The Bergman Projection and
Vector-Valued Hardy Spaces

WiLLiaM S. COHN

1. Introduction and Statement of Results

Let S” be the unit sphere in C”, and let do denote the surface area form on S”
normalized so f ¢n do = 1; B, will denote the unit ball and dv will be the normal-
ized volume form on B,. We assume familiarity with the invariant Poisson inte-
gral and nonisotropic metric d(¢, 1) = |1 — (¢, n)|'/? used in the study of function
theory on §”; see [R, Chap. 5]. For 0 < p < oo, H?(S") is the usual space of
distributions whose invariant Poisson integrals are holomorphic on B,, and whose
admissible maximal functions belong to L?(do); see [R, Chap. 4]. For a function
u defined on B, and 1 < g < oo, let A,[u] be the area function

d 1/q
Ammo=(ﬁmm@wat%%ﬁ),

where ¢ € S” and I'(¢) is the usual approach region
L) ={zeBy: 11— (z,8) <1—lz}.

For 0 < p < oo, the tent space T (B,,) consists of all functions u such that

1/p
||uI|qu = (/ Alul? a’a) < 0.

The tent space 7,°(B,) consists of those functions u such that |u(z)|? dv(z)/
(1 — |z]) 1s a Carleson measure; see [CMS].

It is well known that if 0 < p < oo then a distribution F whose invariant Pois-
son integral is holomorphic belongs to HP(S") if and only if u(z) = (1 — [z]) x
(|F(2)|+|VF(z2)]) belongs to T ; here F(z) is used to denote the invariant Poisson
integral of F evaluated at z € B,,. Another characterization of H? for0 < p < oo
is given in terms of the “g” function. If u is defined on B, and 1 < g < o0, let

1 dr \V4
gmmo=(fumowl’).
0 — 1

Then a distribution F with holomorphic Poisson integral belongs to H? if and only
if go(u) € LP(do), where again u(z) = (1 — |z|)(|F(2)| + |VF(z)|); see [AB]. In
each of these characterizations we have norm equivalences:
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IE N er = lullzy = 820l Lr.

Here, the notation = means, for example, that there is a constant C > 0 indepen-
dent of F such that C™1||F||pr < ||u||T2p < C||F|lgr. The letter C will denote
various numerical constants whose value will change in the different contexts in
which it is used.

Combining these characterizations of H?(S") with duality considerations shows
that certain linear operators are bounded, atleastfor 1 < p < oo. For f in L!(do),

let
do (%)
(1 —{z,eHr+t”

If Fisin HP(S") then SF(z) = (1 — |zD(F(z) + ;II-RF(z)), where R denotes the
radial derivative of F [R, 6.4.4]. Thus, S/ is a bounded operator from H? to sz .
For 1 < p < oo the dual of 7,7 (B,) is Tq’f , where 1/r 4+ 1/r" = 1 and the pairing
between the spaces is given by

Sf@) =01 —|z) . f(©)

_ . dv(z
o) = [ u@oe) 122 M)
. 1 — |z
(see [CMS]).
A calculation shows that if F € H?(S") and u € T, then
_ dv(z)
s = [ Fo [ i@ do ©);
O O T g gy 20
that is, the adjoint $*: 7. " H” is given by the Bergman projection
dv(2)
S*u(¢) = Bu( )———[ u(z) . (2)
D= = [ MO gy

Thus, for 1 < p < oo, duality shows that B: sz — HP is a bounded operator.
Although it may seem unusual at first to see the Bergman projection appearing as
an operator whose range is Hardy space, this is merely the holomorphic version
of the real variable result which states that, if Y € S(R"), ¥, (x) = t "¢ (x/1),
and || gn ¥(x) dx = 0, then the linear operator given by

dyd
LuG) = [ v =0 2

maps the tent space TZP(R"“) into HP(R"). This holds forn/(n + 1) < p < oc;
to obtain the result for smaller values of p, more moments of ¢ must vanish. See
[CMS].

It follows from Theorem 2 in [Co] thatif n/(n 4+ 1) < p < oo then B: TZP —
HP? is a bounded operator, in analogy to the real variable result. (One applies [Co,
Thm. 2] with G(¢,z2) = 1 —(z, &), r(@) =1—zl,a=1,b =0, H = 1,
and / = 0 in conjunction with the tent-space characterization of H?.) The meth-
ods of that paper actually apply to tent spaces T, where 1 < ¢ < 00; one need
only find the right substitute for H? for g # 2. It is natural to replace H? by a
Triebel space Fy? = F{; see [T]. Here, in the absence of a Fourier transform that
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is easy to work with, it is convenient to restrict our attention to holomorphic func-
tions and to define F; as the space of holomorphic functions F such that u{z) =
(1 — 1zD(F ()| + |VF()|) € qu(B,,). Of course, ”F”F:? is defined to be ||u||qu.
With this definition, the methods of [Co] yield the following result.

THEOREM A. Ifn/(n+1) < p <ooand 1 < q < 00, then there is a constant
c(p, q) such that

1Bullpg < c(p, @)lulzy.

The modifications needed to prove Theorem A for g # 2 will be discussed in the
proof of Theorem 1.

In this note our purpose is to find a version of Theorem A in which the tent
spaces T, are replaced by spaces based on the g function. As will be seen in
the sequel, for p > 1 it is a straightforward matter to do this by replacing T,/
with the mixed norm space LP(S", X,) defined in what follows. We choose to
interpret this as an L? space of vector-valued functions. For 0 < p < 1, how-
ever, the approach we take here suggests that what is needed is a Hardy space of
vector-valued functions. We define such a space, denoted H{(S", X,), and our
main result (Theorem 1) is the desired analog of Theorem A. Before proceeding
further, however, let us say why we think the spaces H{(S", X,) are interesting
and why this is all worth the effort.

First of all, in Theorem 1, where H f (8", X?) replaces qu (B,), we obtain a
bounded linear operator for the full range 0 < p < 1; the restrictionn/(n 4 1) <
p is unnecessary, in contrast to Theorem A. This is because, as will be seen, the
space HY(S", X,) is a space of distributions with cancellation properties—as op-
posed to the space T, (B,,), where functions need not have those cancellation prop-
erties (see Remark 1). Consequently, Theorems A and 1 show that, for certain val-
ues of p, the operator B is bounded on both the Hardy-type space H{(S", X,) and
the tent space 7 (B,). It is therefore important to understand how the two spaces
are related. For 2 < p < oo it can be checked that Lfl’ (§") C qu and that for 1 <
p < 2 the containment is reversed. On the other hand, for 0 < p < 1, neither
space qu nor H f(S ", X,) is contained in the other; see the end of Section 2. We
think this makes Theorem 1 all the more interesting.

In Theorem 2 it is shown that if F € F;] then the function SF(z) = (1 — [z]) x
(%RF(z) + F(z)) belongs to HY(S", X7). Of course, it is well known that SF
belongs to 7,7 (B,), but Theorem 2 shows in addition that SF belongs to a space
where membership is determined not just by absolute value but by cancellation
properties as well. In particular, since SF € HY(S", X,,), it has an atomic decom-
position into sums of atoms with vanishing moments, unlike the atomic decom-
position it has by virtue of its membership in the tent space T.”. See Definition 6
and Theorem 5.

Finally, Theorem 3 considers the limiting case of p going to infinity in Theorem 1
and states results in terms of bounded mean oscillation. As a corollary, we obtain
a new characterization of the usual space BMOA (S”): A holomorphic function F
belongs to BMOA (S*) if and only if SF belongs to the space BMO(S”, X>). See
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Remark 2. This characterization is close to the Carleson measure characterization
of BMOA(S"), and we believe it merits further study.

We now proceed with precise definitions of the spaces to which we have just re-
ferred. Let X, be the space of functions A (¢) defined on the unit interval with the

norm | 1/q
dm, (1)

I2llx, = (/ |h()|? 1 ) ,
0 —1

where dm,, () = 2nt>"~!dt. Note that in polar coordinates
dv(t§) = dm,(t) do(¢),

where 0 <t < 1 and ¢ € §”. If u is defined on B,, then the property that g,[u] €
L?(do) is equivalent to the property that, for almost all { € §”, the formula

u(@@)=u@), 0=t<lI,
defines a mapping u(¢): $” — X, and

f (@) do < oo,

where [u(¢)| denotes the norm in X, . Therefore, if in place of the area function
A, we use the g function g,, it is natural to replace the tent space T} with the
mixed norm space Lf; (§") = LP(S", X,) of X,-valued functions u such that

1/p
el L sny = ( / |u(¢)|f’da) < oo.
Sn

IfxeX,andyec X, let

1
dm,
(%, y) = f 050 T ©
0 —t

be the pairing that gives the duality between X, and X,. If 1 < p < oo then
(LI(S™)* = (Lf;,) with the pairing

I d
<u,v>=f / W@ @)@ ;""(”
 Jo —t

see [BP]. (We have used the measure dm, () to make this pairing coincide with
the one given by equation (1).)

If g = 2 then, exactly as before, it follows from duality that the g,-function char-
acterization of H? implies that, for 1 < p < oo, the Bergman projection defines
a bounded linear operator B: L5(S") — HP(S"). For the case ¢ # 2 itis also true
that the Bergman projection defines a bounded linear operator B: L, (S") — F}/.
The argument, which is based on duality, will be given in the proof of Theorem 1.

On the other hand, for p = 1 itis no longer the case that the Bergman projection
defines a bounded linear operator from L; into H!. If this were the case then, by
duality, the map that takes a function f to (1 — |z|) Rf(z) would define a bounded
linear operator from BMOA(S") to L5°. The function g(z) = log(l — z;) is a
counterexample; here z = (zy, ..., 2,)-

do(¢) = Sn(u(é“), v($)) do(8);
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In the present context, the Bergman projection B,, arises as the adjoint of the op-
erator that essentially takes a function F on S” to (1 — |z|) RF(z). We can regard
this operator as taking the scalar function F defined on S§" to the X, -valued func-
tion u, also defined on S”, given by u(¢)(¢t) = (1 — ¢t) RF(¢¢). The real-variable
analog of this is the operator that takes a function f on R” to f * v,(x), where
¥ is a Littlewood-Paley function. It is customary to think of the latter operator as
a singular integral operator with vector-valued kernel; see [S, Chap. 1, 6.3]. The
Bergman projection may be viewed in a similar way: as a singular integral operator
with domain X ;-valued functions (or distributions) on $” and range scalar-valued
functions (or distributions) on S". It is determined by the X, -valued kernel k(¢, 1)
(where ¢ and n are in ") given by

1—1t
(1 — (g, ppn+t
The Bergman projection may then be thought of as determined by the formula

k&, m@) =

Bu(¢) = lim S"(k(SC, n), u(m) do(n),

where (-, -) denotes the pairing between X, and X,. A calculation shows that
1
11— (¢, mi*’

as one expects with a singular integral operator. Therefore, if we hope to get a
bounded linear operator with range F,/ for 0 < p < 1, it is natural to replace the
domain L7 (S") by some sort of Hardy space. We therefore make the following
definitions.

Let X be a Banach space and X* its normed dual. We wish to define the space
of X*-valued distributions on S”. Denote by D = C*°(S", X) the space of C*
functions ¢: " — X. For amulti-index J let | J| be the nonisotropic order of J as
defined in [GL, p. 820], and let Dg be the differential operator defined at ¢ € "
in terms of local coordinates of S” as described in [GL]. (There is no difficulty in
extending the definitions given there in the case where n = 2 to the general case.)
Give D the topology induced by the seminorms

¢l = sup |D{p()lx,
cesm, | JI<k
where | - |x denotes the norm in X. Let D’ be the dual of D. We will call D’ the
space of X*-valued distributions on S". We will say that a distribution A € D’ is
given by a function u: §* — X* if

k@, mlx, =

n

A@) = Au(d) = f (@)@ () do (2.

For 1 < g < oo, we will regard X as the dual of X.

We can now define the Bergman projection of a distribution A € D’(S", X,). It
will be convenient to work with holomorphic functions defined on B,, instead of
their boundary distributions.
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DEFINITION 1. For z € B,, let k; be the X-valued function of { € " given by

k, (0)@®) =1 —1)/(1 —t{z, Z)"'. With A as before, BA(z) is defined to be
BA(z) = A(ky).

It can be verified that, if A is a X,-valued distribution determined by a function u
defined on B,, according to the formula

e ()dor = [ (v,u)do,
1—1¢ sn

1
A@) = Au() = f [O (OO u(et)

then BA, agrees with the definition of the Bergman projection of # given by equa-
tion (2), that is,
BA, (Z) = Ay (kz) = Bu(z). 3)

We now want to define the (“real””) Hardy space H f(S " X*) of X*-valued dis-

tributions on S”. If A € D’ and if ¢ € C*°(S") is a smooth scalar-valued function,
then we define Ay to be the element of X* defined by the equation

(AY)(x) = A(Wx), xeX,

where 1x is the element of D that sends ¢ to ¥(¢)x. (The motive for this defini-
tion becomes apparent if one considers the case where the distribution A is given
by a function.) If n and ¢ are points on §” and 0 < r < 1, let P,.(n) be the
function of n given by

(1—=rH"
|1 —r(g, mn
Thus, P, is the invariant Poisson kernel.

Pr;(n) =

DEFINITION 2. The Poisson integral of the distribution A € D’ at the point r¢ €
B is the element in X* given by A(Py).

It can be verified that, if A € D’, then if u, is the X*-valued function given by
ur(¢) = A(Py)then A, — Aasr — 1.

For A € D’, define the radial maximal function

AT(©Q) = OSUPIIA(Pr;)Ix*,

where | - |x» denotes the norm in X*.

We also define the admissible maximal function of A:

A*(§)= sup |A(Prn)|X*-
rnel’(5)

DEFINITION 3. A distribution A € D’ belongs to H{(S", X*) if

IANG, = Sn(A+(§))f’ do(¢) < oo.

Of course, if X, = C! is the complex numbers then Hf_(S n Clyis just the scalar
“real” Hardy space studied in [GL]. It can be verified (just as in the scalar case)
that, for 1 < p < oo, Hf(S”, X)) = Lf;. Lemma 1 will also show that, for 0 <
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p < 00, the subspace of H{(S", X,) consisting of distributions given by func-
tions of the form u(t¢) = (1 —1t)g(¢¢), where g is holomorphic on B,,, is a familiar
mixed norm space; see Lemma 1.

Our main results can now be stated.

THEOREM 1. Let0 < p < ocoand 1 < g < 00. Then there is a constant c(p, q)
such that

||BA||F; <c(p, 4)||A||Hj(s",xq)°

THEOREM 2. Let 0 < p < o0o. Then there is a constant c(p, q) such that
“SF”er’(sn,Xq) < c(p, Q)”F”F’?-

For the limiting case where p goes to 0o, we have the usual BMO results.

THEOREM 3. There are constants depending on q such that

(@) | BAlfe < c(@)lIAllBmocsn, xe) and
(b) ISFllemocsn, xa) < (@I F |l .

The space BMO(S", X, ), defined in the obvious way, is the dual of H}r(S " Xg)-
Part (b) offers another characterization of the functions in BMOA(S"), which we
describe in Remark 2 following the proof of Theorem 3.

The proof of Theorem 1 is based on the atomic decomposition for H(S", X,).
To obtain such a decomposition we follow [GL] and [S, Chap. 2, Thm. 2]. We will
therefore need to know that H f(S ", X*) has equivalent characterizations in terms
of radial maximal functions, admissible maximal functions, and grand maximal
functions. If ¢ € §”, let B(¢, §) be the nonisotropic ball

B, 0)={n:11-(n2| <d}

DEerFINITION4. Let¢ € §”. Theclass F = F (¢, K) is the collection of all (scalar)
C® functions ¥ such that there is some § (depending on ) where

(1) the support of ¢ is contained in B(¢, §) and
(ii) ||D;x,lr|]oo <& Hlforall |J| < K and all n € S".

DEFINITION 5. Mz, A(Z) = SUpyc o 1| AGW) | x+.

THEOREM 4. If A € D’ then the following properties are equivalent:
(i) A e HL(S", X*);

(ii)) Mx, A € LP(do) for some K sufficiently large;

(iii) A* e L?(do).

The proof of Theorem 4 will be outlined in Section 2. The idea, of course, is to
adapt the proof of [S, Chap. 3, Thm. 1] to the setting here, where the distribu-
tions are vector-valued and there is no Fourier transform. The fact that the distri-
butions are vector-valued causes no real difficulty; duality arguments essentially
allow one to substitute the absolute value | - | with || - || x«. Finding a replacement



516 WiIiLLIAM S. COHN

for the Fourier transform is considerably more difficult, but fortunately this has
already been done in [GL], where the scalar version of the equivalence of (ii) and
(iii) in our Theorem 4 is established. We are able to simplify the proof given in
[GL], and we also give a proof that (ii) and (iii) are equivalent to (1).

As a corollary of Theorem 4, the methods of [GL] and [S] yield the desired
atomic decomposition of HY(S", X*) for 0 < p < 1 into (p, 0o) atoms, where
the (p, oo) atoms are X *-valued functions a: §” — X* satisfying the usual sup-
port and moment conditions as well as norm bounds. Following [GL], we establish
the next definition.

DEFINITION 6. An X*-valued function on S” is called a (p, co)-atom at £ € §”
if either (case 1) |a|x+ < 1 or (case 2):

(1) a is supported in B(Z, §);

(i1) f gna(mmy(n)do(n) = 0O for special monomials 7; of nonisotropic degree
/| < (1/2)[2n(1 — 1/p] (here the monomials 7, are those in the variables
Im(n, ¢)and (n, w;}, (wj, ), j =2, ..., n, wherethen vectors ¢, w, ..., w,
form an orthonormal basis for C");

(iii) |a(®)|x» < 8P forall £ € S".

Note that, in (ii), the integral is X*-valued.

THEOREM 5. IfO < p <land A € Hfr’(S", X*), then A has atomic decompo-
sition
A= Z)»jaj,
Jj
where a; is a (p, oo)-atom and Zijlp < 00.

REMARK 1. It is interesting to compare atoms in the tent space 7,/ with case-2
atoms in the space HY(S", X,). A function a is a T, -atom if there is some £ € S*
and some § > 0 such that:

(i) the support of a is containedin {w e B, : |1 — (w, )| <6 };
(i) [y la(w)|? dv(w)/(1 — |w]) < 8"/,

On the other hand, an atom a at ¢ € S” for H(S", X,) when regarded as a function
of w € B, has the following properties:

(i) the support of a is contained in the set {w : w =tn, n € S", 0 <t < 1,
11— (n, ) <é&}; '
(i) fp la@)|? dv(w)/(1 — |w]) < 8"/,
(iii) f sna(tn)my(n)do(n) = 0forall 0 < ¢ < 1 and all polynomials described as
in Definition 1.

Thus, 7,7 -atoms satisfy the same norm bounds as HZ(S", X,)-atoms but are
more restricted in their support. Case-2 HY(S", X,)-atoms can have larger sup-
port but must satisfy a very strong cancellation condition.
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2. Proofs of Theorems 1-4

Proof of Theorem 1

The first thing to do is to settle the case where p = ¢q. (This is also the main step in
proving Theorem A for the case where g # 2, since the atomic decomposition for
T} and interpolation can be used to prove Theorem A exactly as in [Co], where it
is done for the case where g = 2.) In this case Hfi(S”, Xy) = LI(S™) = T/ (Bn),
where the distributions are X,-valued functions that may be interpreted as func-
tions on B,. Suppose the distribution A is determined by a function u. For w =
r¢ € B, write u(w) = u(¢)(r). Using (3) and (2) it follows that

(1 —1zA = [w]) dv(w)

11— {z,w)["™*? 1—|w|’

where z € B,,. Thus, it is enough to show that the operator defined by

(I -z = |w])

1 — (z, w)|*+?

where du(w) = dv(w)/(1 — |w]), satisfies the norm bounds

(I = 1zD(IBA2)| + |[VBA(2)]) = C/B |u(w)]

Ku(z) =/ u(w) du(w), “4)

| Kull 2 < Clluls.

This estimate follows from a standard argument using Schur’s method in conjunc-
tion with the inequality

K(h)(z) < Ch(2),

where h(z) = (1 — |z])¢ for ¢ a small negative number. See [R, Thm. 7.1.4].
For the case 1 < p < oo we use a duality argument. What is needed is to show
that
IKullzy = Cliwll Lz sm-

Since (T))* = Tq’fi (with the pairing ( , ) given by equation (1)), and since K is
self-adjoint, duality shows that it is enough to prove that

”Ku”LZ(S") = C||u||qu

for all u € T,. Without loss of generality, we may assume that u is nonnegative.
It is easy to see that Ku satisfies a mean-value inequality

Ku(z) < C(1 — [z])~ @D Ku(w) dv(w),
0(2)

where Q(z) = {we B, : |1 — (z,w)| < (1/2)(1 — |z]) }. Therefore,

Ku(z)? <C Ku(w)4 ﬂ
0@) (1 — |w[)+!
Let z = ¢, and integrate both sides of the last inequality from 0O to 1 against the
measure dt/(1 — t). An application of Fubini’s theorem to the resulting integral
on the right gives the pointwise bound of g,[Ku](¢) < CA,[Ku](¢), where C is
independent of u or . Therefore,
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||Ku||L§(sn) = CllKul]qu =< C||u||qu
by Theorem A.

It remains to prove Theorem 1 for the case 0 < p < 1. We will use the atomic
decomposition described by Theorem 5. Let a be a case-2 X,-valued (p, 00)-
atom supported in the ball B(w, §). (There will be no loss of generality in as-
suming that a is an atom of this type, as the argument will show.) Let Ja(z) =
(1 — |z|]) DBa(z), where D denotes a first-order derivative. It will be enough to
establish the inequality || JaHqu < C, where C is independent of § or {. Without
loss of generality, we will assume that w = ¢; = (1,0, ..., 0).

Using the fact that |Ja(z)| < CKa|(z) with K as in (4), estimate first that

rlq
f AylJal? do < CS"(I“P/‘I)( f AylKall? da)
B(e1,38) "

plq
< CS"“"’/q)(f Aq[lal]qda)

< ¢§mI-playgr—ar/pyrla < C|

where we have used the ¢ = p result established previously. (Note that, if a were
a case-1 atom, then this estimate would suffice since we could take § = 2.)

To estimate fS”—B(el,38) A,4lJal? do, suppose that [1 — ¢1] > 38 and z € T'(2).
Write DBa(z) as the integral

! 1
DBa(z) =f0 /n a(z‘n)D(1 Py dm,(t) do(n).

If for each ¢t we expand D(1/(1 — (z, tn))"*1) in a nonisotropic Taylor series in 7
at 1, then the cancellation properties of a (see Remark 1) allow the estimate that,
for some k > n(1/p — 1), |Ja(z)| is less than a constant times

dv(w)
Il — (Z, w)|n+2+k

(1 —1zD8* [ law)|
By

l/q
<c<1—|z|)ak( law))? —2 )

1 — |w]
(1—0)7"1ds 1/q'
d
(L(el 5)/ |1 — (z, tn)|+2+0d’ o (1)
do(n) 1/¢'
<=C(- |Z|)5k+”/q—17/q(/ n /)
- Ble,sy (1 —z]) + |1 — NG
1

< C(1 — [z]ys**=/r

(1 = lz]) + [1 = g [nHest”
Using this last estimate, integrate over I'(¢) to bound A,[Ja](¢). Write
dv(z)
(1 — |z]yn+!

where r = |z|. Interchange the order to integrate first with respect to do, reducing
the power of (1 — r) by a factor of n. It follows that

=1 —-r"""4rdo,
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1 —1 1/q
B (1—-—ry'dr
n+k—n/p
AqlJal(¢) = €9 (fo (T—r)+1- §1|)<"+’<+”‘1)

< C5n+k—n/p|1 _ é.ll—n—k.

Therefore,
f AglJalP do < C§"PHip—n f 11— ™" *do < C,
S"—B(e1,35) S"—B(e1,35)
which was what we needed to show. O

In order to prove Theorem 2, we will need the following lemma.

LEMMA 1. Suppose that A is an X ,-valued distribution determined by the func-
tion u, where u(¢)(t) = (1 — t)g(t¢) with g holomorphic on B,. Then A €
HY(S™, Xg) if and only if

1 plq
f ( f (1—t>q—1|g(tg>14dmn<t)) do(¢) < oo.
sn 0

Proof. We first establish the necessity. Let b = {h : h € X, ||h]| = 1} and let
bs be the set of functions in b that are supported on the set [0, s]. By duality, if
teS"and 0 <r < 1then

|[A(P)| = quIA(Prg)(hN

> sup |A(Pr)(h)]
hebg

= sup |A(Prch)]
hebg

— sup / ,. /0 P,;m)h(t)g(m)dmn(t)do(n)l

hebg

= sup /s g@ro)h(t)dm,(t)
0

heb;

K 1/q
= (f lg@ro)|?(1 —t)‘f"dmn(t)) :
0

If we take the supremum over s and r and integrate over the sphere, the result fol-
lows. To establish the converse, fix ¢ € §” and 0 < r < 1. Use duality to find
h € b such that

| AP )| = A(Prp)(h).

It follows that, for s sufficiently close to 1,
[ACP)| < 2|A(Prg)(hs)l,

where A is the restriction of 7 to the interval [0, s]. Writing the expression in
absolute values on the right-hand side as an integral, interchanging the order of
integration, and applying Holder’s inequality, we have



520 WirrLiaM S. CoHN

1 1/q
|A(Pre)] 52(/0 Ig(trf)[q(l—t)q"ldmn(t)) .

It follows easily that
1 1/q
A+(€)$C(/ Ig(ts“)l"(l—t)q_ldmn(t)) - O
0

Proof of Theorem 2

Let u be of the form u(z) = (1 — |z|) f(z), where f is holomorphic. If ¢ € S and
0 <t < 1, then we have the mean-value inequality

dv(w)
q C q .

where Q(¢,¢) = {w e B, : |1 — {(w, &) < ¢}, see [G] and [ACo, Lemma 3].
Argue as in the proof of Theorem 1 to show that there is an absolute constant
(depending on ¢g) such that

8q4[ul(§) = CA4[u](0).
Thus, if F € qu then g,[Sf] < CA,[SF], and Lemma 1 therefore implies that
||SF||H;(sn,Xq) = C”F”Flj’- O

Proof of Theorem 3
Let A e BMO(S", X;). We must show BA € FZ. Letting
JA(z) = (1 — [z]) DBA(2),

where D denotes a first-order derivative of BA, this amounts to establishing the

norm bound
/Al < ClAllBmo.

Since 7,° is the dual of T ql,, we must show
dv(z)
1—|z|

Use the fact that A is given by a function on B,, (which we denote by A) to write
DBA(z) as an integral, and interchange the order of integration to arrive at the
equivalent statement

/ JAR)f (@)

n

< CliAllsmoll £l .
q

dv(w)
1—|w]|

’ =< CliAllsmoll fll 71,
q

fB Aw) Kf(w)

where
dv(z).

Kf(w) = (1 — [w]) /B F)D,

(1 — (z, wpht!

By Theorem A, || Kf |l;1, < Cll fll,. Since Kf (w) is of the form (1 — |w|) g(w),
q q

where g is the complex conjugate of a holomorphic function, it follows from

Lemma 1 and the argument given in the proof of Theorem 2 that
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K " <C .
I f”H}r(s Xg) = “f”:rql,

Therefore,
dv(w)
| awksw < CllA oo xp 1K Nicsex,
. 1 — |w] + q
= CliAllsmocs, x) I fll 7y,

as desired.

The second statement of Theorem 3 follows from a standard argument based on
duality and the fact that S* = B and B maps HJL(S " X, )into F . U

REMARK 2. It is well known that a holomorphic function f belongs to BMOA if
and only if (1 — |z|)|Rf(2) |> dv(z) is a Carleson measure. A corollary of Theorem
3 is that, if f is holomorphic, then f is in F* if and only if g € BMO(S", X,)
with g(¢)(#) = (1 — t) Rf(¢t¢). The necessity is essentially the second statement
of Theorem 3; the sufficiency follows from the first statement of Theorem 3 and
the identity

dv(w)
(1 _ (Z, w))n+1 .
One also needs the easily verified fact that if (1 — 7) Rf(2¢) € BMO(S", X,;) then
(1 —1) f(t¢) e BMO(S", X,). For g = 2 this means that a holomorphic function
S belongs to BMOA if and only if there is a constant C such that, for every ball

Q = B(n, §), there is a function & defined on [0, 1] such that (1 —t)hy(¢) gives
a function in X, with the property that

f@) = i (1 = [w)((r + 1) f(w) + Rf(w))

5 fQ (0 = ORFQ) — ho)lx, do

1 1/2
- 5—"/ (/ |RF(t2) — ho(®)]*(1 — 1) dmn) do < C.
B(n,6) 0

The argument of John and Nirenberg (see [S]) allows the exponent “1/2” to be
replaced by any positive power. Replacing “1/2” by “1” gives a condition that is
close to the Carleson measure condition.

We turn next to the proof of Theorem 4.

Let ¢ be a C*°-function of one complex variable A. We will need the follow-
ing substitute for convolution. Let f be a continuous function defined on S” with
values in X*, the dual of a Banach space X. Then, for ¢ € ", (f * ¥)(¢) is the
element of X* defined by

(f *¥)(&) = o Fm ¥ (¢, m)do(n).

Of course, this means that

(f *¥)(O(x) = o Fm @) ¥, ) do(n)
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for all x € X. More generally, with ¥ as before and with { € S, let ¢, be the
C%-function of n € §” given by ¥.(n) = ¥((¢, ). If A € D’ then A * ¥ is de-
fined to be the C*°-mapping from S” to X* given by A * ¥(¢) = A(Y,). If the
distribution A is determined by a function f as before, then the two definitions
agree.

The proof of [ACo, Lemma 1] shows that, if y; and v, are two functions of a
complex variable, then

(A x= ) x g = (A *Y2) x Y. (5)

Proof of Theorem 4

We first discuss the implication (iii) = (ii). Following [GL], we introduce an aux-
iliary kernel obtained by averaging the invariant Poisson kernel. Let 1 —r = ¢
and A € By, and let

2-nm"
(1 — X) + Ar]?n”

Then it is clear that, for A € D', A(P,;) = A * p,(¢). Choose a measure p on
the interval [%, %] such that,u([%, %]) =1 andftk du(t) =0fork=1,..., Ny,
where Ny is a large integer that will be specified later. Define the auxiliary kernel

50 = f pis 0) dia(s).

The kernel 7, is needed because it decays more rapidly as ¢ goes to O than the
Poisson kernel; see Lemma 2.

For{ € §" and 0 < r < 1, let 7,; be the function of 7 € §” given by 7,.(n) =
7,({¢, 1)), where t = 1 — r. If A is a distribution in D’, define the following
maximal functions associated with z;:

pi(A) =

MTAE) = sup |A(T)l;

O<r<l1
MIAEQ) = sup |A(z,)l;
rnel’ ()
1— (¢, M
s AQ) = sup IA(rm)|(1+'—15—”—>1) .
rneB, I—r

In the sequel we will drop the subscripts T and M if doing so causes no confusion.

It is clear that, if a distribution A satisfies (iii) in Theorem 4, it follows that
M*A € LP(do). We also have the well-known fact that, for M sufficiently large
(see [FSt], p. 1661]),

(M*™AYdo < C | (M*A)Pdo.

Sﬂ Sl'l

The implication (iii) = (ii) will therefore follow once we show there is a K
sufficiently large that the pointwise inequality

AW < CM™AL)
holds for all ¥ € (¢, K), where C is a constant independent of ¢ or ¢.
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For this, let ¥ € F (¢, K), and suppose that the support of ¢ is contained in
B(¢, 8) and that |[D*yr(n)| < 87" 1@ for all |«| < K. Because ¥ = lim,_,¢  *
7, * T, in the topology of C*°-functions on S”, it follows that

5

AWr) = AW x 15 x T5) — / diA(w * Ty % T,) dIf.
o dt

Equation (5) then implies that the X*-valued integral on the right-hand side equals

)
f AW * O, # 1) dI,
0

where Q,(A) = 2(d/dt)t,()). Writing the “convolutions” (¥ * Q,) * 1, and
(¥ * ts5) * 75 as integrals over S”, and interchanging the order of applying A
and integration over S, yields

8
A = fs AGesy) (¥ # 75) () dor(n) — fo f AV * Q) dotn) di,

where all the integrals are X*-valued.
Duality and linearity show that | A(y)|x+ is less than or equal to

)
SHIA(fan)Ix*I(lﬂ * T5) ()| do (1) +/0 SnIA(Tm)Ix*W * Q:(n)| do(n) dt,

which in turn is less than or equal to the sum of

. 11— (n, O\
M*AZ) Snll/f*fa(n)l 1+ —=7) do() (6)
and

M
=0l i"’ “') do(n) dt. )

)
M™AQ) /0 Nz Qt(n)l(l +

The proof will be complete provided it is shown that the two integrals in (6) and
(7) are bounded by absolute constants independent of . The first term is handled
easily by the decay properties of 7, described in the following lemma (see [GL]
for a proof).

LEMMA 2. Letl < Ny.If |1 — A| > 2t then

No+n—1 ¢No+n—2

%) = Cor e and 12 =€

|1 _ A|N0+2n—1 )

From Lemma 2 it follows that

3N0+n—-1
k < C (S_n n_ .
|¥ * T5()| < (XB(§,36)(77) + xsr—B,35(MN) T, g)INOJrzn_l)

Here, xr denotes the characteristic function of a subset E € S”. If
No+2n—1—M>n

then it is easy to see that the integral in (6) is bounded by an absolute constant.
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The analysis required to estimate the second term is more complicated, but the
basic idea is from [GL]. We present a simplified version of their argument, which
takes advantage of the work of [Fo] and homogeneous harmonic polynomials.

LEMMA 3. Letm be a monomialinty, ..., ¢, and Z‘l, ces g_',, of bidegree (p, q).
Suppose N > 0. If Ny is sufficiently large then there is a constant C = C(p, q, N)
such that | * Q)| < CtV forall ¢ € S™.

Proof. Without loss of generality, we may assume that v is a homogeneous har-
monic polynomial; see [R, Thm. 12.1.3, Prop. 12.2.2]. From [Fo] (see also [ACa,
p. 7)) it follows that

T *p(n) = f(p,q,)mw(n),

where there are functions f and g (depending on p and ¢q), analytic at 0, such that

f(p,q,t) = f@t) +t"g@)log(s).

Replace ¢ by ts, expand g in a Taylor series in powers of ts, differentiate with re-
spect to ¢, and average with respect to u as in the definition of t,. This yields the
result. U

LEMMA 4. Let N > 0.If Ny is sufficiently large then there is an absolute constant
C such that, for 0 <t < 8,
tN—n—l

_ 8
i—moar ©

l¥ % Q:()| < Cxpe, 36 M8 VN "1 + Cxpee,38: (M)
where E€ denotes the complement of a set E C S".

Assuming Lemma 4, we can finish the proof of (ii1) = (ii) in Theorem 4 as
follows. If N is chosen sufficiently larger than M then it follows from (8) that

1 — (n, M N—M-n
S |¢*Qt(n)|(1+'§—”“') do () sCz—‘(g) .

The result follows by integrating from 0 to § with respect to ¢.

Proof of Lemma 4. We establish the estimate by considering two cases.

Case 1. If n € " — B(Z, 38) then, by Lemma 2, since v is supported on B(¢, §)
and is bounded by " it follows that

tN0+n—2

(n, {)|Not2n—1"

If Ny is sufficiently large then this gives the desired estimate for n € $” — B(Z, 36).

9% Q)] = 77—

Case 2. This is more difficult. Let n € B(Z, 38), let J be a positive integer, and
let T(u) = Tnf () denote the nonisotropic Taylor expansion of ¥r(u) at  of degree
J. Then ¢ % Q;(n) = I+ 11, where

I= Sn(w(u) — T(1)) xB(,35 () Q: ({0, u)) do(u)
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and

1= [ 7 tat629(0) 006, 1) o),
Write I1 = III — IV, where

I = / T()Q4 (n, u)) dos ()

and
v = f T) Q,((n, ) do(u).
S"—B(¢,35)
We proceed to bound the terms I, IV, and III.
First we estimate 1. For this, observe that (see [GL, Lemma 3.16])
[y () — Tw)| < C8" 7|1 — (n, u)’*

and, for any positive integer L < Ny,
tL+n—2

1= G, )] + FnT

1Q:((n, u))| = C

Thus
I< C6—n—1—JtL+n—-2/ ll _ (n, u>|J+l—(L+2n—1) dO’(u).
B(£,38)
fJ+1-CL+2n—-1) > —n (ie,if L < J 4+ 2) then this last expression is
bounded by
Ct—n—l(t/a)L—i-Zn—].

We may therefore choose Ny and J such that L may be taken to be sufficiently
large that the desired estimate holds. The value for J will now be regarded as
fixed, but we will need to allow Ny to be larger in the next two estimates.

For IV, observe that T is a sum of terms that are bounded by § %1 — (), u)|%,
where k ranges over integers and half-integers between zero and J. Since

10: (n, uD)| < CENt™ 2/ |1 — (, u)|Not2r=1y,

it follows that IV is bounded by a finite sum of terms of the form

§—n—k¢Notn—2
do(u).
/S”—B(n,a) |1 — (n, u)|N0+2n—1_k ()

If Ng+2n —1—J > n then this last expression is less than Ct ="~ (¢/§)No+2n—1,
and the desired estimate holds for Ny sufficiently large.

It remains to handle III.. If ¢ € F (¢, K) with K is sufficiently large, we may
estimate that the coefficients of the polynomials in the Taylor series T/(u) are
bounded by C8§~"~7. The desired estimate for III follows from Lemma 3 provided
Ny is sufficiently larger than J. U

We now finish the proof of Theorem 4.

We show that (ii) = (iii). Let ¢ € S” and suppose rn € I'(¢). By partition-
ing unity as in [ACo, proof of Thm. 2], we may write P.,(u) = Zf:o 2 %y (u)
where each ¥, € F (¢, K). It follows that A*(Z) < CMxA(?).
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We finally show that (i) = (iii). The proof is a modification of the argument in
[S, Chap. 3, 1.5-1.6]. Suppose that A satisfies (i). Lett = 1 — r and, for L large
and depending on A, define the following maximal functions:

N
MEA@C) = sup (m) |A(P)l;

rnel’(¢)

L 1— -M
MEAQ) = sup (ﬁ) |A<Pm)|(1 + '—$-7i”) :

rneB,
MEAE) = sup| AW)I;

the supremum is over all € F (¢, K), where the § associated with v is larger than
e. If L is chosen sufficiently large, then each of the first two maximal functions
are in L? and we have

s"(M:*A)” do <C SH(M:A)I’ do

for a constant independent of &, L, or A.
With these definitions, notice that the argument proving Lemma 4 also gives the
pointwise inequality

MEA(Z) < CMTAQ),

where C is a constant independent of €. The crucial point is that the argument gives
an inequality of the form (8), where the power of ¢ is decreased by a factor of L,
but an extra factor of & provides sufficient compensation, since the final step is
to integrate from zero to § where § > &.

With this established, argue as in [S, Chap. 3, 1.5] to show that

(MiAYdo <C f AT ()P do,

Fy

where C is an absolute constant and
F,={¢: MZAQ) < AMIA®) ).

Because At is defined in terms of the Poisson kernel, this last step requires a
partition-of-unity argument (like the one given in the (i1) = (iii) proof) in order
to take advantage of the inequality defining F,. If A is sufficiently large (see [S,
Chap. 3, 1.5]), then

MiAPdo <2 | MIAPdo.
sn Fy
Since C is a constant independent of &, we may let ¢ go to zero and so complete
the proof of Theorem 4. (|

We conclude by examining the relationship between the spaces H{(S", X,) and
TF. We show first that 7, is not continuously contained in H(S", X,) for 0 <
p < 1. It suffices to consider functions of the form F({)(t) = x0(¢)f(2),
where QO = B(n, §) and f is some function in X, of norm 1 that is supported
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on the interval [1 — §, 1]. One easﬂy checks that || F IlTp = Cl|xollz» and that
151 g2 (57, xay = I Xoll g2, Where H? is the usual (scalar-valued) Hardy space on

St If Tp C HY(S™, q) then we would have the inequality

||XQ||H5: <Clixolirr

for a constant C independent of Q, which is false; see [S, Chap. 3, 5.6].

To show that the reverse containment is false we look at functions of the form
F()@) = 3‘"/Pb(§)XQ(§)f(t), where f € X, is a nonnegative function with
norm 1 and b is a unimodular function chosen so that enough moments of xob
vanish to make F an X,-valued (p, oo)-atom. Let G(£)(t) = |6_"/PXQ(§)f(t)|.
Notice that a function and its absolute value have the same norm in 7,7. There-
fore, if the containment H f(S ", Xg) C qu were valid then we would have the
inequality

/ A,G) do < C,

where C is independent of § or f. Let n = ¢; = (1,0,...,0) and let f(1) =
[In(4)]~Y4x,(t), where I is the interval v/§ < 1 — ¢t < 4+/5. Estimate that, for
11— &i| > 24,

/p+n/ : dt v
—n/p+n/fq q_ 0@
A4lG1(©) = C( )( /H_mlf(t)l s t),,ﬂ) :

If /8 < |1 — &1] < 2+/8 then it follows from the definition of f that

A [G1(¢) > Cs—/pin/a=n/2g,
Thus,
[ Aq[G]p do > cs—ntnpla—np/2q+n/2

Since this last expression is arbitrarily large for § small, it follows that HY(S", X))
is not contained in 7).
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