The Minimal Norm Property for
Quadratic Differentials in the Disk

NIKOLA LAKIC

1. Introduction

Let A be the unit disk. We let M (A) be the open unit ball of L>°(A). For any p
in M (A), there exists a solution f: A — A of the Beltrami equation

fz=ufe 1)

unique up to a postcomposition by a Mdbius transformation. We call f a quasi-
conformal homeomorphism of a disk with the Beltrami coefficient u, and we de-
note by f* the solution f of (1) normalized by f(i) =i, f(1) =1, and f(—1) =
—1. The solution f can be extended to a homeomorphism of the closure of A,
and the restriction . of that extension to the boundary of A is called a guasi-
symmetric homeomorphism of a circle. The dilatation K (k) of a quasisymmetric
homeomorphism # is the infimum of all maximal dilatations of quasiconformal
extensions of 4 to A. The boundary dilatation H (k) of a quasisymmetric homeo-
morphism 7 is obtained by looking at the infimum of all maximal dilatations of
quasiconformal extensions of 4 to a neighborhood U of the boundary and taking
the limit of these dilatations as U shrinks to the boundary. We call a quasisym-
metric homeomorphism A symmetric if H(h) = 1.

Let QC(A) be the space of all quasiconformal homeomorphisms of A. Two
elements fi, f> in QC(A) are equivalent if there exists a conformal homeomor-
phism « of A such that f;(#) = a o f>(t) forevery t € dA. The Teichmiiller space
T(A) is QC(A) factored by this equivalence relation. The equivalence class of
the identity mapping is called the basepoint of T(A).

We let A(A) be the Banach space of all holomorphic quadratic differentials ¢
on A satisfying ||¢| = f f Al@l < co. One useful property of the Banach space
A(A) is the following lemma, due to Strebel (see [S2]).

LeEmMMA 1. Let ¢ be an arbitrary holomorphic quadratic differential of norm
lell < M < oo in the unit disk A. Let w be a boundary point of A. Then, for any
€ > 0 and p; > 0, there exists a number py, 0 < p; < pa, such that

f 0@)[2ldz] < ¢
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for some p € [p1, p2], witho, = {z € A : |z — w| = p}. Whereas p depends on
@, p1 does not.

Every differential ¢ in A(A) defines two invariants, the area element dA =
lp(z)| dx dy and the line element ds = +/|¢(2)||dz|. The ¢-length of an arc y
in A is fy ds, and the height of y with respect to ¢ is h,(y) = f},lIm Jo(z)dz|.
The vertical distance between two points w;, w, in the closure of A is the infi-
mum of the heights of all curves y in A with endpoints at w; and w,. A vertical
(horizontal) arc of ¢ is a smooth arc y in A along which ¢(z) dz? is less (greater)
than 0. A vertical (horizontal) trajectory of ¢ is a maximal vertical (horizontal)
arc. It is called regular if it does not tend to a zero of ¢ in either direction. A reg-
ular horizontal trajectory « is called totally regular, if for any sequence of points
Z, converging to a point z on « and such that the horizontal trajectories of ¢ pass-
ing through points z,, are regular, o, — « in the Euclidean metric. If y is an open
horizontal arc, then the subset of A covered by the vertical trajectories through the
points of y is called the vertical strip S determined by y. There is a countable se-
quence of vertical strips determined by open horizontal arcs, which cover A up to
a countable set of vertical trajectories and points (see [S3]).

If f is a quasiconformal homeomorphism of the unit disk A and ¢ is in A(A),
then there exists the unique integrable holomorphic quadratic differential i such
that the vertical ¢-distance between any two boundary points r and s is equal to the
vertical yr-distance between f(r) and f(s) (see [S1]). We say that ¢ is the image
of @ under the mapping by heights induced by f, and we denote ¥ by H(f, ¢).
Notice that if [ f1] and [ f,] are the same points in 7T(A) then there exists a con-
formal homeomorphism o of A such that f;(¢) = a o fo(t) for every ¢t € 0A.
Therefore, Y, = H(f>, ¢) is a pullback of ¥y = H(fi, ¢) by a:

Yo = Yr1(a)a’.

This yields [|¥ || = ||[¥2]|. We define a function from 7T'(A) x A(A) onto A(A) by
(z, ) — H(f, ¢), where f is normalized to fix 1, —1, and i, and where [ f] =
7. This function describes the mapping by heights up to a pullback by Mobius
transformations, so we will also call it the mapping by heights and denote it by H.

In this article we show that the mapping by heights H is continuous. We do this
by studying the minimal norm property for the measured foliations in the disk and
developing the variation in the Dirichlet norm.

A measured foliation with measure |dv| on A is given by an open cover U; of a
complement of a set of Lebesgue measure zero in A and C! functions v; on each

U; such that
dv,- = :l:dvj on Ui N Uj. (2)

The leaves of the foliation are curves along which v is constant. The height of an
arc y is defined by h,(y) = fy |dv]. We will denote a measured foliation by the

symbol |dv|. The norm ||dv||? of a measured foliation |dv| is an invariant defined

B ((E )
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An example of a measured foliation is [dv| = |Im ,/¢ dz|, where ¢ is a holomor-
phic quadratic differential on A and the corresponding set of measure zero is the
set of zeros of ¢.

2. A Minimal Norm Property

THEOREM 1. Let ¢ be in A(A) and let  be a measurable quadratic differential
in A. Suppose that h,(y) < hy(y) for almost every regular vertical trajectory y

of ¢. Then
loll < f fA JIool < 1l 3)

and \lpll = |¥ |l only if ¢ = ¥ a.e.

Proof. Decompose A into a disjoint union of a set of measure zero and vertical
strips S1, S, S3, . . . determined by the horizontal arcs of ¢. For every i there exists
a conformal mapping &; of S; onto a plane vertical strip V; = {(x, y) | 0 <x <b;,
ci(x) <y < d;(x)} such that ¢;(x) is an upper and d;(x) is a lower semicontin-
uous function from (0, b;) into [—o0, 00], ¢ = 1 on V;, and for almost every x €
(0, b;), the vertical segment { (x, y) | ¢;(x) < y < d;(x)} is mapped by h;‘l onto
a regular vertical trajectory y, in S;. Therefore, for almost every x € (0, b;),

di(x) d; (x)

| /¥ dz| < f Wl dy. @)

ci(x)

hqo(yx) = hz,h(yx) = f

ci (x)

Integrating (4), we obtain

/s,.ko' S[Obi/C:;(:)|ﬁldydx=[/Si|m|_

Summing over all i yields

ol < | fA Nl

. . 2
By Schwarz’s inequality, ( f,|1v/¥¢l)” < llollli¥ . Therefore, [lp|| < [|¥}, and
this yields (3).

If ol = l|¥ |l then {Im /¥ (2) dz| = |</¥(2)| dy for almost all z € V;; thus,

|IRe /¥ (2)| = |+/¥(2)| and Im /1 (z) = O for almost all z € V;. The equality
in Schwarz’s inequality implies that |\/{¥ (2)| = C|+/¢(2)| a.e. for some constant

C > 0. Since ||¢|| = ||| it follows that C = 1; thus ¥(z) = 1 = ¢(z) for a.e.
z € V;. Therefore, ¥ = ¢ a.e. O

Theorem 1 also holds when |Im /¥ dz] is replaced by a measured foliation in A.

THEOREM 2. Let ¢ € A(A) and let |dv| be a measured foliation on A satisfying
the height condition h,(y) > h,(y) for almost every regular vertical trajectory
y induced by @. Then the norm inequality ||dv||* > ||¢|| holds, with equality only

for |dv] = |Im /9 dz|.
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Proof. Consider a vertical strip S; from the proof of Theorem 1. For almost every

X € (Os bi),
di(x) di(x) av
/ dy = hqp(yx) = hv(yx) = f 'a_ dy'
ci(x) ci(x) 10Y
Integrating over x € (0, b;) yields
b pdi(x) b ph) gy
/ lfpl=f f dydx<f f dydx
S; 0 ci(x) ¢i(x)

Therefore, by Schwarz’s inequality,

) = L o) L G) )
[lo= [1((5) + (52) ) x> g

Summing (5) over all vertical strips S;, we obtain ||¢|| < |ldv]|?.
Let equality hold. Then I%(z)l =C > 0and %(Z) = 0 for z € V;. Since

[[asas= [0~ [ i((g_;)z e (2 )axas

C = 1. Therefore, for all z in V;, v(z) = £y + constant; hence dv = +dy =
+Im(/9(z) dz). O

3. Weak Continuity of the Mapping by Heights

DEFINITION 1. A sequence ¢, in A(A) weakly converges to ¢ € A(A) if ¢, con-
verges to ¢ locally uniformly on compact sets and the norms ||¢, || are uniformly
bounded above. A sequence ¢, is degenerating if it weakly converges to zero.
A degenerating sequence ¢, is called strictly degenerating if the norms ||¢, || are
uniformly bounded below away from zero.

DEeFINITION 2. A sequence [ f,] of elements in T(A) induced by normalized
quasisymmetric homeomorphisms f, of the circle dA converges weakly to [ f] if
Jn(t) converges to f(¢) for every t € dA and if the Teichmiiller distances from
[ fz] to the basepoint are uniformly bounded.

In [S1], Strebel proved that if ¢, converges weakly to ¢ then H(f, ¢,) converges
weakly to H(f, ¢). Here, using the same method of proof, we slightly generalize
that result.

LEMMA 2. If ¢, is a sequence in A(A) that converges weakly to ¢ € A(A), and
if fu is a sequence of normalized quasisymmetric homeomorphisms of A such
that [ f,,] weakly converges to [ f] for some quasisymmetric homeomorphism f of
dA, then H(f,, ¢,) converges weakly to H(f, ).



Minimal Norm Property for Quadratic Differentials in the Disk 303

Proof. The proof of this lemma follows the same steps of the proof of [S1, Thm.
5.2]. Let ¥, = H(fy, ¢»). Since the Teichmiiller distances d,, from [ f,,] to the
basepoint are uniformly bounded and f, are normalized, ||, || < |lglle?% <
constant and functions f, are uniformly Hoélder continuous. Therefore, f, tends
to f uniformly on dA and (,,) is anormal family. By passing to a subsequence, we
can assume that 1, converges locally uniformly to some integrable holomorphic
quadratic differential .

Suppose first that ¢ # 0. Take a totally regular horizontal trajectory « of ¢.
Then there exist totally regular trajectories «, of ¢, such that o, converges to «
in the Euclidean metric. Let p and g be the endpoints of «, and let p, and g, be
the endpoints of «,, on dA. By [S1, Thm. 5.2], f,(p,) and f,(q.) are connected
by a totally regular horizontal trajectory 8, of ¥,. Furthermore, f,(p,) — f(p)

and f,(q,) = f(q).

Step 1: Every t on A — {f(p), f(q)} has an & neighborhood U, that is free
from B, for all sufficiently large n.

Proof. Assume the contrary. Then there is a point ¢ in 3A — { f(p), f(g)} and a
sequence of trajectories B, (we avoid double indices) with z,, € §, and z,, — .
Since « is totally regular, we can choose a totally regular horizontal trajectory §
of ¢ separating f~!(¢) from « such that i, (a, §) > 0. Take a sequence of totally
regular horizontal trajectories &, of ¢, such that §, converges to § in the Euclidean
metric. Then there are totally regular horizontal trajectories y, of ¢, that separate
B from ¢ and such that iy, (B,, Va) = hy(an, 8,). (See Figure 1.)

f(p)
Ir) Sk Pr)
t : I
flg)
folsn) JACA

Figure 1

Now hr,b,,(ﬁm Yn) = h(pn(an, 0n) — hqo(aa 8) > O and ||| < "(Pn“ezdn =<
constant. However, since z, — ¢, a semicircular arc with center at ¢t must cross
¥» and B,,, which contradicts Lemma 1.

Step 2: Sequence i, is not degenerate.
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Proof. Take two totally regular horizontal trajectories o and é of ¢ with A, (, ) >
0. Let p and g be the endpoints of o and let » and s be the endpoints of §. Draw a
diameter d that separates f(p) and f(r) from f(g) and f(s). There exist totally
regular horizontal trajectories «, and &, of ¢, with endpoints p,, q, and r,, s,
(respectively) such that «, converges to o and §,, converges to 8 in the Euclidean
metric. (See Figure 2.)

1 Pr)

1ilan)

Julsn)
" f(s) f(q)

Figure 2

As a result, there exist totally regular horizontal trajectories B, and y, of ¥,
that connect f,(p,) and f,(g,) and (respectively) f,(r,) and f,(s,). By Step 1,
¥n and B, intersect d inside a compact subinterval. If ||y ]| = 0, then A, (o, §) =
lim, ;00 g, (0tn, 6,) = lim, 500 By, (Bn, ¥n) = 0, a contradiction.

Step 3: f(p) and f(q) are connected by a horizontal trajectory g of .

Proof. Fix a double sequence of circles o, around f(p) and f(q) and restrict S,
to a part B, in the strip bounded by o, and o_,. (See Figure 3.)

By passing to a subsequence we may assume that every 3, converges to a hori-
zontal arc of ¢ uniformly in the Euclidean metric. Taking a diagonal subsequence,
we end up with a horizontal arc 8 of . Since the endpoints f,(p,) and f,(q,)
of B, converge to f(p) and f(q), B is a horizontal trajectory that connects f(p)

and f(q).-

Step 4: B is totally regular.

/Proof. If B goes through a zero z of ¢, then there is at least one more horizontal
trajectory ray y of ¢ that starts at z. (See Figure 4).
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Figure 3

f(p)

f@)

f(q)

Figure 4

Let f(r) be an endpoint of y. Since there are only countably many endpoints
of critical horizontal trajectories of yr, we can choose a totally regular trajectory
3 of ¢ with endpoints s and ¢ such that (a) & separates « from r and (b) f(s) and
f(¢) are not the endpoints of a critical horizontal trajectory of ¢. (Note that, by
Lemma 1, if two horizontal trajectory rays end at the same point then the vertical
distance between them is 0.) The points f(s) and f(¢) are connected by a regular
horizontal trajectory of i that must intersect 8 U y. Therefore, 8 is not critical.

In order to show that 8 is totally regular, take totally regular trajectories «,, of
@ that converge to « in the Euclidean norm. Let p, and g, be the endpoints of «,,.
Then there exists a regular horizontal trajectory 8, of ¢ that connects f(p,) and



306 NikoLA LAKIC

f(gn). If B, does not converge to 8 in the Euclidean metric, then there exists a point
a € A — B such that a is a limit point of some sequence a,, € 8,. Since the end-
points of B, converge to the endpoints of 8, Lemma 1 implies that Ay (8, 8,) —
0; therefore, hy (a, B) = 0. Choose a point p on B, and let I be a vertical segment
pointing to a with p as its initial point. Then there exists a regular horizontal tra-
jectory of ¢ that separates f from a and intersects I — {p}; this trajectory thus
has a positive vertical distance from f, a contradiction. Since the approximation
of a can be performed on both sides, 8 is totally regular.

Step 5: hy (f(P), f(@)) = hy(p, q) for every p, g € dA.

Proof. Let p and g be two distinct points on the boundary of the unit disk A. If
o and § are two totally regular horizontal trajectories of ¢ separating p and g,
then there exist totally regular horizontal trajectories «, and §, of ¢, such that o,
converges to o and §, converges to § in the Euclidean metric. Therefore, there
are totally regular horizontal trajectories 8, and y, of ¥, such that h, (o, 8,) =
hy.(Bn, ¥n). By Step 3, we can take points z, from B, and w, from y, such that
(a) z, converges to a point z on the totally regular horizontal trajectory 8 of ¥ and
(b) w, converges to a point w on the totally regular horizontal trajectory y of .
Trajectories B and y separate f(p) from f(q). By [S1], Thm. 4.3],

hy(a, 8) = lim hy, (e, 8,) = lim Ay (By, V)
n—oo n—o00
= lim hy,(zn, wn) = hy 2, w) = hy (B, y).

Because h,(p,q) = sup, s hy(a, §), where the supremum is over all pairs of
totally regular horizontal trajectories « and & that separate p from g, we have

hy(f(p), f(q)) = hy(p,q) forevery p,q € dA.

Since ¢, = H(f, !, ¢,) and f71(¢) - f~1(t) for every t € A, and since the
Teichmiiller distance from [ £,-!] to the basepoint is the same as the Teichmiiller
distance from [ f,] to the basepoint, we obtain

ho(f 1), £7U(s)) = hy(r,s) forevery r,s € 3A.
Step 6: H(f,, ¢n) converges weakly to H(f, ¢).

Proof. By the uniqueness theorem [S1, Thm. 5.6], v = H([f, ¢). Therefore, the
limit ¢ does not depend on which subsequence of vy, we take, which proves Step
6 and so finishes the proof of Lemma 2 when ¢ # 0.

Suppose now that ¢ = 0.If ¥ # 0 then, by the previous discussion, H( £}, ¥,)
converges weakly to H(f~!, ¥). But H(f, !, ¥») = ¢, converges weakly to
¢ = 0, a contradiction. O

COROLLARY 1. H is continuous at (basepoint, ¢) for every ¢ € A(A).

Proof. Suppose that a sequence @, in A(A) tends to ¢ in the L! norm, and that f,
is a sequence of quasiconformal homeomorphisms of A that fix i, 1, and —1 such
that the Beltrami coefficients u, of f,, converge to 0 in the L*° norm. Let v, =
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H(f,, ¢n). From the theory of quasiconformal mappings we know that f;,(z) con-
verges to z uniformly on A (see [L]) and thus, by Lemma 2, v, converges weakly
to . Since

1= llall 1+ [|penll
lonll = < ¥l < l@nll
I+ flpenlioo 1 — |t lloo
it follows that
¥l = llell.
Therefore, by the Lebesgue dominated convergence theorem,
1Vn — ol = lIYnll = —liel, 1¥n —oll = 0. O

The next corollary is the (strong) continuity of [ f] — H([f], ¢) for any fixed
p € A(A).

COROLLARY 2. Let f, be a sequence of normalized quasisymmetric homeomor-
phisms of A such that [ f,] — [f] for some quasisymmetric homeomorphism f
of dA. Then H(f,, ¢) — H(f, @) for every ¢ € A(A).

Proof. Since [ f, o f~!] tends to the basepoint in the Teichmiiller metric, Corol-
lary 1 yields
H(fu, @) = H(fn o 1, H(f, )) = H(, 9)). 0

4. Variation in the Dirichlet Norm

THEOREM 3. Let ¢ # 0 be an integrable holomorphic quadratic differential in
the unit disk A, and let f be a quasiconformal homeomorphism of A with the
Beltrami coefficient . Let ¢, = H(f*, ). Then

1
logllg.ll = logll¢]l +2 Re — / / 1o + ol o). ©)
el /),

Therefore, F([f]) = log||H(f, )| is a C! function on the universal Teichmiiller
space T(A).

Proof. Let ¥(2) = @u(f(2)) FA(2)(1 — 11(2) 22.)". Then  is a measurable qua-

dratic differential on A and, for almost every regular vertical trajectory g of ¢,

f i /o () df | = f Im /9 @) d2l.
J(B B

Since every ray of a regular vertical trajectory of a differential in A(A) converges
to a well-determined point on the boundary of A, both ends of 8 terminate at points
of dA. Leta and b be the endpoints of 8 on dA; then hy(a, b) = hy (f(a), f(D)).
Therefore,

fﬁ I /0@ dz] = hy(a, b) = hy (F(@), FB))
< ff e Tyaf) = fﬁ \Im /F @) dzl.
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Hence Theorem 1 implies that |lp[| < [f, [v/F¢l < ll¥]], so

ugou< fﬁa\/

Applying Schwarz’s inequality, we obtain

ot < [[ourr2ia-wp [[ 1o _’f‘j'zl.

1—|ul?
1—|ul?

2
ﬁau(f)f |€0|)

Therefore,
lol? < llll [ f ol '“”l‘z
= |loull(leli —2Re //A ne + O(llrlz)- @)
Hence ol 5
";i" S1-ToRe f fA 1o+ O(IlZ),
and so

togllgull = loglll +2Re - / f e+ O(II).

To get a reverse inequality we apply a similar argument to the inverse mapping
f~! of f. The Beltrami coefficient of f~1is u1 = —u(f;/ f;) o (f V). Thus,

loull < lgaof—l(f‘l)z( mli"’“—l) 8)
Pu
and
loul® < llol f ] mll '*’"Z'l : ©)
A il 1751
Inequality (9) yields
1
logllgll > logllgull +2 Re / f 1100 + O(IRIZ)-
leell JJa
Now, since . ol
Pu
< < K(w)
K = el

with K(u) = (1 + ||#lleo)/(1 — [ltlleo) = 1, it is enough to prove that

ffA 1Py +ffA ne = o(jlplloo)-
We have
f f gy = — f / 10 () F2(1 = ul®) = — f [ 1eon () 2+ O3,
A A A

It is thus sufficient to prove that

lou ()2 — ol — 0. (10)
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From the theory of quasiconformal mappings we know that f(z) — zand f?(z) —
1 for almost every z € A (see [A]). Furthermore, Lemma 2 implies that ¢, con-
verges weakly to ¢. Therefore ¢, (fz) fzz(z) — @(z) for almost all z in A. Since

1
Il < Iou (L2 < lpull—r—,
wl = R = T = i

len(f) fz2 I = ll¢ll. Hence, by the Lebesgue dominated convergence theorem,

limllgu () f7 = ¢l = llell = limle. () 7 = el = leu(H LD = ~llgll.

Now we prove that F is Cl. Let G: M(A) — (—00, 00) be defined by G(p) =
log|lg,|l. Since the geometric mappings [f*] — [f” o (f*)~!] are biholomor-
phic and there is a holomorphic section from a neighborhood of the basepoint in
T(A) into M (A), it is enough to prove that the derivative of G is continuous at
@ = 0. From (6) we see that

GO)) = 2Ren// vo.

Since
H(f*, 9) = H(F* o (F)7, H(f*, 9)) = H(F* o ()71, 0)
and since the Beltrami coefficient of f#1” o (f*)7!is

4 fz
1—|ul>

o (f)™ + O(IIvIIZ,),

we have

, 1 v
Wy =2Re1o = %

After a change of variable we obtain

o (") g, (11)

1
G =2Re—— [[ g.o s,
TARA

Since |l¢. |l = llell, the continuity of the first derivative of G at u = 0 follows
from (10). Ol

COROLLARY 3. M(u) = |H(f*, )|l isa C! function in the open unit ball M(A)
of L*(A), and

, o
M =2R o
W =2re [[ 1= o LUK

where ¢, = H(f#, ¢).

Proof. Since M(u) = e®® for every u € M(A), Corollary 1 follows from (11).
1
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5. Strong Continuity of the Mapping by Heights

In [S1], Strebel asked whether the mapping by heights ¢ — H( f, ¢) is continuous.
The following lemma shows that the answer is affirmative.

LemMma 3. If f is a quasiconformal homeomorphism of the unit disk, then the
mapping ¢ — H(f, @) is continuous on A(A).

Proof. Notice that it is enough to prove that || H(f, ¢.)l| = |H(f, ¢)|| for every
sequence ¢, in A(A) thatconvergestop € A(A).For,if || H(f, ) || = [|H(S, @)li
then, by Lemma 2 and the Lebesgue dominated convergence theorem,

IH(f, ¢n) — H(f, )l = 1 H(f, o)l = =1 H(f, @)l

and hence H(f, ¢,) tends to H(f, ¢) in the L! metric. By Lemma 2, H(f, ¢,)
converges weakly to H(f, ¢); thus, by Fatou’s lemma, lim inf,,_, || H(f, ¢n)|| =
|H(f, ¢)||. It is therefore enough to prove that

lim sup|| H(f, el < |H(f, o).

n—>co

Suppose that f is a quasiconformal homeomorphism of A with Beltrami co-
efficient 1 and that the sequence ¢, in A(A) tends to ¢ in the L' norm, so that

lim Supn—>oo”H(f7 q)n)“ - "H(f’ ‘0)“ =A # 0. Let
A(t) = limsup|H(f™, o)l = |H(f™, )| for ¢ € [0, 1].

n—>0o0

Then:
(i) A is anonnegative and bounded function and
1+ lpell
S= sup A(®) < llpll———;
te[0,1] 1 —listlloo

(i) A(1) = A > 0and A(Q) = limsup,_, . [l¢nll — ll¢ll = 0; and
(iii) by Corollary 1, lim,;_,¢ A(¢) = 0.

By (ii), S > 0. Hence there exists s € (0, 1] so that
A(s) > §/2. (12)
Define the real-valued functions A, hy, ks, ... on (—1, 1/||it]lc0) by

h(t) = [H(f™, o)l and
ha(6) = |[H(f*, o)l for n=1,2,....

Since the L! norms of quadratic differentials ¢, are uniformly bounded, and since

L4 ol
IHC )l < gl

there exists a constant C such that || H(f*, ¢)|| < C and |H(f™", ¢,)|| < C for
every t € (—1, 1] and every n. By Corollary 3, functions h, hy, hy, ... are C! on

(—1,1/lill o) and

forevery q € A(A) and v € M(A),
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/ _ 22 thﬂ tus—1 t
h(t)_zReffal—ltlle}?O(fu) H(F™, ),

hl(”zmeff B LT ey, g
" a1 [l ;7 @)

Furthermore,

A(s) = lim sup[h,(s) — h(s)] = lim sup ( / S[h; ) — H )] dt)
0

n—»0oo n—>o0

. fztﬂ tu~—1
< 2limsu = o (f"™7 (H(f™, o,
— H(f™, p)) dx dy| dt
|2l oo : tn tp
<2—H1° jim sup [H(F™, o) — H(f™, 9| dx dy dt.
1—ullZ, n>oo A

Since B, (t) = ffAIH(f"“, ©n) —H(f”‘, )| dx dy < 2C, Fatou’s lemma implies
that

lim supf B,(t)dt =2Cs — lim inff 2C — B, (1)) dt
0 n—oco 0

n—>co

<2Cs — f lim inf (2C — B, (¢)) dt
0

n—>oo
= f lim sup B, (¢) dt.
0 n—o0

Hence,
A(s)

2| plloo ° . tn th

< == | Gimsup( [[ |HF™, p) — H(F™, )| dxdy) dt
I —([nell5% Jo nooo A

< Al [ s(lim sup [ [ AH(E™,0) = HOP™, )] = O™, g de

T 1- llull%o n—»00

+ limsup/ [H(f™*, go,,)l) dt.
A

n—00

Therefore, by Lemma 2 and the Lebesgue dominated convergence theorem,

Als) < Moo _ f ( ff IH(f"“,co)I+1imsupHH(f’”,<0n)II)df
= Inl

n—>oo
2]l lloo / 2]l 2| lleo
= 7% AW dE < "0 gy < N0 g
1 — el 1 — el 1 — el
By (12),

S 2l oo 2
- < —3, I —|lnlls < 4llelloo-
21—l o ®
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If |l < ;1;- then 1 — llu,ugo > g% > % > 4||t)lc0, @ contradiction. Therefore,

for every quasiconformal homeomorphism f of A with the Beltrami differential
of L* norm < %, the mapping by heights ¢ — H(f, ¢) is continuous in the L!
norm. Now let g be any quasiconformal homeomorphism of the unit disk A, and
let v, be a sequence of integrable holomorphic quadratic differentials converging
to ¢ in the L! norm. Then, by the theory of quasiconformal mappings, there ex-
ist an integer k and quasiconformal homeomorphisms fi, f>, ..., fr of A so that

g = fio fao---o fi, and the Beltrami differentials of fi, f2, ..., fr are less than

1 in the L* norm (see [L]). Hence,

g
H(fi, ¥u) = H(fr, ¥),
H(fi—10 fr, ¥n)
= H(fi—1, H(fx, ¥n)) = H(fr—1, H(fx, ¥)) = H(fi-1 0 fx, ¥),

H(g, ¥n)
= H(f1, H(fa0 fzo -0 fa, ¥u)) = H(f1, H(f20 fz0---0 fr, ¥))
= H(g, ¥). 0

Now we are ready to prove that the mapping by heights H([ ], ¢) is continuous
on T(A) x A(A).

THEOREM 4. The mapping by heights H is continuous.

Proof. Let f be a normalized quasisymmetric homeomorphism of A, andlet ¢ €
A(A). Let f, be a sequence of normalized quasisymmetric homeomorphisms of
dA such that [ f,,] converges to [f] in the Teichmiiller metric, and let ¢, be a
sequence in A(A) that converges to ¢ in the L! norm. Then

H((fa), @) = H(fu o f7'), H(LS), 9a))-
By Lemma 3, H([f], ¢,) tends to H([f], ¢) in the L! norm. Since [f, o f~1]
tends to the basepoint in the Teichmiiller metric, Corollary 1 yields

H([fy o 711, HAfY, ¢0)) = H(f1, 9. O

6. The Extremal Norm Properties of the
Mapping by Heights

THEOREM 5. Let f be a quasisymmetric homeomorphism of a circle with dilata-
tion K = (1 + k)/(1 — k) and boundary dilatation H. Then:

(@) sup,.o(HH(f, @li/llel) = K;
(b) (Strebel) the supremum in (a) is achieved at ¢ if and only if f has a represen-

tative that is a Teichmiiller mapping with the Beltrami differential k(|¢|/¢);
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() if ¢, is a strictly degenerating sequence in A(A), then H(f, ¢,) is strictly
degenerating; and

(d) SUP(,,) lim sup,_, S H(f, @) i/ll@nll) = H. Here the supremum is over all
strictly degenerating sequences @,,.

REMARK 1. Part (b) is proved by Strebel in [S1]. Here we present a different
proof based on the minimal norm property.

REMARK 2. Note that it is necessary to take only strictly degenerating sequences
¢, in the supremum in (d). For, if f is such that H < K, then by the frame map-
ping condition and part (b) there exists ¢ € A(A) such that |H(f, ¢)|| = K|lp]l.
Then ¢/n — 0 and H(f, ¢/n) = (1/n) H(f, ¢); therefore,

[52(A DI _ 1HG ol _
H el

Proof of Theorem 5. (a) Since ||H(f, ¢)|| < Kl|¢| for every ¢ € A(A), to
prove (a) it is enough to find a sequence ¢, in A(A) such that ||@,|| = 1 and
WH(f, ex)l| — K. Let u be an extremal Beltrami differential in the Teichmiiller
class of f. Then ||u]lo = k, and there exists a sequence ¢, in A(A) such that

\/:[ n

(see [G3, Lemma 2, p. 124]). Let ¢, = H(f, ¢,). By inequality (7),

1< |l f f Ison "'”"
I/«LP f[ Pnlh )

2142 @n —2Re ,
<"¢ "( + f I II_II«L'Z 1_“”2

2k?
1< (hmmflll[fnll)(1 T e 1—k2)

1
=< (lim inf{{y ||} -

(b) If f is a Teichmiiller mapping associated with the differentials ¢ and ¢ in
A(A), then y = H(f, @) and [[¥|| = Kl¢]|.

To prove the converse, we assume that K = ||y ||/ll¢]| with ¢ = H(f, p). Let
w1 be an extremal Beltrami differential in the equivalence class of f~!.Let g bea
quasiconformal homeomorphism of A with the Beltrami coefficient y1;. Inequality
(8) yields

l/l 2
gl < ||¢(g)g3(1 - m—) (13)

1Yl

Hence
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¥ \2
—.M s
uwusmw&a—mﬁﬁT;ﬁ%l
< oyl
= ot
= Kllell-

Therefore, we have an equality in (13). Hence u; = —k(|¥|/¥) and, by the
uniqueness part of Theorem 1,

_ af 1 _ _‘E_)Z
1”-—90(8)82( Mhlfl

Therefore,
¥ = o(g)gZ(1 +k)>.

The quasiconformal homeomorphism g~! is in the equivalence class of f, and its
Beltrami coefficient u satisfies

82 1Yl g
—p 2 =22
u(g) = lgz —
2
_ple@llg:l" s _ , 1o()]

(88 & e’
which proves (b).
(c) Let (¢,) be a strictly degenerating sequence in A(A). Then 1/C < ||g,|l <
C for some positive constant C. Let ¢, = H(f, ¢,). By Lemma 2, v, is degen-
erating. Since
1

>
¥n Iz ==
Y, is strictly degenerating.
(d) Fix ¢ > 0, and let ¢, be a strictly degenerating sequence in A(A). By part
(c), ¥ = H(f, @,) is strictly degenerating. There exists a compact set F C A
and a Beltrami differential y such that f* and f represent the same element in

Teich(A) and

Iz & llson

1+ |u(2)]
1 —|u@| —

Let K = (1 + ||itlleo)/(1 — |I]lco). Since ¢, is degenerating, there exists a

positive integer ng such that
1Yl < —
[ /f“(F) YK
for every n > ngy. Inequality (9) in the proof of Theorem 3 implies

1
Ml < nl [ [ 1m0

where w; is the Beltrami differential of (f#)~!. Therefore, for all n > ny,

< H+¢ forevery z € F°.
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1 my-1
||wn112<1|¢n||(1<1——+ ff | i 1) (ZDI)
frF)e

1= |p((f)~ 1@l
< llgnll(e + (H + &)Yl

Hence 1l
< +¢e+ H.
lonll = bl
Since v, is strictly degenerating, letting ¢ — O proves
H(f,
suptimsup VLD _
(¥n) lleall

To obtain a reverse inequality, fix € > 0 and let v be a Beltrami differential
such that fV is in the Teichmiiller class of f and H* — H < ¢, where H* =
(h*+1)/(h* — 1) is the maximal dilatation of f* outside some compact subset of
A. By the fundamental inequalities for boundary dilatation (see [G1] or [EGL]),
there exists a degenerating sequence ¢, in A(A) such that ||¢,|| = 1 and

h*
li o> — —
i [ 2=z 1

Let ¢, = H(f, ¢,). Inequality (7) from the proof of Theorem 3 implies

lonl? < 1l f 190l I“";z ;

<l fllvalil 1 —
1 1m1n||1/f||( +21—h2 201)

h*Z h*
< hmlnflllﬁnll(l +21 e —21 o +28)

1
< liminf ||y, || ( + 28)

Letting € — 0, we obtain
Wl

ol —
and this proves part (d). O

lim inf

COROLLARY 4. If f is a quasisymmetric homeomorphism of a circle, then:

(1) f is Mobius if and only if |H(f, @)|| = ll@ll for every ¢ in A(A); and
(i1) f is symmetric if and only if |[H(f, ¢u)|| — 1 for every degenerating se-
quence of unit vectors in A(A).

Proof. (1) follows immediately from part (a) of Theorem 5. Since

on = H(f™L, H(f, ¢n)),

and since f is symmetric if and only if ! is symmetric, (ii) is an easy conse-
quence of part (d) of Theorem 5. 0
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