Existence of Multiple Refinable Distributions

DING-XUAN ZHOU

1. Introduction and Main Results

Wavelets and subdivision schemes are based on refinement equations of the form

o= al@¢@2-—a), (1.1)
acZs
where {a(a)}yczs 1S a sequence of complex numbers. If a is finitely supported
and ),z a(e) = 2°, then the refinement equation (1.1) has a unique solution
¢ of compactly supported distribution on R*® subject to the normalized condition
#(0) = 1. Here ¢ is the Fourier transform of ¢, which is defined for an integrable
function f on R® by

f& =1 fxe*dx, &eR,

RS
and has a natural extension to compactly supported distributions. This fact of
existence was proved by Cavaretta, Dahmen, and Micchelli in [1]; see also [4]
and [5].

In this paper we investigate the existence of multiple refinable distributions in
multiwavelets. The theory of multiwavelets began with the work of Goodman,
Lee, and Tang [7; 8] and the orthogonal multiwavelet basis construction of Dono-
van, Geronimo, Hardin, Kessler, and Massopust [6; 9]. There have been many
discussions concerning different aspects (see e.g. [2; 11; 14; 15]). All these are
based on multiple refinable distributions or functions. Given a positive integer r,
called the multiplicity, and a sequence a := {a(a)}qeczs of r X r complex matri-
ces, a vector ¢ := (¢, ..., ¢,)T of distributions on R is called a multiple refin-
able distribution associated with the refinement mask a if it satisfies the following
matrix refinement equation

¢=) a@¢2- —a). (1.2)
aeZs

Note that the scalar refinement equation (1.1) is the special form of (1.2) with
r = 1. We denote ¢ = (¢, ..., ¢,)T and always set
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M:=27Y"a(a). (1.3)

a€Z’

Throughout the paper we assume that the multiplicity r = 2.

The first purpose of this paper is to consider the existence of compactly sup-
ported multiple refinable distribution solutions to (1.2) when the refinement mask
a is finitely supported—that is, a(a) = O except for finitely many « € Z°.

THEOREM 1. Let {a(w)}yeczs be a finitely supported sequence of 2 x 2 complex
matrices. Assume that 2" is not an eigenvalue of M for any n € N. Then (1.2) has
a solution ¢ = (P1, ¢2)T, a vector of compactly supported distributions on R?,
subject to (]AS(O) # 0 if and only if the matrix M has an eigenvalue 1. In this case,
qAS(O) is an eigenvector of M associated with the eigenvalue 1.

In the univariate case s = 1, when the spectral radius of M is less than 2, the
existence for arbitrary multiplicity was proved by Heil and Colella [10], Cohen,
Daubechies, and Plonka [2], and Hervé [12]; see also the work of Long, Chen, and
Yuan [17]. The proof for this special case is based on an “infinite matrix product”
approach introduced in [10; 18; 12] as follows. For a finitely supported refine-
ment mask a, define a sequence {[], (&)} of 2 x 2 matrices of functions

neNU{0}
on C* by
e &
1:[(5) = Dl(s)a(z,,),
where [],(€) = I is the 2 x 2 identity matrix and

~ion s —itw . | a11(€) 512(5)] s
a) =2 D;Z,.“(“)e "[a‘m(e) an@ | $€C

is the symbol of the mask a. Here & - ¢ := Zj.=1 Eiajforé :=(&,...,&)eC’
and o := (ay, ..., o) € Z*. Note that a(0) = M.

Suppose that M has an eigenvector v # 0 associated with eigenvalue 1. The ap-
proach in [10; 18; 12; 2] is to define a compactly supported distribution solution
¢ to (1.2) by its Fourier transform as

6@ = lim [[@&w, §eR. (1.4)

Two questions arise with respect to this approach. One question is whether all the
solutions to (1.2) can be obtained via (1.4). In fact, Heil and Colella conjecture
in [10] that some matrix refinement equations have compactly supported distri-
bution solutions, not obtainable via the infinite matrix product (1.4). The second
purpose of this paper is to confirm this conjecture by presenting some examples
in Section 3. The other question is when the limit in (1.4) exists; the final purpose
of this paper is to answer this question.

Let us give a canonical form of the refinement mask for convenience. Let o €
Z*, and let P be an invertible 2 x 2 complex matrix. Then ¢ is a compactly
supported multiple refinable distribution associated with the mask a subject to
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$(0) = vifand only if ¥ := P¢(- — «p) is a compactly supported multiple refin-
able distribution associated with the new mask Pa(- — ag) P! subject to lﬁ 0) =
Pv. Moreover, the limit in (1.4) exists for this new mask and the new eigenvector
Py s 0 if and only if it exists for the mask a and the eigenvector v. Thus, to in-
vestigate the existence of (1.2) and the convergence of (1.4), we may replace a by
Pa(- — ap) P! for suitable ag and P, and assume that the mask a is supported in
Z, and that the matrix M given by (1.3) takes the Jordan form

_|1 u
M—-[O A]. (L5)

Here 1 = A = 1 when the eigenvalue 1 is degenerate; otherwise, p = 0.
Under this canonical form, we set v = e; := (1, 0)7. Our main result on con-
vergence can be stated as follows.

THEOREM 2. Suppose that a is finitely supported in Z°_, and that M = [ (1) ':]

with u = 0 when A £ 1. If the function a;1(€) has a zero of exact order d € N at
the origin, then the limit lim,_,, [ [,,(€)e1 exists for every & € R® if and only if
|A] < 2¢. In this case, the limit is the Fourier transform of a compactly supported
distribution solution ¢ of (1.2) with ¢3(O) = e1.

REMARK. If a51(&£) = O then it can be directly seen that
o0 g T N
n11>11.}o H(§)€1 = (Hau(ﬁ), 0) = (¢1(§),0)T for & e RS,
R j=

where ¢ is a compactly supported distribution on R* with $1(0) = 1.

THEOREM 3. Given the conditions of Theorem 2, if |A| > 2¢ then, for any
nonzero vector u € C2, lim,_, o [1,,(€)u does not converge.

Let us point out that the technique for proving Theorems 2 and 3 does not general-
ize beyond the 2 x 2 case. Therefore, in this paper we always assume r = 2, though
the technique for the proof of Theorem 1 can be extended to arbitrary multiplicity.

As a corollary of Theorem 2, it can be seen that the assumptions of Theorem 1
cannot be dropped. Let us consider the simple case A = 2.

THEOREM 4. Suppose that a is finitely supported in Z%_ and that M = [ (1) g] .

Then (1.2) has a solution ¢ = (¢1, ¢2)T, a vector of compactly supported distri-
butions on R*, subject to ¢p(0) # O if and only if the function a» (&) has a zero of
order at least 2 at the origin.

2. Proofs of the Main Results

In this section we prove the main results.

For§ = (§1,...,§) € C%, set|§| = />0 ,1§1%, Im& = (Im&y, ..., Im&y),
Reé = (Reéy,...,Reé&s),and1—-& = (1-§4, ..., 1—E&,). For two multi-indices
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a=(ay,...,o;)and B=(P1,...,Bs) €Z’, a > B means o; > B for 1 < j <s.

In this case,
o > O . s
= if o, p e Y/
(ﬁ> ,E(ﬁj ) pety
Denote £ = [];_, &fj.

We need the following lemma, which is proved by standard techniques; for
completeness, a detailed proof is provided here.

LEMMA. Suppose that a is finitely supported and that M has spectral radius |A|,
where A € C is an eigenvalue. Then, for any ¢ > 0 and an arbitrary norm || - || of
C?2, there exist positive constants A1, By, Cy such that, for anyn € N and & € C?,

[[®

Moreover, if all the eigenvalues with modulus equal to |\| are nondegenerate and
M = 0, then the term |A| 4 ¢ in (2.1) can be replaced by |A|.

< Ci(IM + &)™ (1 + g PreMmel, 2.1)

Proof. Let || - ||| be a norm of C? such that, as an operator on (C?, ||| - |||), the ma-
trix M has norm either less than |A| + & or equal to |A| when the eigenvalues with
modulus |A| are nondegenerate and M # 0.

Observe that, for x € R,

le¥ — 1] < e™(1 — e < e min{|x|, 2}

and _
le™* — 1} < min{|x|, 2}.

Hence, fora € Z°* and § € C*,
|e—i§-a . 1| — Ielmg-oee—iRei;-a _ e—iRefg'-a + e—iReE-cx . 1'
< e"™& N min{|Im& - «|, 2} + min{|Re £ - ], 2}
< 2e/™5 min{|€ - |, 2}.

Suppose that a(e) = 0 for o € Z* with |@| > L. Then, for & € C”,

laE) —aolil = f|27° D al)(e ™ — 1)|
le|<L
< 3 27 la(@lI2e"™ ¢ min(lé - o, 2)
lel<L
< Y 2" lla@llle™™ min{L|£], 2)
le]<L

< Coe**!™ minf||, 1),
where Co = 2'7°(L +2) ;<. lla(@)|ll and Ag = L. Hence
@@l < M + Coe™ &) min{|£], 1}.
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Now we estimate (2.1). Note that 1 + |x| < el*! for x e R.
Letn € Nand & € C*. We first consider the case that M # 0, that s, |||M]|| > O.

If |£] < 2, then
s &
2]

Ief|<]]

< H{nlMul + Coeoltntr2| =

j=1

&
2J

|

< T Tt e olimé/ 21y T (e Cole/2 i/Mily
[ [

< eZCO/IIIMHI(mM”DnerIIm51 i

|

If 2% < |&]| < 2**! for some k € N, then

{6 IR EE)

n

I1

j=k+1

<11
1

n
(M| + Coetoltmer2y T {“IMIII + Coetlimér2i| 2 }
21
j=k+1
C k n 3
< (1M Aollm§i(1 + 0 ) 1—[ {eColé/2I/MMIlly
iaz) LA
< e2C0/II!MIII("|M|”)nIg}:|10gz(1+C0/lllMlll)erlImEI.
Combining the foregoing two cases with the norm of M on (C?, |||-|||), we know
that for some positive constants A;, B;, C;, (2.1) holds when M s 0, since the

two norms || - || and ||| - ||| of C? are equivalent.
When M = 0, the same estimates for ||| [T, (§)]|| hold if we replace ||| M]|| by ¢.
Therefore, (2.1) is also valid in this case. This completes the proof of the Lemma.
O
Now we can prove our first main result.

PrROOF OF THEOREM 1. (Necessity) Suppose that ¢ = (¢1, ¢2)7 is a compactly

supported distribution solution to (1.2) with q3(0) # (. Then (1.2) has an equivalent
form:

$E) =aE/2$E/2), &eC’. 2.2)
In particular, ¢(0) M qb (0). Hence 1 1s an eigenvalue of M with an eigenvector
(0).

(Sufficiency) As observed in Section 1, we may assume that a is supported in
Z% and M = [(1) ;‘], where p = 0 if A % 1. Recall that, for a finitely supported

sequence b := {b(a)}yezs of complex numbers, b is defined by

bE):=2"° Zb(a)e—“f'“, £ e C*.

o€z
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Let h be a sequence of complex numbers, finitely supported in Z*_ with h(0) =
0, that will be determined later for different purposes. Denote e = (0, 1)7.
Define a sequence of functions {®,},en on C* by

&6 =]]® [ ,;(5}2,,)], §eC. (2.3)
Then, forn € N, A
®,0) = ey,
and for n > 2, . A
®,(¢) =aE/2)®,1(6/2), &eC. (2.4)

Moreover, for2 <n e Nand & € C?,

2 ey an(§/2") + an(€/2"hE/2")
a®=]]® [521(5/2") + zizz@/z")h(s/z”)]

= [a11(€/2™) + a12(E/ 2"V h(E/2M) ] Dp1(E)
+ [G21(€/2") + dna(E/2™VR(E/2™) — h(E/2" )
X (@n(€/2") + an(E/2hE/ 2N | [ ez
n—1

= f&/2") Bur(®) + 2E/2M [ [@)e-
n—1

Then, by induction, for 2 < n € N and £ € C* we have
b, ) = Z[ I1 f(%)]g(f;) [[©ex+ [Hf(%)]él(fe). 2.5)
j=2 “k=j+1 j-1 k=2

The expression (2.5) is valid for any trigonometric polynomial % with 2(0) =
0. We apply (2.5) with suitable sequences 4 to the estimate (2.1). Since f(0) =1,
there are positive constants A, B,, C, such that, forn € Nand & € C?,

v 2 &
()
If |A| < 2, we choose & = 0. Then
g) =an), §eC’. (2.7)

If 2™ < |A| < 2™*! for some m € N then, by the assumption, A # 2™, Observe
that

< Ca(1 + |£])BreA2imEl, (2.6)

§®) = axn(§) + an®hE) — h2&)an ) — kEhQE)anE).
We want to choose 4 such that g has a zero of order at least m + 1 at the origin;
that is, for o € Z%, with ||y := loyq| + -+ + |ag| < m,
ap-teetag _
aem - ag t O =0

D%g(0) :=
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Toward this end, define a sequence {4 }j¢|; <m by fo := 0 and (inductively) for o >
0, ¢ #0, and |a|; < m,

1
ty == m{D“&m(O) + Z (g)tﬂ[Da—‘Bazz(O)

0<p=<a,p#a
—2lBipe-Bg .(0) — Z (tx —p )ZlyhtyD“_‘B_y&lz(O)]}.
O<y<a-B Y

Then we choose the sequence £ such that
hE) = ).  H@)l—e™)"
0<e,0<|e)|1<m
satisfies _
D°h(0) =t, for a € Z%, |a|; < m.

This is fulfilled by setting inductively for « > 0, o # 0, and ||y < m,

1 .
H(x) = W[ta - Da( >, HPA- e—'g)ﬁ) (0)}-

J* 0<B,0<|Bl1<lel1

Under this choice of /1, we know that g has a zero of order at least m + 1 at the
origin. Hence, for some finitely supported sequence G on Z°,,

gE)= Y G@(l—e®)" (2.8)
leli=m+1

Combining (2.7) and (2.8), one can see from the proof of the Lemma that, for
£eC,
12(E)] < Calg|™H e M, 2.9)

where A3 and Cj3 are positive constants and m = 0 if |A] < 2.
Using (2.5), (2.6), (2.9), and the Lemma, for some ¢ with max{0, 1 — |A|} <
e < 2™+l _|A| we conclude that, for2 < n € N and £ € C¥,

@, (&) < ZC2(1 + |£/20]) Bz A2 ImE/2 | 0y 10 |t g AslIm /2|
j=2

x Cr(IAl + )77 (1 + (£ PremH 4 Co(1 + |£/2]) e A2/
x Ci(IM + &) (1 + |E])PreA™El(1 + |h(E/2)])

< C1C,C5(1 + |§-I)Bl+Bz+m+le(A1+A2+A3)IIm§I2m+1/(2m+1 — A — &)

+ CiCo(|A] + 8)(1 -+ Z |h(a)|)(1 + |g):')31+Bze(A1+A2+m)|Im§|.

o€l
Hence )
|@,(8)] < Ca(l + [E])PeetelmEl (2.10)

where A4, B4, C4 are positive constants independent of # and &.

The next step is to show the uniform convergence of the sequence on bounded
sets. Let K be a bounded subset of C*. Then (2.10) and f (0) = 1 imply that there
is a positive constant Cg such that, forn e Nand £ € K,
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|®,(E)] + |E ™ FleAmEl L om) Fg /2"y — 1| < Ck.
Thus, for2 <n e N,

|y (€) — Dp1(8)]
< 'f(zi) —1||1$n1(®)] + |g(§—) [[®e:
n—1

< 27"Cy + 27" D Cr (A + )" (1 + |E])BreAilimE

_ A+ €\
< const{Z "4 ( Sl .

Therefore, the sequence {&)n () }nen converges uniformly on K. This implies that
the function lim,,_, oo ®,(£) is analytic on C*.

By the Paley—Wiener theorem, we conclude from the estimate (2.10) that there
is a compactly supported distribution vector ¢ = (¢1, ¢2)7 on R* such that

$@) = lim ,(¢), &eC.

By (2.4), $(0) = e; and ¢ satisfies (2.2), and so (1.2) holds for ¢.
The proof of Theorem 1 is now complete. g

From the proof of Theorem 1, it can be easily seen that if D%a,1(0) = 0 for any
a > 0 with |¢|; < m, thent, = 0 and hence H(¢) = 0 for any o > 0 with ||, <
m. This fact gives a simple proof of Theorem 2.

PrROOF OF THEOREM 2. We follow the notation and discussion in the proof of
Theorem 1.

(Sufficiency) Suppose that the function a,;(£) has a zero of exact orderd € N at
the origin, and that || < 2¢. Theneither |A] < 20r2™ < |A] < 2"t withm < d
for some m € N, which implies that D*a5,(0) = 0 for any o € Z°_ with |o|; < m.
As observed previously, A = 0. Hence, forn € Nand § € C?, o, &) =11,®er.
The proof of Theorem 1 implies that lim,_. [ [,,(§)e1 converges for every £ € R*
and thatlim,_, o [, (§)e1 = gﬁ(s ) for a compactly supported distribution solution
¢ of (1.2) with cﬁ(O) = e;. This proves the sufficiency.

(Necessity) Suppose that lim,_,« [ ], (§)e; converges for every & € R* and
that |A| > 2¢ for some d € N.

Consider a new refinement mask c given by c(«) = a(x)/A for a € Z°. By the
proof of the sufficiency, there exists a compactly supported distribution vector ¥
on R* such that 1@(0) = ey and

U@ = lim 2" [[@)e2. £ eR".

If a1(§) has a zero of exact order d at the origin, then there exists a nonzero
homogeneous polynomial p of exact degree d such that

|d@21(8) — p&) = 01", |l — 0.



Existence of Multiple Refinable Distributions 325

By the definition of [[,,, for £ € R* we have
[ [®er = an@/2) [ [©er +@n/2) [ [Een
R n—1 n—1

This implies that, for any fixed § € R?,

pEY(E) = lim {2"dp(—§;)kl—" ]’[(s)ez}
n—1

n—>00 2
= lim {an&“ ('zgn'))‘l—" H(S)ez}
— i 2d ")\' _ £ o
= nL“o‘o[(‘f) [I;[@)el - au(g;) H(&)el]} =0.

However, p(&g) # 0 for some &y € R®. Hence
p(Eo/2M) T (§0/2") = 27" p(£0) ¥ (€0/2") # O

for sufficiently large n € N, which is a contradiction. Thus, we must have || <
24, thereby completing the proof of Theorem 2. |

PrOOF OF THEOREM 3. We use the notation in the proof of Theorems 1 and 2.
Let u = (u1, u2)T be a nonzero vector in C2. Suppose that d,;(£) has a zero of
exact order d € N at the origin, and that [A| > 2¢ > 1.

If up = 0, then Theorem 2 implies that lim,_, o [ [, (§)u does not converge. If
uy # 0, then we first need to estimate |[ ], (§)el.

By the condition on a1, we know that (2.9) holds for g = as; andm =d — 1.
As in the proof of Theorem 1, this in connection with (2.5) and (2.6) for h = 0
and the Lemma implies that, for2 < n € Nand & € C*,

n
[[®e] =D Ca(1 + 15727 Pret sl
n Jj=2

x Calg/27|%eMImE IO A= (1 + [g ) Preims]

+ Co(1 + [5/2) e ™V ICy A (1 + g ]) Pttt
C1C>C5 1A\
< CiGIAMH =
_{|k|—2d+ 18] l}(zd
x (1 + 'gI)BI+B2+de(A1+A2+A3)IImE]‘

Thus, for & € C?,

A"

[T

up A" H(f)ez + u A" H(§)€1

— | [F(€)]  (n — 00).

Therefore, for £ € R with ¥(€) # 0, {]],()u} .y is unbounded. Hence
lim,, oo [ [,,(§)u does not converge.
The proof of Theorem 3 is complete. O
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ProoFr OF THEOREM 4. The sufficiency is an easy consequence of Theorem 2
with A = 2.

Let us prove the necessity. Suppose that (1.2) has a solution ¢ = (¢, $2)7, a
vector of compactly supported distributions on R* with $(0) # 0. Then, by (1.2),

28) = aE)PE), £eR’.

Let & = 0. It follows that ¢(0) = ce; for some ¢ # 0. Taking derivatives at the
origin on both sides, for 1 < j < s we obtain

9 3G - _ 3¢
2-7(0) = — (0)$(0) + d(0)—= (0).
8§j() Béj()¢()+a( )agj()

This implies thatfor 1 < j <,

A d0a
L 019 9211 ()
h(Jﬁ@={%,]

Hence 87
azi
— 0 =0 Vj=1,...,s.
9§;
Thus, a,1(£) has a zero of order at least 2 at the origin. This completes the proof
of Theorem 4. O

3. Examples and Proof of a Conjecture

In this section we apply our theorems to some examples and prove a conjecture
raised in [10].

ExaMpPLE 1. Lets = 1. Let the refinement mask a be supported on [0, 3] and be

given by
w=[2 V] =[5 5]
4

4 2
a(2)=[_& g], a(3)=[& 8]
4 2 4

We choose an eigenvector v = (v/2, —2)7 of the matrix M = [_;3/5_ "i‘lﬁ] with

eigenvalue 1, and apply Theorems 2 and 3 to the investigation of the convergence

of (1.4). Toward this end, set P = [“_/g “?] and define a new mask b by b(a) =

P~'a(a) P for o € Z. Then b(0) = [(‘) _05].

We apply our theorems to b. Observe that A = —5 and by, (£) = el P~ la(&) Pe;
has a zero of exact order d = 1 at the origin. By Theorem 1, the matrix refinement
equation (1.2) with the mask a does have a compactly supported distribution solu-
tion ¢ with J)(O) = v. In fact, it was shown in [10] that ¢ = (/2 X[0,1)> — X[o,g))T.
However, by Theorem 2, the limit in (1.4) does not exist. This proves a conjec-
ture of Heil and Colella in [10]. Moreover, it is conjectured in [10] that, for any
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nonzero vector u € C?, the sequence {[],, (§)u}
3 tells us that this conjecture is also true.
The next refinement mask was given in [6]; see also [2].

does not converge. Theorem
neN

ExamMpLE2. Lets = landt € R\ {—2}. Let the refinement mask a be supported
on [0, 3] and be given by

B _ 12413 1 - 12413 0
_ 2(+2) _ 20+2)
a(0) = _3¢=D@+D(E2=3t=1) 32411 |’ a(l) = _3@=D e+ (2 —1+3) 1 ’
B 4(1+2)2 2(t+2) B 4(t+2)2
i 0 0 i 0 0
a(2) = | _ 3¢=De+D(2—t+3)  31241-1 ], a(3) =| _3¢=De+D(?=3t-1) 0]-
B 4(t+2)? 2(t42) L 4(¢42)?
Then t2-4¢-3 1
_ T 2042 2
M= [_3(;2—1)(:—1)2 14 32411 }
2(t+2)2 2 T 20+2)

This matrix has two eigenvalues, 1 and A := ¢, with corresponding eigenvectors
vi=(, ¢ —1D%@¢+2)T and (1,3@¢2 = 1)/(t +2))T, respectively. Theorem 1
tells us that forevery t € R\ {—2}\{2” : n € N}, there always exists a compactly
supported distribution solution ¢ with $(0) # 0.

Set
1 1
P = =D?  3¢%2-1 |*
42 12

Then P—MP = [ ! ‘:] Let b(a) = P~la(a) P for a € Z. Note that

(=323 + 612 + 12t + 3)e™ 35 4 (313 — 42 — 10t — T)e~%
+ (=13 =612 —11)ei 4 (13 + 412 — 2t 4+ 15)
16( + 2)2 ‘

We see that by; has a zero of exact order d at the origin, where d = 1 for |t] > 2
while d = 2 for t = 2. Thus the discussion about the canonical form and Theorem
2 tell us that lim,_, o [ [,,(§)v converges if and only if —2 < ¢ < 2.

Let us mention that for r € R\ {—2, 1} \ {2" : n € N}, the integer translates of
¢ are linearly independent. This can be proved using methods similar to those in
[13; 16; 19], for which we omit the details here. This fact is interesting, since Dzh-
men and Micchelli {3] show that if the integer translates of an integrable multiple
refinable function are stable, then M has an eigenvalue 1 and all its other eigenval-
ues are less than 1 in modulus. Therefore, we know that forz € R\ {—2, 1}\ {2" :
n € N} with |¢] > 1, ¢ is not integrable. The case t = 1 corresponds to ¢ =
(X10,1), 0)7.

Our final refinement mask was given by Jia, Riemenschneider, and Zhou in [15].

b(§) =

ExampLE 3. Lets = 1. Let the refinement mask a be supported on [0, 2] and be
given by

i1 1 0 1 _1
a(0)=[73 é] a(1)=[0 y], a(2)=[_2ﬁ ﬁz],

where 8, y € R are two parameters.
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i y ] has two eigenvalues, 1 and 8 + y/2, with

corresponding eigenvectors e¢; and e;, respectively. Theorem 1 tells us that when
B+ y/2 &{2" : n € N}, there always exists a compactly supported distribution
solution ¢ of (1.2) with this mask satisfying q$(0) = ey.

Note that d1(€) = B(1 — e~*%%). Hence a,; has a zero of exact order 1 at the
origin if 8 # 0, while a;; = 0if § = 0. When 8 # 0, Theorem 2 tells that
lim,_, [, (§)e1 converges for every & € R if and only if |8 + y/2| < 2. When
B =0, lim,_, [],(&)e; always converges for every & € R; in fact,

00 —iE/2/\2 T
lim [[®e = (1‘[{(1 +e4 ) },0) for & € R,

j=1

It is easily seen that M = [(1) B

and ¢ = (¢1, 0)7 with ¢, the hat function supported on [0, 2].

Let B # 0 and B + y/2 = 2. Then Theorem 4 tells that (1.2) with this mask
does not have a compactly supported distribution solution ¢ with ¢(0) # 0.

The interest of this example arises from the case where —+/2/2 < 8 < —%

and y = /2 — 482; see [15]. In this case, with the refinement mask supported on
[0, 2], ¢ is a solution of (1.2) and is a continuous real-valued orthogonal multiple
refinable function supported on [0, 2]. Also, ¢ is symmetric about 1 while ¢, is
antisymmetric about 1.

Note added in the revised version. After submitting this paper, I received a preprint
of Q. Jiang and Z. Shen entitled “On the existence and weak stability of matrix
refinable functions”, in which Theorem 1 is proved for arbitrary multiplicity un-
der the same assumption that 2" is not an eigenvalue of M for any n € N. Their
technique for the proof of this result is the same as that in the proof of Theorem 1.
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