Genus Actions of Finite Groups on 3-Manifolds

BRUNO ZIMMERMANN

1. Introduction

In [11] (see also [23]) a theory of finite group actions on 3-dimensional handle-
bodies was developed. In the present paper we extend certain aspects of this theory
to closed orientable 3-manifolds using Heegaard decompositions, studying in par-
ticular actions of cyclic and dihedral groups of large order relative to the Heegaard
genus. Recall that a Heegaard decomposition of genus g of a closed 3-manifold
M is a decomposition of M into two handlebodies of genus g intersecting in their
common boundary.

In the following, G always denotes a finite group; all manifolds will be ori-
entable and all group actions will be orientation-preserving.

The (handlebody-) genus (resp. strong genus) of a finite group G is defined as
the minimal genus g (resp. g > 1) of a handlebody V on which G acts; the corre-
sponding G-action is called a genus (resp. strong genus) action. Note that for most
groups the genus and the strong genus coincide, as only very few types of groups
act on the handlebodies of genus 0 and 1 (i.e., the 3-ball and the solid torus), among
them the cyclic and dihedral groups. Of particular interest is the class of genus ac-
tions consisting of those of maximal possible order 12(g — 1): recall that the or-
der of a finite group acting on a handlebody of genus g > 1 is bounded above by
12(g — 1); the groups of maximal order are called maximal handlebody groups.
It is shown in [22, Kor. 4.2] that for infinitely many values of g this upper bound
is attained (resp. not attained).

In the present paper we will be interested in strong genus actions, in particular
also of cyclic and dihedral groups. Central to the paper is the following definition.

DEFINITION.

(i) Aclosed 3-manifold M is called a G-manifold of genus g if it admits an action
of the finite group G and g is the minimal genus of a Heegaard splitting of
M for which both handlebodies are invariant under the G-action (equivariant
Heegaard genus of the G-action).

(ii)) A G-manifold of genus g > 1 is called minimal if the induced G-action on
each of the two handlebodies of an invariant Heegaard splitting of genus g is
a strong genus action (these are the genus actions of the title of the paper).
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If moreover G has maximal possible order 12(g — 1), then the G-manifold M and
the G-action are called maximally symmetric (m.s.).

Maximally symmetric G-manifolds have been studied in [24] and [27]. Note that,
working in the PL category and using G-invariant triangulations, any G-action on
a closed 3-manifold has an invariant Heegaard splitting, so we shall restrict our-
selves here to the extremal case of minimal G-manifolds. Our main result is a
characterization of the minimal G-manifolds for cyclic and dihedral groups G; as
an application, there are exactly four types of G-manifolds of genus 2. This is
the content of Section 3. In Section 2 we discuss handlebody orbifolds and finite
group actions on handlebodies; this leads in a natural way to the notion of Hee-
gaard splitting and Heegaard number (genus) for closed orientable 3-orbifolds. In
the last section we discuss maximally symmetric G-manifolds of small genus, in
particular the case of hyperbolic 3-manifolds.

2. Handlebody Orbifolds and Finite Group Actions
on Handlebodies

Let G be a finite group acting orientation-preservingly on a handlebody V. Let Dbe
a 2-dimensional properly embedded disk in V such that D = DN3V is a nontriv-
ial closed curve on 8V. By the equivariant loop theorem/Dehn lemma (see [13]), we
can assume that x(D) = D or x(D)N D = @ forall x € G. When cutting V along
the system of disjoint disks G(D), that is, removing the interior of a G-invariant
regular neighborhood of G(D) (which is a collection of 1-handles: products of a
2-disk with an interval), we get again a collection of handlebodies of lower genus
on which G acts. Applying inductively the above procedure of cutting along disks,
we finally end up with a collection of disjoint 3-balls on which G acts. Thus the
quotient orbifold H := V /G is built up from orbifolds that are quotients of 3-balls
by finite groups of homeomorphisms (their stabilizers in G), connected by finite
cyclic quotients of 1-handles (1-handle orbifolds) which are the projections of the
removed regular neighborhoods of the disks (first type of orbifold in Figure 1). The
finite orientation-preserving groups that can act on the 3-ball or the 2-sphere are the
finite subgroups of the orthogonal group SO(3): cyclic Z,,, dihedral D,,, tetrahedral
A4, octahedral S4 and dodecahedral As, which we will call the spherical groups.
It is well known that, on the boundary of the 3-ball, the actions are standard—that
is, conjugate to orthogonal actions. By Thurston’s orbifold geometrization theo-
rem [20], the same is true for the whole 3-ball; in the case of cyclic group actions,
instead of the orbifold geometrization theorem one may use the positive solution
of the Smith conjecture {16]. The figures of the possible quotient orbifolds are
listed in Figure 1; the underlying topological space is the 3-ball in each case.
These quotient orbifolds are connected by the 1-handle orbifolds; the result is
called a handlebody orbifold. By definition, a handlebody orbifold consists of
finitely many orbifolds as in Figure 1 (i.e., quotients of finite orthogonal group ac-
tions on the 3-ball) connected by 1-handle orbifolds respecting the singular axes
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cyclic dihedral tetrahedral octahedral icosahedral

Figure 1

and their orders, and such that topologically the result is an orientable handle-
body. Therefore, as a consequence of the equivariant Dehn lemma and the orb-
ifold geometrization theorem, we have the following.

PROPOSITION 1.  The quotients of handlebodies by finite group actions are exactly
the handlebody orbifolds.

To each handlebody orbifold H is associated a graph of groups (I, G) in a natu-
ral way: the vertices (resp. edges) of the graph I' correspond to the quotients of
the 3-balls (resp. of the 1-handles), and to each vertex (resp. edge) is associated
the corresponding finite stabilizer. We call such graphs of groups associated to
handlebody orbifolds admissible. In particular, all vertex groups of an admissible
graph of groups (I, G) are spherical groups, and the edge groups are cyclic groups
that are maximally cyclic in the adjacent vertex groups. We can also assume that
an admissible graph of groups (T, G) has no trivial edges, that is, edges with two
different vertices such that the inclusion from the edge group into one of the two
adjacent vertex groups is surjective (i.e., one of the two vertex groups coincides
with the edge group).

By the orbifold version of Van Kampen’s theorem (see [4]), the orbifold funda-
mental group m’H of H is isomorphic to the fundamental group 7 (I, G) of the
corresponding graph of groups (which is the iterated free product with amalgama-
tion and HNN-extension of the vertex groups over the edge groups, starting with a
maximal tree in I"; see [18] or [23] for definitions about graphs of groups). Delet-
ing from I" the edges whose associated groups are trivial, we get exactly the sin-
gular set of the handlebody orbifold H which is a homeomorphism invariant of
the handlebody orbifold and therefore also of the equivalence (conjugacy) class of
the G-action to which it is associated.

For a finite group G, we say that a graph of groups (I, G) is G-admissible if
it is admissible—that is, associated to a handlebody orbifold H = H(T, G) as
above—and if moreover there exists an epimorphism from 7 (I, G) = m;’H onto
G with torsion-free kernel (or, equivalently, the epimorphism is injective on the
vertex groups); we also call such an epimorphism admissible.

PROPOSITION 2. A finite group G acts on a handlebody V, of genus g if and only
if there exists a G-admissible graph of groups (T, G) such that

g —1=—x([T 9)IGI|



596 BRUNO ZIMMERMANN

Here x (I, G) denotes the Euler characteristic of (T, G), which is defined as

1
K9 =% 51~ i

where the sum is extended over all vertex groups G, (resp. edge groups G,) of
(T, G). For example, the graph of groups

F(Bls Aa BZ)

with one edge with edge group A and two vertices with vertex groups B; and
Bj has x(T'(By, A, B2)) = 1/|B1| — 1/|B2| — 1/|A| and m(T'(B1, A, B2)) =
By x4 B,. Note that group actions on handlebodies of genus g > 1 correspond
to admissible graphs of groups with negative Euler characteristic; this is the case
that will be of interest to us in the following.

We define the Euler characteristic y(H(T, G)) of ahandlebody orbifold H (T, G)
as the Euler characteristic x(I', G) of the associated graph of groups. This coin-
cides with the definition of orbifold Euler characteristic given in [19].

Proof of Proposition 2. Given an admissible epimorphism ¢: 71(I", G) — G, the
corresponding G-action on a handlebody is obtained by taking the regular orbifold
covering of H(I', G) associated to the kernel of ¢. Conversely, given a G-action
on a handlebody, by the equivariant Dehn lemma/loop theorem and the orbifold
Van Kampen theorem, the fundamental group of the quotient orbifold is that of
an admissible graph of groups, and the quotient map is an orbifold covering cor-
responding to an admissible epimorphism. (Note that the orbifold geometriza-
tton theorem is not needed here; also, the equivariant Dehn lemma/loop theorem
can be avoided and replaced by the Stallings structure theorem for groups with
infinitely many ends—see [11].)

Finally, the formula in Proposition 2 is just the multiplicativity of the orbifold
Euler characteristic under finite orbifold coverings. ]

DEFINITION. A Heegaard decomposition of a closed orientable 3-orbifold O is
a decomposition of the orbifold into two handlebody orbifolds /; and H; inter-
secting in their common boundary (a 2-orbifold). The Heegaard number of the
orbifold is the largest value of x (H;) = x (H3) taken over all Heegaard decompo-
sitions of O (which is also twice the orbifold Euler characteristic of the 2-orbifold
that is the common boundary of H; and H>).

Note that with this definition the Heegaard number of a closed 3-manifold is 1 —g,
where g is the usual Heegaard genus of the 3-manifold. Also, the G-manifolds of
genus g are exactly the G-admissible coverings of 3-orbifolds of Heegaard number
x = (1 — g)/|G|. An application of Proposition 2 is the following.

my mz

PROPOSITION 3. Letn = p|"' py? - -- pp* be the prime decomposition of the natu-
ral numbern > 2, with py < py < - -+ < pg. Then, for the following finite groups
G, the list gives the G-admissible graphs of largest negative Euler characteristic
and the strong genus of the group.
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(a) Cyclic groups G = Z.,,.
(i) n prime: T'(Z,,1,Z,),g =n —1;
(i) m; > 1 F(Zpls 1, Zn):g = n(Pl - 1)/P1;
(iii) my = 1, n not prime: U'(ZLp,,1,2Z,p,),8 = (n — p1)(p1 — 1)/ p1.
(b) Dihedral groups G = D, of order 2n.
(i) n prime: T(D,,Z,,D,) orT'(Z»,1,Z,), g =n —1;
(i) my > 1: T(Dp,,Z2,Dy), g =n(p1 — 1)/p1;
(iii)) my = 1, n not prime: T'(Dy,, Z2,Dy/p,), g = (0 — p)(p1 — 1)/ p1.
©G=D, xZ,: I'(D3,Z,,D,), g=n—1.

Proof. Itis easy to see that, in each of the given cases, the given graphs of groups
are the G-admissible graphs of groups of largest negative Euler characteristic; see
the proof of [10, Thm. 3.2] for basically the same computation. The genus of
G is then obtained from these graphs of group (I, G) by the formula in Proposi-
tion 2. O

The maximal negative Euler characteristic of a G-admissible graph of groups, for
arbitrary finite groups G, is —1/12; there are exactly the following four graphs of
this Euler characteristic:

'(D3,Z,,D3), I'(D3,Z3,A4), T'(D4,Z4,S4), and TI'(Ds,Zs, As).

As a consequence, the maximal possible order of a finite group G acting on a han-
dlebody of genus g > 1is 12(g — 1). Thus the maximal handlebody groups are
exactly the finite quotients, by torsion-free subgroups, of one of the following four
free products with amalgamation:

G2 = Dg *Z, D3, Gg = D3 *74 A4, G4 = D4 *Z, S4, G5 = D5 *7,s A5.

Such a finite quotient G is called a G;-group, for i = 2, 3, 4 or 5; the quotient
V /G is the handlebody orbifold O; shown in Figure 2a. Now the following is
clear.

PROPOSITION 4. The closed 3-orbifolds of largest possible negative Heegaard
number —1/12 are exactly the generalized tetrahedral orbifolds O(o, i, j) ob-
tained by identifying two orbifolds as in Figure 2a along their boundaries. Their
underlying topological space is the 3-sphere, and the singular set is given in Fig-
ure 2b, where o denotes a 3-braid and 2 < i, j < 5. The maximally symmetric
3-manifolds are exactly the regular coverings of these orbifolds.

We call the orbifolds O(o, i, j) of minimal type, or simply minimal. The orbifold
fundamental group of O(o, i, j) can be obtained from Figure 2b exactly in the
same way as the Wirtinger presentation is obtained from a projection of a knot or
link. We have indicated the corresponding generators in Figure 2b, where we con-
sider the braid o also as an automorphism of the free group in the three generators
a, b, x in the usual way (so o (abx) = abx; note also that t = xy = (ab)~! and
s = o(x)y = (o(a)o(D))™!). Alternatively, one may apply the orbifold version
of Van Kampen’s theorem. The result is as follows.
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(a) e Q i=2,3,4,0rb

(b)

Figure 2

PROPOSITION 5.  The orbifold fundamental group of O(o, i, j) has a presentation
of the form

mO(o,i, jy=1{a,b,x,y|abxy = 1, a’> = b* = (ab)’ =1,
=y =@y =1 @y =1)
= Gi/{lc@)y))), 2<i,j<5.

Each maximally symmetric G-manifold is defined by an admissible epimorphism
from some 7,0(o, i, j) onto G; here “admissible” means that the epimorphism is
injective on all finite groups associated to the singular set of the orbifold O(o, i, j).
If there exists such an epimorphism then we say that the orbifold O(o, i, j) is G-
admissible.

3. Minimal G-Manifolds

In this section we characterize the minimal G-manifolds for cyclic and dihedral
groups G; we also characterize the possible types of G-manifolds of genus 2.

Before stating our main result we recall some facts about cyclic branched cov-
erings of links. Let L = K; U---U K, be a link in the 3-sphere with v com-
ponents. Denote by m,, ..., m, meridians of the components K; U --- U K, of
the link, oriented in an arbitrary way. The homology H,(S3 — L) of the comple-
ment of the link, isomorphic to the abelianized fundamental group 7 (S> — L),
is isomorphic to Z" and generated by the homology classes of the meridians. Each
surjection

Yim(S® — L) » Hi(S* - L) — Z,

onto the cyclic groups of order n defines an n-fold cyclic branched covering of the
3-sphere branched over the link L (or, as we shall say, a cyclic branched covering
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of the link L). This is a closed 3-manifold M = M (y), which can be constructed
by compactifying the unbranched regular covering of S> — L corresponding to the
kernel of ¢ by a finite collection of circles (the preimage of the link L); note that
the finite cyclic group of covering transformations of the unbranched covering ex-
tends to the branched covering. Every n-fold cyclic branched covering of L can
be constructed in this way.

Of course a knot has, up to homeomorphism, a unique r-fold cyclic branched
covering. In order to fix a preferred n-fold cyclic branched covering of a link, we
start with an oriented link L. Then, together with an orientation of S3. the orien-
tations of the components of L define preferred orientations of the meridians of
L, and we define the uniform n-fold cyclic branched covering of the oriented link
L by the condition that the corresponding surjection ¥ maps all meridians of L
to the same generator of Z,. Then the preimage of L in M has exactly v com-
ponents, and these constitute the fixed point set of the cyclic group of covering
transformations.

We have the following characterization of the minimal Z,, and D,-manifolds.

PrROPOSITION 6. (@) For n > 2, every minimal Z,-manifold is a minimal D,,-
manifold. If n > 2 is prime, then every minimal Z,-manifold is a minimal
(D,, x Z)-manifold.

(b) The minimal (D, x Z,)-manifolds, of genus g = n — 1, are exactly the uni-
form n-fold cyclic branched coverings of the oriented 2-bridge links (one or two
components). The minimal Z,, or D,,-manifolds that are not minimal (D,, X Z,)-
manifolds are cyclic branched coverings of 2-bridge links with two components
of different branching orders. For infinitely many values of the genus g =n — 1,
the order 4n of D,, x Z, is maximal for finite group actions on handlebodies of
genus g.

Proof. Let M be a minimal Z,-manifold. There exists a Heegaard decomposition
of M into two Z,-invariant handlebodies V; of genus g, i = 1 and 2, such that the
induced Z,-actions on these handlebodies are strong genus actions. By Proposi-
tion 1, the quotients H; := V;/Z, are handlebody orbifolds, and Proposition 3
gives all possibilities for the associated graphs of groups. This determines the han-
dlebody orbifolds H;, which are of the type shown in Figure 3a: the underlying
topological space is the 3-ball, and the singular set consists of two arcs of branch-
ing orders a and b, where (a, b) = (n, n), (p1, n), or (p1, n/py) according to the
cases in Proposition 3a.

(.
® &

Figure 3
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The quotient M /Z,, is an orbifold obtained by identifying the handlebody orb-
ifolds H; and H; along their boundaries; the result is the 3-sphere with a 2-bridge
link as singular set. Thus M is a cyclic branched covering of a 2-bridge knot or link.

Let L be an arbitrary oriented 2-bridge link. It is well known that such a link
can be represented by a closed rational tangle with a D,-symmetry (see e.g. the
pictures in [2] or [21]). The link L has one or two components. If it has one com-
ponent then the D;-symmetry of the link lifts to a D,-action on its cyclic branched
covering M. Together with the covering group Z,, this gives an action of the group
D, xZ, on M.

If L has two components then any element of the D,-symmetry preserves or re-
verses simultaneously the orientations of these components. In case » is prime, the
branching orders of the two components are the same and thus the D,-symmetry
lifts again to a D,-action giving a (D, x Z;)-action on M. If n is not prime then the
link has two components with different branching orders a # b, and thus only the
subgroup Z, of D, preserving these components lifts to a Z,-action on M which,
together with the covering group, gives a D,-action on M. -

The D,-symmetry of the tangle preserves both standard unknotting tunnels of
the link (see [2]). Consider the boundary of a D,-invariant regular neighborhood
of one of these two tunnels; this is a 2-sphere meeting the link in four points,
which defines a Heegaard decomposition (isotopic to the original one) of the orb-
ifold M /Z, into two handlebody orbifolds. Its preimage in M gives a Heegaard
decomposition of M, isotopic to the original one, into two handlebodies invariant
under the D, -action (resp. (D, x Z;)-action). Hence M is a minimal D,,-manifcld
and, if n is prime, also a minimal (D, x Z,)-manifold.

Now let M be a minimal (D, x Z;)-manifold. Then M has a decomposition
into two handlebodies V; invariant under the action of D,, x Z,, i = 1 and 2. Let
Z,, be the unique cyclic subgroup of order n of D,, x Z,. The quotient V;/Z, is
an orbifold all of whose possible singular points belong to branching axes of or-
der n. It follows that V; /Z,, is the handlebody orbifold in Figure 3a, witha = b =
n. The quotient M /Z, is an orbifold obtained by identifying two such orbifolds
along their boundaries. The result is the 3-sphere with a 2-bridge link as singu-
lar set, and consequently M is an n-fold cyclic branched covering of such a link.
Moreover, since the induced D;-action on M/Z,, lifts to M, it follows easily that
this cyclic branched covering is uniform.

Conversely, let L be an oriented 2-bridge link and M a uniform n-fold branched
covering of L. Then, as above, the D,-symmetry of L lifts to a D,-action on
M and we obtain again an action of the group D, x Z, on M that leaves in-
variant a Heegaard decomposition of M of genus n — 1. Thus M is a minimal
(D, x Z5)-manifold.

Finally, it follows from the results in [15] that the order 4n of D, x Z, is max-
imal for finite group actions on handlebodies of genus g = n — 1, for infinitely
many values of g (also, for infinitely many values of g it is not maximal). O

Now we consider 3-manifolds of Heegaard genus 2. It is well known that the hy-
perelliptic involution of a Heegaard surface of genus 2 of such a manifold extends
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to both handlebodies of the Heegaard decompositon. The quotient of each han-
dlebody by the extended involution is the handlebody orbifold in Figure 3b, and
consequently M is a 2-fold branched covering of a 3-bridge link (see e.g. [3, Cor.
11.9]). By the next corollary, the 3-manifolds of genus 2 can be divided into four
classes.

COROLLARY. Let M be a closed 3-manifold of genus 2. Then M is a G-manifold
of genus 2, where G is one of the four groups Z,, D, , D4, or D¢. The Dg-manifolds
(which are maximally symmetric: in fact, Dg is the unique maximal handlebody
group of smallest possible order 12) are exactly the 3-fold cyclic branched cover-
ings of the 2-bridge links. The D4-manifolds are exactly the 4-fold cyclic branched
coverings of 2-bridge links with two components of branching orders 2 and 4.

Proof. By the remarks preceding the corollary, each 3-manifold M of genus 2 is a
Z;-manifold of genus 2. By [11, Thm. 8.2], the finite groups that act on the han-
dlebody of genus 2 are the subgroups of D4 and D¢ = D3 X Z,, that is, the cyclic
groups of orders 2, 3, 4, 6 and the dihedral groups of orders 4, 6, 8, 12. By Propo-
sition 6, for n > 2 every minimal Z,-manifold is also a minimal D,-manifold,
and every minimal D3-manifold is a minimal Dg-manifold. Hence there remain
exactly the four cases of the corollary. The remaining part of the corollary is also
a consequence of Proposition 6. O

ExaMPLES. (a) The following example is from [12]. It shows that finite sym-
metry or isometry groups G of hyperbolic 3-manifolds of Heegaard genus 2 can
be arbitrarily large, and consequently also the equivariant Heegaard genus of such
group actions.

Let K be the figure-8 knot and M,, the n-fold cyclic branched covering of K.
Then, as in the proof of Proposition 6, M, has a finite symmetry group D,, x Z,.
The knot K has a cyclic symmetry t of order 2, and the projection of K and the
axis A of 7 to the quotient §3/7 (which is again the 3-sphere S>) is an exchange-
able link in S with two components K and A that are trivial knots. The n-fold
cyclic branched covering of the trivial knot K is the 3-sphere, and the preimage
of A is a turk’s head link A, of bridge number 3. The 2-fold branched covering of
A, is again the manifold M,,, and consequently the Heegaard genus of M,, is equal
to 2 (for n > 3), see for example [3, Prop. 11.4]. On the other hand, the minimal
(D, x Z,)-manifold M, has genus n — 1. The fundamental groups of the man-
ifolds M,,, which are hyperbolic for n > 3, are the Fibonacci groups F (2, 2n);
see [14].

(b) The ten closed hyperbolic 3-manifolds of smallest known volumes can all be
obtained by Dehn surgery on the Whitehead link; see [6] and [12]. Following [12]
we denote these manifolds by M;, 1 < i < 10, in order of increasing volume;
thus M is the hyperbolic 3-manifold of smallest known volume. All these mani-
folds are 2-fold branched coverings of certain 3-bridge links that have been iden-
tified explicitly in [12]. For example, in the notation of the tables in [3] and [17],
M, M3, My, are (respectively) the 2-fold branched coverings of the hyperbolic
3-bridge knots 949, 10461, 10155. The symmetry or isometry groups of these links
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are respectively D3, D; = Z,, and D,; see the lists in [5] and [7]. By the pic-
tures in [3, p. 265] and [17, pp. 414—415] for each of the three knots, there exists a
2-sphere in S defining a 3-bridge presentation of the knot which is invariant un-
der the action of its symmetry group. Lifting everything to the 2-fold branched
covering, we see that M;, Mj, My are respectively Dg-, D,-, D4-manifolds of
genus 2. Moreover, by [6] these groups are also the full isometry groups of the
three hyperbolic 3-manifolds.

Examples of Z,-manifolds of genus 2 that are not D,-manifolds of genus 2
(for n = 2, 3 or 6) are hyperbolic manifolds M that are 2-fold branched cover-
ings of 3-bridge knots and links with trivial symmetry group—for example, the 7-
hyperbolic knots 93, and 933. To see that such a manifold M is not a D,-manifold
of genus 2, one can use the main result of [26], which implies that M is a 2-fold
branched covering of a unique link.

4. Maximally Symmetric 3-Manifolds of Small Genus

As noted in Section 2, each maximal handlebody group of order 12(g — 1) is
a G;-group fori = 2, 3, 4, or 5. The G,-groups are also exactly the maximal
bounded surface groups; see [15]. For the G,-groups of small order see [9]; alsq,
it has been noted in [24] that, for i > 2, the G;-groups of order less than 96 are
S4, S4 X Z,, and As. This yields the following.

PROPOSITION 7.  The maximal handlebody groups G of genus g < 5 are exactly
the following groups: Dg of genus 2, S4 of genus 3, D3 x D3 of genus 4, and
S4 x Z, of genus 5. Other maximal handlebody groups of small order are As of
genus 6 and As x Z, of genus 11.

The maximally symmetric Dg-manifolds were dicussed in Section 3. In a sim-
ilar way, for the maximally symmetric (D3 x D3)-manifolds we have our next
proposition.

PROPOSITION 8. The maximally symmetric (D3 x D3)-manifolds are exactly the
regular branched (Z3 x Z.3)-coverings of 2-bridge links with two components.

Proof. Let M be a minimal (D3 x D3)-manifold. As before, M has a decompo-
sition into two handlebodies V; invariant under the action of D3 x D3, i = 1 and
2. Considering the subgroup Z3 x Z3 of D3 x D3, the quotient V;/(Z3; x Z3)
is the orbifold in Figure 3a with a = b = 3, and consequently M is a regular
(Z3 x Z.3)-covering of a 2-bridge link with two components. O

In the remaining part of this section we will construct, for the other groups G in
Proposition 6, the “simplest” hyperbolic maximally symmetric G-manifolds. Re-
call from Section 2 that each m.s. G-manifold is defined by some admissible epi-
morphism from ; O(o, i, j) onto G, for some of the minimal orbifolds O (o, i, j)
of largest negative Heegaard number —1/12. The easiest of these are the tetra-
hedral orbifolds whose singular set is the 1-skeleton of a tetrahedron. Accord-
ingly, the simplest m.s. G-manifolds will be uniformized by normal subgroups of
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small index, operating without fixed points, in one of the spherical, Euclidean, or
hyperbolic tetrahedral groups.

By a Coxeter tetrahedron we understand a bounded spherical, Euclidean, or hy-
perbolic tetrahedron T all of whose dihedral angles are submultiples 7v/n of n,
where n > 1. The Coxeter group associated to the tetrahedron is the group C(7)
of isometries of spherical, Euclidean, or hyperbolic 3-space X3 generated by the
reflections in its faces, and the corresponding tetrahedral group G(T) is the sub-
group of index 2 of orientation-preserving elements. The quotient X3/ G(T) isa
closed 3-orbifold O(T) whose topological space is the 3-sphere S and whose sin-
gular set is the 1-skeleton of the tetrahedron 7', where the branching order of an
edge with dihedral angle 7 /n is n. Also, the orbifold fundamental group 7, O(T)
is isomorphic to G(T') (the universal covering group of the orbifold).

e ————
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]
Figure 4

There are exactly nine hyperbolic tetrahedra (the Lanner tetrahedra; see e.g. [1;
19]). One of these is the tetrahedron 7 in Figure 4, where a number » at an edge
denotes a dihedral angle 7r/n at that edge; the vertex groups indicated in Figure
4 are the local groups of the orbifold O(T) belonging to these points. Note that
the orbifold O(71), of Heegaard number —1/6, is not of minimal type; however,
as indicated in Figure 4, O(T}) has a symmetry 7 of order 2, and the quotient orb-
ifold O(T}) := O(T1)/t has Heegaard number —1/12 and is of minimal type. In
the notation of Proposition 5, the orbifold fundamental groups are as follows (with
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o(a) = a, o(b) = bxb~!, and o(x) = b in the first case and with o (@) = a,
o(b) = bxbx~'b~!, and o (x) = bxb~! in the second):

mO(Ty) = G(T1) = Sy 2, Sa/((By)*),  mO(T1) = Dy #z, Sa/((bxb™'y)*).

Now, by some easy computations in S4 (which we omit), the next lemma follows.

LEMMA 1. (a) Up to automorphisms of S4 x Z, and S4, there are exactly two
admissible surjections from 1, @(Tl) onto S4 X Z, and also onto S4 (induced by
the first ones).

(b) Up to conjugation in Sy, there are exactly two admissible surjections from
G(T)) = mO(T) onto S4 (and no admissible surjection onto S4 x Z.,); these are
the restrictions of the surjections from (a).

Let K be the kernel of one of the two surjections from G(7}) onto S4 (or, equiva-
lently, of its extension to a surjection from @(Tl) onto S4 X Z»). Then K acts on
hyperbolic 3-space H?, and G(T}) is the semidirect product K x S4. The quotient
M, := H3/K is a closed hyperbolic 3-manifold with an S4-action. Equivalently,
M, is the regular covering of the orbifold O(T}) corresponding to the subgroup K
of m;O(Ty1). The surjection from 7, O(Ty) onto S4 x Z, induces a surjection from
m10O(T)) onto S4; let M; be the hyperbolic 3-manifold which is the regular cov-
ering of the orbifold O(T}) corresponding to the kernel of this induced surjection.
Note that M, is a 2-fold covering of M,. Also, M; is am.s. (S4 x Z,)-manifold
and M; a m.s. S4-manifold.

For the manifold M; we have the following nice and simple geometric construc-
tion. The tetrahedral group G(7}) has two copies 77 U r(77) of T} as a fundamen-
tal region in H3, where r is a reflection in one of the faces of 7j. We may assume
that one of the four vertices of the tetrahedron 7 is the origin 0 in the Poincaré
3-ball model of H3. Then the stabilizer of 0 in G(7}) is the octahedral group Sy,
and P; := S4(T1Ur(T1)) is a polyhedron in H3 (consisting of 48 copies of T7) that
is a fundamental region for K in H3. Combinatorially, P, is a cube with each of
its six faces divided into four quadrangles (see Figure 5); a number # at an edge of
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such a quadrangle denotes a dihedral angle 27 /n of P; along that edge, a number
(n) an axis of S, of order n.

The manifold M, is obtained by identification in pairs (reversing the orienta-
tion of the faces because M, is orientable) of the 24 faces of P;; these identifica-
tions are induced by elements of K. The normality of X in the semidirect product
G(T1) = K X S4 has the following consequence.

LEMMA 2. The pattern of identification of the faces of P, is S4-equivariant, that
is, equivariant with respect to the action of the octahedral group S4 on Py. Two
identified faces of P are related by an involution in S4.

Proof. 1t is clear that normality of K in G(T}) = K x S, implies that the pattem
of identifications of the faces of P; is S4-equivariant; that is, if a face F is identi-
fied with a face F' then, for every f € S,, the face f(F) is identified with f(F”).
Choose the unique k € S4suchthatk(F) = F’.Itfollowsthat k(F) = F’isidenti-
fied with k(F’") = k%(F), which must be F again; therefore, k? is the identity. [

Lemma 2 makes it easy to find the different possibilities of S 4-equivariant identifi-
cations of the faces of P; such that the lengths of the edge cycles of such an iden-
tification are 3 or 4, corresponding to a dihedral angle 27 /3 or 27 /4 at an edge
(see [8] for the notion of an edge cycle and Poincaré’s theorem on fundamental
polyhedra). The result is as follows.

LEMMA 3. There exist exactly the two Ss-equivariant identifications of P indi-
cated in Figure 6 that are in accordance with its dihedral angles. These differ by
a reflection of Py (an element of the Coxeter group C(11)) and therefore define
the same hyperbolic 3-manifold M.

It is already implied by Lemma 1 that there must exist exactly two S4-equivariant
identifications of P, so for the proof of Lemma 3 one need only check that the
two identifications in Figure 6 have the right lengths of edge cycles. Collecting
our results yields the following.

Figure 6
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PROPOSITION 9. (a) Up to automorphisms of the preimage and image groups,
there exists a unique admissible surjection from G(T1) = mO(Ty) onto S4 and
from my @(Tl) onto S4 X L. The covering corresponding to the kernel of these sur-
jections is the hyperbolic maximally symmetric (S4 X Z,)-manifold M, of genus 5.

(b) Up to automorphisms, there exists a unique admissible surjection from
710(T}) onto Sg4; the covering corresponding to the kernel of this surjection is
the hyperbolic maximally symmetric S 4-manifold M, of genus 4, which is a 2-fold
covering of M;.

Proof. A reflection of P; in a suitable face of the tetrahedron T lies in the Coxeter
group C(T}) and transforms one of the two identifications of Lemma 3 into the
other; therefore the automorphism of G(7;) induced by it (by conjugation) does
the same for the two surjections from G(T7) = m;O(T}) onto S4. This reflection,
projected to the tetrahedral orbifold O(77), commutes with the rotation t of Fig-
ure 4, and therefore induces also a reflection of the orbifold O(T;) and an auto-
morphism of 7,0O(T)) that transforms one of the two surjections from 7,0(T)
onto S4 x Z, or S4 into the other. O

The preceding constructions apply to some others of the nine hyperbolic tetra-
hedra. Let T3 (resp. Ts) be the two hyperbolic tetrahedra in Figure 7, which we
consider simultaneously. Again we have an involution t of O(7;) and denote the
quotient by O(T}), i = 3 (resp. i = 5).

As 5 A, D 5 A
2 2 2 2
3 3 I ’ 2 3
3 (resp.5) 3 (resp.5)
Figure 7

LeEMMA 4. (a) Up to automorphisms of the image groups, there exist exactly
two (resp. three) admissible surjections from t1O(T3) (resp. 710(Ts)) onto both
As X Z, and As.

(b) Up to conjugation in Ss, there are exactly two (resp. three) admissible sur-
jections from G(T3) = m0O(T3) (resp. G(Ts) = m10(Ts)) onto As and no ad-
missible surjection onto As X Z,; these are the restrictions of the surjections

from (a).

As in the case of T7, we take two copies of 73 (resp. Ts) and apply the dodecahe-
dral group As to them. We get polyhedra P; (resp. Ps); combinatorially, these are
obtained by subdividing each face of a dodecahedron into five quadrangles; see
Figure 8.
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0

A
(3)// // T3 (resp.Ts)
n

n=3(resp.5)

Figure 8

ProPOSITION 10. (a) There are exactly the two As-equivariant identifications of
Ps indicated in Figure 9, in accordance with the dihedral angles. These differ by a
reflection in C(T3) and therefore define the same hyperbolic maximally symmetric
(As x Zj)-manifold M3 of genus 11.

(b) There are exactly the three As-equivariant identifications of Ps indicated
in Figure 9, in accordance with the dihedral angles. Two of these differ by a re-
flection in C(Ts) and therefore define the same hyperbolic maximally symmetric
(As x Z)-manifold Ms of genus 11. The third identification is invariant under the
action of the extended dodecahedral group As, and defines a hyperbolic maximally
symmetric (As x Zjy)-manifold Ns whose universal covering group is normal in
the Coxeter group C(Ts).

Figure 9
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(c) The manifolds M3, Ms, N5 are (respectively) 2-fold coverings of hyperbolic
maximally symmetric As-manifolds M3, Ms, N5 of genus 6 corresponding to the
kernels of the one (resp. two) surjections, up to automorphisms of image and

preimage groups, from 77 O(T3) (resp. w1O(Ts)) onto As.

For some further properties of the manifold Ns, see [25].

The last hyperbolic tetrahedron for which a similar construction works is the
tetrahedron 75 in Figure 10a; we consider it together with the spherical tetrahedron
Tp in Figure 10b.

D, 5 Ag Ds 5 A
2 2 2 2
2 3 2 3
Ds 5 A; D; 3 A,
(a) (b)
Figure 10

PrOPOSITION 11. Up to conjugation in Ss, there are exactly two admissible sur-
jections from G(Tp) = mO(T,) (resp. G(Tp) = m0(Tp)) onto As. The as-
sociated polyhedra P, (resp. Py) are the regular hyperbolic 2 /5-dodecahedron
having dihedral angles 27 /5 (resp. the spherical 2w /3-dodecahedron). Accord-
ingly, in both cases there are exactly two As-equivariant identifications compat-
ible with the dihedral angles: after a rotation by +m /10 (resp. +3m/10), each
of the twelve faces of the dodecahedron is identified with its opposite face. These
identifications differ by a reflection and thus define the same maximally symmetric
As-manifold, which is the Seifert—Weber hyperbolic dodecahedral space (resp. the
spherical Poincaré homology 3-sphere).

The tetrahedral groups of the remaining five hyperbolic tetrahedra do not admit an
admissible surjection onto a vertex group (i.e., do not split over a vertex group).
However, the construction works for some of the other spherical and Euclidean
Coxeter tetrahedra.
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