Polynomial Hulls of Sets in o

Fibered over the Unit Circle

H. ALEXANDER

Introduction

Let X be a compact subset of C? lying over the unit circle T; that is, letting
7 (z, w) = z be the projection to the first coordinate, m(z) € T for all z € X. The
fiber X, = {w € C : (z, w) € X} is identified with {z} x X, = X Nn~1(z) C
C2. A number of authors [AW; S1; F] have discussed the polynomial hull X of X.
The following definitive result was obtained by Slodkowski [S2].

THEOREM. Suppose that each fiber X, is connected and simply connected. Then
X\ X is the union of graphs of H* functions h whose boundary values h*(z) are
contained in X, for almost all z € 'T.

Without the assumption that the fibers are connected, the conclusion no longer
holds and in fact the hull may contain no analytic structure. This is the case in
the example of Wermer [W] discussed below, where the fibers X, are totally dis-
connected.

The H* functions & of the theorem are sometimes referred to as analytic se-
lection functions. In the context of a connected compact plane set, “simply con-
nected” means having connected complement in C; this is equivalent to being
polynomially convex. When X is a compact subset of c3 lying over the unit cir-
cle, a statement like that of the above theorem—that the hull of X is composed of
the graphs of (C2-valued) selection functions—is no longer true, at least when the
fibers X, are not linearly convex: this special case carries over to all dimensions
[AW, S1]. Helton and Merino [HM] and Cerne [C] have given examples of sets
X in C? with “nice” fibers X, such that 7 (X) is the closed unit disk but where no
analytic selection functions exist. In their examples the reason that X covers the
disk is that there is a 1-variety with boundary in X. In particular, X contains ana-
lytic structure. In general, however, as was first shown by Stolzenberg [St], poly-
nomial hulls need not contain analytic structure. The purpose of this note is to
construct a compact subset X of <C3, lying over the unit circle, such that X covers
the unit disk but contains no analytic structure and such that the fibers are topolog-
ically simple, like those in Slodkowski’s theorem—in our case the polynomially
convex fibers X, € C? will be contractible to a point in C2. It is of interest to note
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that Slodkowski [S3] has recently obtained some positive results on polynomial
hulls of sets X C C? lying over the unit circle.

THEOREM 1. There exists a compact subset X of C> lying over {|z| = 1} with
m(X) = {|z| < 1} such that each fiber X, is a contractible polynomially convex
set and such that X N {|z| < 1} contains no analytic variety of positive dimensior.

That X contains no analytic variety of positive dimension is equivalent to the fact
that every holomorphic map from the unit disk into X is constant.

To produce X C C3 we shall adapt a method of Wermer [W], who constructed
a set in C? over the unit circle whose polynomial hull covers the unit disk and
which contains no analytic variety of positive dimension. A different variant of
Wermer’s example has been given by Levenberg [L]. First we “localize” Wermer’s
example in C2.

THEOREM 2. There exists a compact subset Y of C? with n(Y) C T such that:

() m(¥) = {lz] < 1},
(i1) for all closed proper subsets o of T and M > 0,

Z\Z=7Y\Y,

where Z =Y U{(z,w) :z€a,|w| <M}, and
(iii) Y \ Y contains no analytic variety of positive dimension.

REMARK. Aside from (ii), this is Wermer’s example. The main point here is that
one can “fatten” the fibers (to disks of large radius) over an arbitrary proper closed
subset & and still have a set Z with no analytic structure over {|z| < 1}. This is in
contrast to the sets in Slodkowski’s theorem: the hulls of these sets become strictly
larger over the unit disk if the sets are “fattened” over a set « as in (ii).

We shall first indicate the construction for Theorem 2 and then apply it to the proof
of Theorem 1.

1. Proof of Theorem 2

The construction of Y is a refinement of Wermer’s construction. We shall adopt
his notation, which we recall here for the convenience of the reader. By a change
of scale in the z-variable, we replace the unit circle by {|z|] = 1/2}; in particular,
o is now a proper closed subset of {|z] = 1/2}. Let a;, a,, ... denote the points
in the disk |z| < 1/2 both of whose coordinates are rational. For each j let B; be
the algebraic (2-valued) function B; = (z1 —a1)(z —a2) -+ - (2 — aj_1)/7 — a;.
Let g, = Y[ ¢;jBj, where the c¢; are positive numbers to be chosen below. Let
{w;(2)}1<j<2» be the set of 2" values of g, (z)—these are not necessarily distinct.
Let X(cy, c2, --.,cy) be the intersection of the “graph” of g, in C? with |z] <
1/2; that is,

X(c1, €2, .- r ) ={(z,w) e C*: |z] < 1/2, w=wj(x) for1 < j <2"}.
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Let B be a countable basis for the topology of T consisting of nonempty open sub-
sets of T. Let {c,,} be a sequence of closed proper subsets of T such that, for each
W e B, a, = T \ W for infinitely many n. This implies that for every closed
proper subset & of T, ¢ C «,, for infinitely many n. We put E, = {(z, w) € Cc?.
z€ayand |lw| <n}. Setr, =1 —1/n)(1/2),n = 1,2,.... Aside from (2+),
the following lemma is taken directly from [W].

LEMMA 1. There exists a sequence c; (j = 1,2, ...) of positive constants with
c1 = 1/10and cj41 < (1/10)c;, there exists a sequence of positive constants {€;},
and there exists a sequence of polynomials { P;} in z and w such that:

{Pi=0,|z] <1/2} = Z(c1,¢2,---565), f=1,2,...; 1)
{Pj+1 = Ej+1s lz] < 1/2} - {Pj < &j, lz| =1/2}, j = L2,... 2

(Ej1 U{IPrat] < 41, l2l = 1/2D7 N {lz] < 15
CUPl<ej,ld<rl j=12,...;aid (%)

if lal < 1/2 and |Pj(a, w)| < &j, then there exists w; with
Pj(a,wj)=()and|w—wj|<1/j,j=1,2,.... 3)

For the proof of Lemma 1 we shall need the following.

LEMMA 2. Letéd; >0,C > 0,and0 < r < 1/2. Let « be a proper closed sub-
set of {|z| = 1/2} and set E = {(z,w) € C*> : z € a and |w| < C}. Let Q;
and Q- be polynomials in z and w that are monic in w. Suppose that {Q, = 0,
Iz] = 1/2} C {| Q1| < 81, lz] = 1/2}. Then there exists a 5, > O such that

(EU{|Q2l <82, lzl = 172D N{lzl = r} S {IQ1] < b1, Iz =7}

Proof. Set Sy = EU{|Q2| < 1/k, |zl =1/2}, k=1,2,.... Then S | S where
S=EU{Q, =0, |z| = 1/2}. Hence S { S.

We claim that § = E U {Q, =0, |z] < 1/2}. Since E is polynomially convex,
S\ S C {lz] < 1/2}. Also {Q2 = 0, |z| < 1/2} C § by the maximum principle,
since {Q, = 0, |z] = 1/2} C S. Suppose that (a, b) € S with lal < 1/2. Let u
be a Jensen measure [B] for (a, b), supported on S. Then

log|Q2(a, b)| < /longzld,u.
S

The push-forward 7, (1) is Poisson measure on {|z| = 1/2} for the point a. There-
fore u(S \ E) = m(){)z] = 1/2} \ @) > 0O, because « is a proper subset of
{]z] = 1/2}. Since log|Q>| = —oco on S \ E, we have log|Q»(a, b)| = —oo; that
is, (a, b) € {@2 =0, |z] < 1/2}. This yields the claim.

Since {Q2 = 0, |z] = 1/2} C {|Q1] < 61, |z} = 1/2}, we have that {Q, = 0,
lzl < 1/2} S {1Qil < &1, lz| < 1/2} and therefore $ N {lz| < r} S {IQ1] < &1,
|z] < r}. Hence, for k sufficiently large, we have Sc N {lz| <r} C{01] < &1,
|z| < r}. The lemma follows by taking §, = 1/k. L
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Proof of Lemma 1 (after [W]; modified to achieve (2+)). For j = 1take c; =
1/10, &; = 1/4, and P;(z, w) = w? — (1/100)(z — a;). Then (1) and (3) hold
for j = 1; also {|P1| < &1, |z] < 1/2} € {lw| < 1}. Assuming that cj, &;, P,
have been chosen for j = 1, 2, ..., n so that (1), (2), (2+), and (3) hold, we shall
choose ¢p41, €nt1s Poyi-

For each positive ¢ we define a polynomial

271
Pe(z, w) = [ [I(w — w;(2))* = ¢*(Bat1 2))°1.

Jj=l1
Then {P.(z, w) =0} N {|z| < 1/2} = Z(c1,c2,... , Cn, ) and

P.=P2+ 201+ + (¥ Qsn,

where the Q; are polynomials in z and w not depending on c.
We claim that for ¢ sufficiently small,

(1P| < €2/2, |z] < 172} C{|Pu] < &n, |2] < 1/2). “
By (2), for j < n we have
(1P| < &2/2, |z < 1/2) C {Jw] < 1} 5

for ¢ sufficiently small. It follows that the sets A, = {|P.| < .9;3' /2, 1z| < 1/2}
are compact and that { P,} converges uniformly on {|z] < 1/2, |lw| < 1} to Pn2 as
c 4 0. Hence A, C {|P,| < &n, |z| < 1/2} for c sufficiently small—this is (4).
Now we fix ¢ > 0 such that (4) holds and such thatc < (1/10)c,. Wesetc, 1 =
cand P, 1 = P.. Then we choose &, such that: .
(i) &np1 < 83/2;
(i1) |Ppy1(z, w)| < &,41 and |z| < 1/2 implies that there exists w,; with
[Pr+1(2, Wnt1) =0 and |w — wy4| < 1/(n + 1); and
(iil) (Ens1 Y {|Pat1] = &ni1y |2l = 1/2D7 0 {lz] < ru} S {I Pl < &, |2] < 10l
To achieve (iii) we apply Lemma 2 withe = 41, C =n+1,8 =¢,, r =
rn, Q1 = P,, and O, = P,;;. For Lemma 2 we must check that {P. = 0, |z] =
1/2} € {|P,] < &u, |z] = 1/2}. This follows from (4). Now Lemma 2 yields a 5.
Choosing ¢,41 < 8, gives (iii).
We now have (1), (2), (2+), and (3) for j = n + 1. This gives Lemma 1. O

We now define, following [W],

X = ﬁ{anl <én |zl =1/2} and Y =XnN{|z] =1/2}.

n=1

Wermer shows that X = ¥ and that X contains no analytic varieties of positive
dimension.

Now let o be a proper closed subset of {|z| = 1/2} and let M > 0. Set E =
a X {lw| < M}andlet Z = E U X. To complete the proof of Theorem 2 we need
to show that Z \Z = Y \ Y. There exists a strictly increasing sequence of positive
integers ny such that ¢ C «,,, and ny > M for all k. Hence E C E,, for all k. Let
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0 < r < 1/2. There exists a ko such that r,,,_; > r for k > ky. Now, by (2+), for
k > ko we have

Zn{lzl <r} S Z0{lz] < ru1)
C (Epy U{|Poy| < &g, 12l = 172D 0 {lz] < rpyp—1}
g {ank—ll < gnk—l’ lzl < 1/2}'

Therefore

2002 <7} € (\HIPuot] < e} O {12l < 1/2}1 = X 0 {1zl < 1/2).
k=ko

Hence Z N {|z] < 12} =XN{z] < 1/2}andso Z\ Z = X\ Y =Y \ Y. This
gives Theorem 2. O

We remark, for use below, that for all z with |z| = 1, all fibers Z, are polynomi-
ally convex; indeed, each Z, is either Y, or the closed unit disk and the fibers Y,
are polynomially convex by the construction.

2. Proof of Theorem 1

In C3 let z, wi, ws be coordinates and let 7 (z, w;, wy) = z be the projection to
the first coordinate. Let X be a compact subset of C> lying over {|z| = 1}. As
before, X, = { (w1, wy) € C?: (z, wy, wy) € X }.

LEMMA 3. Suppose that Q is a closed subset of the unit circle of positive linear
measure such that wy = 0 on the set X, forall z € Q. Then

XN {jz] <1) S {wy =0}

Proof. Say x = (z, p1, p2) € X with |z| < 1. Let u be a Jensen representing
measure [B] on X for evaluation at x for the polynomials. Then 7, (dp) = dm, =
(1/2m) P,(0) d6 on the unit circle z = e‘?, where P,(0) is the Poisson kernel.
Hence

log|p2| < f loglwa|dp = —oo
X

since log|w,| = —oo on Q; = 7~ 1(Q) N X and u(Q;) = m,(Q) > 0. Hence
p2=0. O

Let Z be the subset of C? given by Theorem 2 starting from a proper closed sub-
set a of the unit circle with nonempty interior and taking M = 1. Choose a con-
tinuous real nonnegative function ¢ on T, ¢ £ 0, such that {z € T : ¢(2) =
0} is a subset of o of positive linear measure. Define X as the image in C> of
Z x [0, 1] under the map ((z, w), t) +— (z, (1 — )w, t¢(z)). In other words, X,
is the cone in C? with vertex (0, ¢ (z)) and base Z, x {0} € C?; hence the fiber
X, is contractible.
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We have the following equality between subsets of C3:
XN{wa=0}=Z x {0}. (6)

To see this, consider two cases. If ¢(z) = 0, then z € « and clearly X, =
{(w1,0) : Jwy| =1} =Z, x {0}. If ¢(2) # O, then x = ((1 — Hw, 1¢(2)) €
X, N{wy = 0} (where w € Z, and 0 < ¢ < 1) implies that t = 0 and so x =
(w,0) € Z, x {0}; thatis, X, N {wy =0} = Z, x {0}.

We claim that X, is polynomially convex for all z with |z| = 1. For this we
again consider the previous two cases. If ¢(z) = 0 then X, = A x {0} € C?,
where A is the closed unit disk, and so X, is polynomially convex. Suppose next
that b = ¢(z) > Oand let x € X, € C2 We have X, = {((1 — D)w, t¢(2)) :
0<t<1,we Z,)}. Then m,,(X;) = [0, b]. Hence 7,,(X;) = [0, b]. There-
fore so = wy(x) € [0, b] and x is in the polynomial hull of X, N {w, = sp} =
(s1-Z,) x {so}, where sy = 1 —so/¢p(2) and s, - Z, = {512 : z € Z, } is polynomi-
ally convex since Z, is polynomially convex. Thus X, N {w, = s} is polynomi-
ally convex, so x € X, N {wy = 5o} € X, and it follows that X, is polynomially
convex.

Let W =Xn {lz] < 1}. We claim that W C {w, = 0}. For this, by Lemma 3 it
suffices to show that w, = 0 on X, for all z, |z] = 1, such that ¢(z) = O (a setof
positive measure). But ¢p(z) = 0 implies that X, = A x {0}, as observed above.
Soindeed W € {w; = 0}. Hence K C {w, = 0}, where we define X C C3 tobe
the intersection of {|z| = 1} with the closure of W. By the local maximum modu-
lus principle, W C K. Moreover, K C X and therefore K, C (}2)1 = 5(\2 = X,,
by the preceding paragraph. Thus K € X. Hence K € X N{w; = 0} = Z x {0},
by (6). Therefore

XN{lzl <1} € K € Z x {0}.

Since Z x {0} C X, we conclude that
XN {lzl < 1} =(ZN{lzl < 1}) x {0}.

Theorem 1 follows, since Z contains no analytic varieties of positive dimension.
0
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