceRS is allowable,
there is a reflectionT satisfyingX = RST . LetU = XTX−1, V = XSX−1, and
W = XRX−1 so that

X = WVU = VUR = URS = RST . (8)

We consider the seven vertices iñK given by

X−1ṽ, (VU)−1ṽ, U−1ṽ, ṽ, Rṽ, (RS)ṽ, Xṽ.

The part of the star of̃v in K̃ consisting of those simplices whose vertices be-
long to this set of seven is a union of four 3-simplices corresponding to the four
expressions forX in equation (8). Furthermore, this part of the star is isomet-
ric to the piece ofR3 shown in Figure 4, where the seven vertices are mapped
to (−1,−1,−1), (0,−1,−1), (0,0,−1), (0,0,0), (1,0,0), (1,1,0), and(1,1,1),
respectively. Hence, this part of the star ofṽ is isometric to the set of directions at
(0,0,0) pointing into the region defined by the inequalitiesy+z ≤ 0 andx+y ≤
0. Both of the bounding planes of this region contain the vertices(−1,−1,−1),
(0,0,0), and(1,1,1). The planey + z = 0 also contains the vertices(0,−1,−1)
and (1,0,0), while the planex + y = 0 contains(0,0,−1) and (1,1,0). This
part of the link thus contributes a segment of a 2-sphere that is the orthogonal sus-
pension of a copy of the 0-sphere with a segment of a circle of lengthπ/3. The
0-sphere corresponds to the two points(−1,−1,−1) and(1,1,1), while the seg-
ment lies in the planex + y + z = 0 between the planesx + y = 0 andy + z =
0, which make an angle ofπ/3 between them.

Because (a) every 1-cell of3 contributes precisely one such segment to the
star ofṽ and (b) each 3-cell in the star ofṽ lies in exactly one such segment, the
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Figure 4

correspondence induces an isometry fromL to the spherical join ofS 0 with 3 if
each 1-cell of3 is given lengthπ/3.

Lemma 4.2. For each1-complex3, there are no embedded loops with less than
six1-cells.

Proof. The 1-complex3 is the geometric realization of the poset whose elements
are the allowable elements ofW of length 1 or 2, with the partial orderP < Y if
and only ifP is allowable of length 1,Y is allowable of length 2, andY = PQ for
some allowable elementQ of length 1. It follows that each circuit in3 traverses
an even number of 1-cells and that there are no embedded circuits of length 2.
Hence it suffices to show that there are no embedded circuits of length 4. Sup-
pose such a circuit exists. Then there are allowable elementsP andQ of length
1 and allowable elementsY andZ of length 2 withP < Y, P < Z, Q < Y, and
Q < Z. The elementsP andQ correspond to reflection planes inR3 through the
origin, whileY andZ correspond to lines inR3 where reflection planes intersect.
The relationsP < Y andQ < Y mean that the planes corresponding toP and
Q intersect along the line corresponding toY ; similarily, these planes also inter-
sect along the line corresponding toZ. Thus these two lines coincide. This gives
a contradiction, since there is at most one allowable element of length 2 with fixed
set a given line inR3.

Theorem 4.3. The 3-generator Artin groupsGm,n,p of finite type act cocom-
pactly by isometries on contractible3-complexes of nonpositive curvature.

Proof. The desired 3-complex will be the universal cover ofKm,n,p. We recall
from [1] that a PE cell complex will be CAT(0) if the links of vertices are CAT(1).
Lemma 4.1 exhibits this link as a spherical join of a copy ofS 0 with a 1-complex
3. By [5], L will be CAT(1) provided that3 is a CAT(1) 1-complex; by [1],3
will be CAT(1) provided3 contains no embedded loops of length less than 2π.
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Since each edge has lengthπ/3, this is equivalent to there being no embedded
loops with fewer than six 1-cells. This is established in Lemma 4.2.

Remark. It is possible to extend the definition ofK(W ) and its PE structure to fi-
nite Coxeter groupsW of higher rank. However, the problem of deciding whether
or notK(W ) has nonpositive curvature is much more difficult in these cases. IfW

has rankn, then the analog of the complex we here called3 is a finite piecewise
spherical complex of rankn−2. If this complex is CAT(1) thenK(W ) is CAT(0).
However, it is difficult in general to show that a given PS complex is CAT(1), and
few general results of this type exist. We have used one of the simplest—namely,
that when the dimension is 1 it suffices to check that there are no embedded short
loops. Nonetheless, it can be shown (see [3]) thatK(W ) is contractible in the
braid group case, whereW is a symmetric group of any rank.
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