Spaces and Arcs of Bounded Turning

PEKKA TUKIA

1. Introduction

A closed subset X of R" is of bounded turning if there is a fixed number ¢ > 1
such that any two points a and b of X can be joined by a connected subset A of X
with the diameter d(A) of A satisfying

d(A) < cla —b|. 1)

We will abbreviate bounded turning as BT, and A is ¢-BT if (1) is true with this
particular c. The aim of this paper is to prove the following theorem.

THEOREM 1A. There is co = co(c, n) such that any two points in a c-BT set X
of R" can be joined by a cy-BT arc J of X.

Originally, the notion of bounded turning was introduced for arcs or topological
circles in R2. The BT condition characterizes such arcs or circles that are im-
ages of the standard interval [0, 1] or of the unit circle S! under a quasiconformal
homeomorphism of the plane; see [A] and [R].

Hence this notion has an honorable standing in the theory of quasiconformal
mappings of the plane. In higher dimensions, the BT property is a necessary con-
dition for an arc or a circle to be the image of the standard interval or circle under a
quasiconformal map of R”, but the condition is no longer sufficient. For instance,
the Fox—Artin wild arc in R3 can be made BT. ([Ma] discusses this in the situa-
tion where the Fox—Artin arc is fattened so as to obtain a wild sphere; cf. also [T,
Sec. 14 and Sec. 17].) On the other hand, we might more modestly want to map
only an interval of the real axis onto an arc of R” using a map that would have
the same properties as the restriction of a quasiconformal map of R" to the inter-
val. Such maps are called quasisymmetric maps (see [TV]). Now the BT property
characterizes when such an arc or a circle is a quasisymmetric image of a standard
interval or circle [TV, Thm. 4.9].

The question of whether any two points of BT space X of R” can be joined by
a BT arc of X was raised by J. Viisild. I am indebted to him for this very in-
teresting question—whose answer turned out to be much more complicated than
anticipated—and for some critical comments on my earlier attempts to prove the
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present result. I also gratefully acknowledge the hospitality of the MSRI during
Spring 1995 when I could concentrate on this problem.

We remark that Theorem 1A has been proved [GNV, Thm. 5.12] for such BT
sets of the plane whose complement is connected. We also remark that the depen-
dence of cy on n is essential. Some examples due to T. Huuskonen (unpublished)
indicate that there are ¢ such that co(c, n) — oo asn — oo.

It is not too difficult to see that a BT space is arcwise connected. This is the start-
ing point. Another basic observation is that the family of all c-BT sets has a natu-
ral compactness property (expressed precisely in Lemma 2B). The c-BT property
is unchanged under similarity transformations; that is, we can rescale and change
the origin and still move in a compact family of ¢-BT sets. This suggests that the
connection of two points in a BT set can be made by an arc having the same prop-
erties so that we move in a compact family of arcs if we rescale and move the ori-
gin. However, such an arc must be BT. We will give a more detailed sketch of the
proof in the beginning of Section 3.

We will start from a connected and closed set A joining a and b and find a BT-arc
in any e-neighborhood U.(A) = {z : d(z, A) < r } of A. Actually, we will prove
at the same time the following more general version of Theorem 1A.

THEOREM 1B. Let A be a connected subset of a c-BT set X of R" such that
a,b € A. Given ¢ > 0, there is a c1-BT arc J in U.(A) N X with endpoints a
and b and with ¢, depending only on c, n, and d(A)/¢. In addition, there are r' =
r'(c,n) > 0and co = co(c, n) > 0 such that Jy, is co-BT for the subarc J., of J
with endpoints x and y if x,y € J and |[x — y| < r'e.

As indicated above, the compactness of certain families of sets is crucial. We de-
note by C(X) the family of closed and nonempty subsets of a metric space X, and
define the Hausdorff distance of two sets A, B € C(X) as

0(A,B)=inf{r € ]0,00]: ACU,(B)and B C U,(A) }.

Here it is possible that r = oo and thus the Hausdorff distance may be infinite.
However, if the sets A and B are compact then g(A, B) is finite. It is well known
(cf. [Mi, 4.7.2]) that if X is compact then the Hausdorff distance makes C(X) into
a compact metric space.

Of course, R" is not compact. Therefore we often work in C(A) where A C
R™ is compact, or in C(R™) with R” = R" U {oo}. In the latter space we use the
chordal metric of R” obtained by means of stereographic projection. It is con-
venient to regard C(R") as a subset of C(R™) by means of the identification of
A € C(R") and the closure of A in R”. Thus we topologize C(R”") by means of
the chordal metric rather than the Euclidean metric, although we will usually use
the Euclidean metric in R”. Naturally, if A C R" is already compact then it does
not matter whether we use the Euclidean or the chordal metric on A to define the
topology of C(A).

Since we identify C(R™) with a subset of C(R™), it is convenient to define X €
C(R™) as ¢-BT if X N R" is c-BT with respect to the Euclidean metric. All simi-
larities of R" are extended to R" by the rule co — oo.
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DEFINITIONS AND NOTATION. An arc is subset of R” homeomorphic either to a
closed interval or to a point. Thus all arcs are closed unless otherwise stated. If
an arc J is a point, then an endpoint of J is simply this point. Allowing points to
be arcs will be useful in some limit processes. An arc family is a finite union of
disjoint closed arcs.

If J is an arc and x,y € J, then J,, = J[x, y] = the subarc of J with
endpoints x and y;

R, = the set of positive real numbers;

R" = R" U {oo);

B (x,r)={ze€eR":|z—x|<r};

B"(r) = B"(0, r);

B" = B"(1);

d(A) = the Euclidean diameter of A;

d(x, X) = the distance of a point x from the set X;

d(X, Y) = the distance between the sets X and Y;

U(Z)={z€e R":d(z,Z) <¢e};

C(X) = the family of all closed and nonempty subsets of X;

D(K) = the set of components of K;

int A = the interior of A;

dA = the boundary of A; and

A or cl A is the closure of A.

2. Auxiliary Results

We present here some general results concerning connectedness, limits in the
Hausdorff metric, and arcs.

Connected Sets

The following lemma is obvious.

LEMMA 2A. Let X; € C(R") and suppose that X; — X € C(R™). If the X; are
connected then so is X.

Lemma 2A has the following consequence, showing that the ¢c-BT property is
preserved under limits.

LEMMA 2B. Let X; € C(R") be ¢-BT and suppose that X; — X € C(R"). Then
X is c-BT.

Thus the family of ¢-BT sets of R™ is compact as a closed subset of the compact
space C(R"). Lemma 2B expresses the compactness property of c-BT sets.

Arcs

We aim to prove that points of a BT set can be joined by a BT arc. The proof
will make use of some preliminary results concerning arcwise connectivity of BT
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spaces. For instance, these spaces are arcwise connected as follows by the fact
that they are locally connected and hence arcwise connected by a classical topo-
logical theorem. This is easy to prove directly, and the next lemma gives a more
precise estimate for the diameter of the arc joining two given points.

LEMMA 2C. Let X C R" be c-BT. Given any ¢’ > ¢, any two points a,b € X
can be joined by an arc J of X such that d(J) < c'|la — b).

Proof. Let s = (¢’ — c)|a — b|. Find a sequence xo = a, ..., x, = b of points
of X such that |x; — x;_1| < s5/2c and such that the diameter of {x, ..., x,} <
cla — b|. This is possible because a and b are contained in a connected set C C
X with d(C) < c|a — b|. Next define a map « of {0, 1/p, ..., (p —1)/p, 1} onto
{x0,...,xp} by a(t;) = x; when t; = i/p. Similarly, connect x; and x;;; by a
sequence x;o = X;, ..., Xjk; = X;4+1 such that the distance of successive elements
of the sequence < s/4c and that the diameter for each i of {x;;: j varies} < s/2.
Divide [¢;, t;41] equidistantly by ¢;; and set oc(¢;;) = x;;. Continuing in this man-
ner, we obtain a map « into X defined in a dense subset of [0, 1]; the diameter of
Ima < c’|la — b]. One easily sees that « is uniformly continuous and hence can
be extended to a continuous map [0, 1] — X with d(Ima) < ¢’|a — b|. It is pos-
sible to extract an arc from Im « and redefine « so that it is an embedding; see [V]
for the details of this folklore theorem. O

This result will have the following consequences.

LEMMA 2D. Let X C R" be c-BT and let E C X be a set such that, for some
e > 0, any two points a, b € E can be joined by a sequence xo = a, x1, ..., xp =
b of E such that |x; — x;—1| < €. Then, for every ¢’ > c, there is an arc J of X
connecting a and b in Uy (E).

Proof. By the preceding lemma, we can connect x;_; and x; by an arc J; in
B! (x;, c’e)N X. Extract an arc J from J; U- - -U J, connecting xo = a and x, =
b. Then J C Uy (E). 1

LEMMA 2E. Let I be an arc of R" with endpoints a and b. Let X C R" be c-BT
and suppose that I C U.(X). Let c,d € X be points such that |a — c| < € and
|b — d| < &. Then there is an arc J of X with endpoints ¢ and d such that J C
Usce(I). There is also a map o: J — I such that a(c) = a, a(d) = b, and, for
allx,y € J, |a(x) — x| < 4ce, and

Jry C Usce (a(myacy))-

Proof. 1t follows from the assumptions that we can find a sequence ¢ = xj, ...,
xp = d of points of X and another sequence z9 = a, 21, ..., 2, = b of points
in sequential order on I such that I[z;_1,z;] C Ug(x;). Thus |x;—; — x;] <
|xi—1 — Zi—1} + |zi—1 — x;| < 2& and hence we can by Lemma 2C find an arc J; C
X with d(J;) < 3ce connecting x; and x;. Then J' = J{ U --- U J, connects ¢
and d.

It is possible to extract a subarc J’ from J connecting ¢ and d. This can be done
in such a way that J = J; U --- U J,,, where J; is either empty or a subarc of J,.
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In addition, we can assume that 7 = { J; : J; 7 ¥} is a subdivision of J and that
the order of J; # @ on J is compatible with the order of J whose smallest point is
c.Let J? = J; \ {a;}, where a; is the beginning point of J; induced from the or-
der of J mentioned above. In addition we set J; = {c}. Define the map a: J — [
so that a(x) = z; if x € J?. Then |a(x) — x| < |x; — z;| +d(J]) < (1 +3c)e <
4ce if x € J? and so J? C Usce(z;). Thus,if x,y € J,andifx € JPand y € J¢
with i < k, then

k
Joy CIPU---UJ2 C U Usace(2j) C Usce(Ta(x)a(y))s

j=i

since a¢(x) = z; and @ (y) = z. This also implies that J C Us(1). ]

o-Arcs

If ¢ is a homeomorphism of [0, oo, we call an arc J a g-arc if it is true that

d(Jap) < @(la — bY) (2a)

for all a, b € J. Thus a p-arc satisfies a condition that is similar to but not quite
as strong as the BT-property. Such arcs have a compactness property given by the
next theorem, where the place of g is taken by two decreasing sequences ¢; and §;
of positive numbers.

THEOREM 2F. Let ¢; and §; be sequences of positive numbers tending toOasi —
00. Suppose that for each i there is a k; such that

d(Jilx,yD) <& if |x —yl =& (2b)

when x,y € J; forall k < k;. Suppose that k; — oo and that the J; lie in a com-
pact subset F of R". Then there is a subsequence (denoted in the same manner)
such that the J; tend toward a o-arc J in the Hausdorff metric (this includes the
case where J is a point) and where @ depends only on d(F) and the numbers ¢;
and §;.

In addition, if the J; tend toward the arc J and if x;, y; € J; tend towardx,y €
J as i — oo, respectively, then

Jilxi, yil = ny (2¢)

in the Hausdorff metric.

Proof. Since J; € C(F) which is compact, it is possible to pass to a subsequence
so that the J; tend toward some compact J C F' in the Hausdorff metric. Then J
is connected by Lemma 2A, and if J is a point then there is nothing to prove. We
assume now that X is not a point, and show that in this case J is a nondegenerate
arc.

We will first prove that J is an arc, basing our proof on the fact that a compact
connected metrizable space X is a closed arc if and only if the removal of any x €
X, except for two points that will be the endpoints, makes X nonconnected with
two components (cf. [N, 4.10.2]).
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Let a; and b; be the endpoints of J;. Pass to a subsequence so that a; — a and
b; — b.If a = b, then |a; — b;| < & for big i and hence d(J;) < & for big i; it
would follow that J is a point. Since J is not a point, a # b.

We show thatif c € J\ {a, b} then J \ {c} consists of two components. To prove
this, pick ¢; € J; so that ¢c; — ¢. We can assume that the numbers |¢; — a;| and
|ci — b;| are bigger that some 27", Pick then for n > ng points c;; € J;[a;, ci]
and c)’. € J;[b;, ¢;] such that

!

lc,i —cil =lcp; —cil =27".

Now, let J;; = Ji[a;, c);]1 and J); = Ji[c/., b;]. Then, as follows by (2b),

ni?

d(.],: " ) > O

i*Ymi

as soon as &, < max(27",27™) and i is big enough. It is possible to pass to a sub-
sequence so that, for every n, J;; and J; tend toward connected subsets J, and J,,
of J as i — oo, respectively, in the Hausdorff metric. Thus the above inequality
implies that

dJ;, I = & (2d)

*'Ym

as soon as g; < max(27",27™). Setting
I=Jn amd 7=J7,
n n

it follows that J' and J” are connected and disjoint subsets of J such that J'UJ"” =
J \ {c}. Tosee that J' U J” = J \ {c}, we need only note that every x € J \ {c} is
the limit of a sequence x; with x; € J;. Thus, if x # c, there is my such that x; €
J); U J if n > mq beginning from some i. Thus x € J, orx € J,/ if n > my. By
(2d), J' and J” are closed in J \ {c}. Hence J' and J” are the components of J \ {c}.

On the other hand, if ¢ = a or ¢ = b, then a similar limit process would show
that J \ {c} has exactly one component. Hence a and b are the endpoints of J.

Suppose then that J; — J, and that x;, y; € J; are such that x; — x and y; —
y. We show that X; = J;[x;, yi] = J[x, y] for a subsequence. As before, one
sees that there is a subsequence (denoted in the same manner) such that the X; tend
toward an arc K with endpoints x and y. Clearly, K C J and the only possibility is
that K = J[x, y]. Thus any subsequence 7; contains a sub-subsequence m; such
that X,,, — K. It follows that K; — K even without passing to a subsequence,
and (2¢) follows.

Next, we show that J satisfies

d(Jxy) < &; (2e)

whenever x, y € J and |x — y| < §;/2. To see this, we pick x; € J; and y; € J;
such that x; — x and y; — y. If j is fixed, |x; — y;| < §; for big i and hence
d(K;) < g; for big i. It follows that J satisfies (2€).

Clearly, there is a homeomorphism g of [0, oo[ such that any arc satisfying (2e)
for all j is a p-arc. Thus J is a g-arc and, moreover, we see that o depends only
on d(F) and on the numbers &; and §;. O
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We need to know that, if J; and I are p-arcs such that J; — I, then we can ap-
proximate subarcs J;[x, y] of J; by arcs I[x’, y'] where x’ and y’ are close to x
and y, respectively. We will need this in the following form.

THEOREM 2G. Let I be a g-arc. Given ¢ > 0, there is anr > 0 such that, if J
is another g-arc with Hausdorff distance o(I, J) < r, then there isamap o. J —
I with the properties that

(@) |la(x) —x] <eand
(b) ifx’ ye J then JX}’ - Ue(]a(x)a(y))-

In addition, a maps the endpoints of J onto the endpoints of I.

Proof. Wefirstprove thatif§ > Oande > g(8) thenthereisanr =r(8,¢,0, 1) >
0 such that, if J is a g-arc and o({, J) < r, then

JIx',y'1 C UeI[x, y1) (21)

wheneverx,ye I, x',y € J, |x —x'| <6, and |y — y'| <.

Unless this claim is true, there is a sequence J; of g-arcs tending toward / in
the Hausdorff metric as well as x;, y; € J; and x/, y; € I with |x; — x;| < § and
lyi — y{] < & such that (2f) is not true for x = x;, y = y;, ¥’ = x;, and y' = y].

We pass to a subsequence so that x;, - x, y; —» y, x; — x’, and y; —
y'. Since J; — I, all the points x, y, x’, y' € I. By (2¢), Ji[x;, y:] = I[x, y].
Since |x — x| < 8, d(I[x,x']) < 0(8) and similarly d(I[y, ¥']) < 0(8). Thus
I[x,y] Cc U(I[x', y']) and it would follow that (2f) is true for big i, contrary to
the assumption.

Thus, given ¢ > 0, we can choose § € ]0, ¢[ such that e > ¢(§) andletr > 0
be the number found above. We can assume that r < e. If J is a g-arc such that
o(I, J) < r, then we can choose «: J/ — I tobe any map such that | (x) —x| < e.

Finally, using (2c¢), we can use a similar compactness argument to show that r
can be made so small that an endpoint of J is at a distance < & from an endpoint
of I and the other endpoint of J is also at a distance < & from the other endpoint
of I. Thus « can be chosen to map the endpoints of J onto endpoints of 7. 0

Arc Families

We will often need to consider the situation that K C R” is the union of disjoint
closed arcs such that if a, b € K and |a — b| < §, then a and b are in the same
component J of K and (2a) is true. Such a union of arcs X is called a (o, §)-family.
Note that component arcs of K need not be g-arcs, since now (2a) is required only
if [x — y| < 8. However, each component arc will be a p’-arc for ¢’ depending
only on g, § and d(K).

The pertinent aspect of bounded (p, §)-families is that they are compact.

CoRrOLLARY 2H. Let ¢ be a homeomorphism of [0, oo[, and let § > 0. Let K C
C(F) where F C R" is compact and suppose that each K € K is a (o, 8)-family.
Then the closure K of K is compact, each K € K is a (0, 8)-family, and there is a
number N = N (8, F) such that each K € K contains at most N component arcs.
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Proof. The family K is clearly compact as a closed subset of a compact space
C(F). Note that the condition that d(/, J) > § implies that there are at most N =
N (8, F) components for each K € K and hence, since limits of connected sets
are connected, also that each K € K has at most N components. Otherwise the
corollary is a consequence of Theorem 2F and especially of (2c). O

Division of Arc Families

We will later divide (o, §)-families into two parts depending on four open sets. Let
U, C U, C Uz C Uy be open sets of R” such that

d(0U;, dU;y1) = d > 0. (2g)

We call J an arc family if J is the union of disjoint closed arcs, and will consider
divisions of J into two arc families J’ and J” such that J = J' U J” and that

JNU;cJ c U, J\U,CcJ"cCJ\U. (2h)

Any pair (J', J”) satisfying these conditions is a (U;)-division of J.

There is a canonical way to obtain a (U;)-division (J’, J”) of J. We call it the
canonical (U;)-division of J and define it as follows. The arc family J’ will be
the maximal arc family such that J' C J N U, and such that the endpoints of the
component arcs of J/ are in U3 That is, we take all component arcs L of J N U4
touching Us; if an endpoint b of L is not in U then we remove from L the mini-
mal half-open arc L, \ {c} so that ¢ € Us. Similarly, J” will be the maximal arc
family J” C J \ U; such that the endpoints of component arcs of J” are in J \ U,.

We will need the fact that (roughly) J is a (g, §)-family if and only if J’ and
J" are.

THEOREM 2I. Let o be a homeomorphism of [0, o0) and let § > 0 be a num-
ber such that § < min(o~'(d), d/2), with d as in (2g). If J is a (o, 8)-family
and (J', J") is the canonical (U;)-division of J, then both J' and J" are (g, 5)-
families. Conversely, if (J, J") is any (U;)-division of J and both J' and J" are
(o0, 8)-families, then J is also a (o, 8)-family.

Proof. Assumethat J isa (g, §)-family. Let (J’, J”) be the canonical (U;)-division
of J. We will show that both J’ and J” are (p, §)-families.

We will prove this for J’, the other case being similar. We need only prove that
ifx,y € J' and |x — y| < & then x and y are in the same component of J’. The
decisive property is that if x, y € J' are in a component L of J and if L,, ¢ J',
then L, contains a point # outside U, and a point v € Us as follows from the
definition of the canonical (U;)-division.

Ifx,y € J'and |[x — y| < 8, then x and y are in any case in a component L of J.
If x € Us, then d(Lyy) < 0(Ix — y) < 0(8) < @07 ' (d)) = d < d(3Us, dUy).
Hence L,, C Us and, since y € J', Ly, C J'; similarly if y € Us. If x, y €
Uy \Uzand L,, ¢ J’, then L, contains a point u outside U, and a pointv € U3
Hence
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lu —v| < d(Lyy) < o(lx —yD) < 0(8) <d,

and this is impossible since |u — v| > d.

In the other direction, assume that (J', J”) is a (U;)-division of J such that J’
and J” are (g, §)-families. Suppose that x,y € J and |x — y| < §. Now either
x € Usand d(x,0U3) > d/2orx ¢ U; and d(x,0U;) > d/2. Suppose that we
have the first case. Then x € U; and, since lx —y| <8 <d/2 <d(x,3Us), also
y € Us. Thus x, y € J' by (2h), and so x and y are in the same component of J’
and hence in the same component of J. The other case is similar. This is all we
need to prove. U

3. The Main Theorem

We now return to our main problem. We assume that X is ¢-BT and will prove
that two points a, b € X can be joined by a ¢p-BT arc J C X with ¢g = cy(c, n).
The idea is as follows. As explained earlier, it is beneficial to regard X as a closed
subset of R" since we then gain important compactness properties, even if the
BT-property is formulated in R”.

Pick a,b € X N R". We want to join a and b by a ¢o-BT arc in X N R". For
simplicity assume thata = 0O and » = ¢; = (1,0, ..., 0) (this can be obtained
by rescaling and moving the origin). Thus a and b can be joined by a connected
set A C X in B"(c). We can and will assume that A is an arc with endpoints a
and b (Lemma 2C), but then we must increase the ball B"(c) so that, say, A C
B*(c +1).

The basic work is to prove that, given £ > 0 and an arc A in X N R” joining
a and b, there exists an arc I in U,(A) N X joining a and b such that, for some

r >0,
d(Iy) < Me (3a)

whenever x,y € I and |x — y| < re. Here it is essential that r and M depend
only on ¢ and n; the existence of such r and M is based on the compactness of
c-BT sets in the Hausdorff metric as well as on the fact that the c-BT property is
preserved under rescaling. This enables us to construct I uniformly on scale of &,
implying (3a).

This is the basis of our approach. It allows us to find a number § (0 < § < 1)
with which we can construct a sequence (I;);-¢ of arcs joining a and b such that
I Cc XNU;s(I;—1) (and Iy C U (A) N X C B*(c + 2)) and such that

d(Ji[x, y]) C Mé" (3b)

if x,y € I and |x — y| < ré' for suitable r and M. We can do this so that the arcs
I; converge toward an arc J of X N R" in such a way that we can use I; at scale
of 8' to approximate subarcs of J and to obtain from (3b) the estimate that

d(J[x,y]) < M'§'

if x,y € J and |x — y| < r'8%, where M’ and r’ depend only on ¢ and #n. This
implies the BT property for J.
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To find the arc I in (3a), we let Q be a tiling of R” by n-cubes of sidelength of
the order of €. We fix Q@ € Q and change A around Q so that int @ N A will be
contained in a finite union /¢ of arcs. If we normalize the situation by means of a
similarity map % ¢ so that Q becomes the standard cube Qg = [0, 1]%, then hglg
will satisfy a compactness property.

We represent Q as Q; U ---U Qn (N = 2%), where cubes of Q; are disjoint.
We can change A around each Q € Q; sothat ANint Q is contained in an arc fam-
ily Iy as indicated above. We take one cube at a time, but since cubes of Q; are
disjoint, we can make the changes so that we obtain the same compactness con-
dition for the normalized cube ko Q for all @ € Q;. At the next step, we change
A around int @ N A for Q € Q,, and now the normalized int Q N A will be con-
tained in an arc family /o satisfying a compactness condition that is not as strict as
that of the first stage. We continue and so, at stage N, A will be an arc I satisfying
at scale ¢ a compactness condition; (3a) follows.

We will now carry out this program in detail, and begin by fixing notation as
follows. We will use a tiling Q of R” by cubes of the same side length with faces
parallel to the coordinate axes. Thus QN P is either empty or a common k-subface
for distinct Q, P € Q. We denote by Q° the standard cube [0, 1]* and by k¢ the
similarity of the form z +— az+b (@ > 0, b € R") mapping Q onto Q°. The map
h o will be used to transform the situation from Q to Q° as just indicated.

If Q € Q, it may be that A is already changed in some cubes P € Q touching
Q; we let Py be the set of P € Q touching Q such that this is the case.

We denote by tQ the cube with the same center as Q whose side length is
t x (sidelength of Q) and whose faces are parallel to the coordinate planes. We
assume that 1 < ¢t < % is given. Since t < %, tONtP =Pif P, Q0 € Q and
P N Q = (. We adopt the following notation:

PQ=UPQ, tPQ=U{tQZQEPQ].

We assume that A is already changed in Py so that A N int Py is contained in
a union of disjoint arcs Jg C A; hence int Pg N A C Jg N A. In addition, we
must assume some kind of compactness condition for the changed part. This is ex-
pressed by the requirement that moving to the normalized situation makes kg Jgo
into a (g, §)-family as defined in Section 2.

At this stage we change A, or more precisely hpA, and then transform back
to A by means of hél. The transformation is effected by means of Lemma 3A
(below), which makes use of the following terminology.

A set E is e-chainable if any two points x, y € E can be joined by a sequence
X0 = X, X1, ..., Xx = y in E such that |[x; — x;_;| < €. We say that points a and
b are joinable by a sequence Fy, ..., Fyifa € Fy, b € Fi, and F; N Fi4y # 0;
points a and b are joinable in a set family JF if they are joinable by a sequence
Fi, ..., F, where each F; € F. If F is the union of several families, say F =
FiU-.-UF,, we say that a and b can be joined by an alternating sequence of
(F1, ..., Fp) if a and b can be joined by a sequence Fi, ..., Fy in F where ele-
ments of F; alternate; that is, if F; € F; then F;y € F, where m # j. Thus
the index set {1, . .., k} can be represented as a disjoint union oy U - - - U ¢, such
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that F; € F; if i € «j and no two successive indexes i and j = i + 1 are in the
same set . In this case we say that (o1, ..., a,) are alternating indexes for the
sequence F;.

As indicated above, we will normalize the situation by means of /o, mapping
QO onto Q°. Thus we will work near Q and near Q° alternatively. In cases where
there might be confusion, we use the superscript ° to refer to the normalized sit-
uation (e.g., X° will be hyX) or may use the subscript O when working in the
original, nonnormalized situation.

We denote by Q° the tiling of R” by means of cubes of side length 1 such that
Q° € Q°. Recall that A was already changed in Pg. Similarly, we have:

P°=asubsetof {Q e Q°:0NQO°#V,0+#0°};
°=|JP;and
={tP: PeP°}

In Lemma 3A we have fixed such a set P°. Note that there is only a finite number
of choices for P°, and recall that

D(Z) = the family of components of a set Z.

The operation of changing A N Q into arcs is performed by transforming to Q°
and applying the next lemma. The set A° of the lemma will correspond to the arc
A above. However, we use a limit process to prove the lemma and limits of se-
quences of arcs in the Hausdorff metric need not be arcs. Therefore A° in Lemma
3A is a general set, not necessarily a finite union of arcs.

LeEMMA 3A. Let X° C C(R™) be ¢-BT. Let e > 0 be such that > 2ce, and let
t=1+42ce < —— . Let £° be a finite family of sets E € C(X° N Q°) such that each
Ee€f°is e-chamable and thatd(E FYy>eif E, F € £E° are distinct. Let D° be
afamz'ly of closed sets of (X° N Q ) \int (Q° U P°) Let J° be a (o, 8)-family
of X° gQ" N tP°. Suppose that two points u,v € 5 Q° are joinable by an al-
ternating sequence Ay, ..., A} of (D, E°, D)), so that (ap, ag, oy) are al-
ternating indexes for A such that A eDeifi eap, A € £°if i € ag, and
A e D) ifi eay. Let A°=A]U.--U A7, and suppose that

A° ﬂlnt( o°NnP°)cCJe. (3¢)

Under these circumstances there is a (9’, §')-family K° of X° N1 14 59°NEE°U
tP°), where o' and &' depend only on (n, c, e, g, 8), such that u and v are joinable
by an alternating sequence B?, . .., B;’ of (D°, D(K°)) with alternating indexes
Bp and Bk such that B; € D° ifi € Bp and B; € D(K°) if i € Bk. In addition,
the following are true when B® = By U ---U By.

(1°) B° ﬂmt( 0°N(Q°U P°)) C K°.

(2°) B°\1Q° C A°\1Q°.

(3°) K°\1Q° C J°\1Q°.

(4°) If i € Bk, then: (a) B} intersects B}, | at an endpointof B} if i < q (if i =
q then this endpoint is v) and intersects B;_, at another endpoint if i > 1 (if
i = 1 then this endpoint is u); and (b) Bf N By =0if |j—il>1.
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(5°) The order of sets B? for i € Bp is preserved. That is, there are numbers
Vi € ap fori € Bp such that v; < v; ifi < j and such that B} = AS..
Furthermore, if 1 € ap thenvy = 1, and if p € ap then v, = p.

We postpone the proof until the next section, and finish the proof of the main
theorem assuming Lemma 3A.

LEMMA 3B. Let the situation be as above, so that we have an arc A C X with
endpoints a and b. Then there are 0 < r < 1 and a constant M, depending only
on c and n, with the following property. Given £ > 0, there is an arc I with end-
points a and b such that I C X N U, (A) and such that, whenever x,y € I and
|lx — y|] <re,

d(I;y) < Me. (3d)

Moreover, we can associate to any x € I a point o(x) € A suchthat |x —o(x)| <
€ and

Ixy C Us (Aa(x)o(y))- (36)

Proof. We apply Lemma 3A with respect to a tiling Q of R" by cubes with faces
parallel to the coordinate planes and of sidelength

€
s = .
24/n2n
We choose e = %c in Lemma3A and thusr =1 + ﬁ < -}—1
We can represent Q as a disjoint union
Q=09;U---UQp,

where N =27 If Q € Q;, denote

Po={PeQr:k<iand PNQ #P},
Po =JPo, and
tPog = J{tP: PPy},
so that Py and Py are empty if Q € Q;. The natural way to construct Q; yields

sets Py such that, if 0 € Q; and we normalize by k¢, then the following sets do
not depend on a particular Q € Q;:

P; =hQPQ = [hQP : P e PQ |5
Pi=JP; =hgPgy; and
tP; = U{tP :PePi} = hQ(tPQ).
Note that P; = 0.
There is a finite set Q4 of cubes O € Q such that A C int(| J Q4). We will
order the cubes Q € Q4. Otherwise the order is arbitrary, but if Q < P and
Qe Q;and P e Qrtheni <k.Let Q) < Q; < --- < Qg be the cubes of Q4

enumerated according to this order. We set Iy = A, and successively take each
cube QO = QO and change A in tQ, so that A is changed to I; after the change

in Qk-
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We will prove the following claim. Recall from Section 2 the definition of a
(0, 8)-family. We will say that K is an s-scaled (g, 8)-family if K is a finite union
of disjoint arcs such that, if x, y € K and |x — y| < s§, then x and y are in the
same component L of X and

d(ny)ssa('x:y').

CLAM. For each k > 0, there is an arc I, C X N R™ with endpoints a and b
such that Iy = A and if k > 0 then there is a subdivision of I into subarcs

(i) I,=B,U---UB,

with alternating indexes Bp and By such that B; C %Qk if i € Bx and B; C
I._1if i € Bp (with sets B; and index sets Bp and Bg depending also on k, but
this is not shown for simplicity). Consequently,

(ii) I C L U2 0.

In addition, the order of the subarcs B; (i € Bg) of Ix—1 as i increases in B is
compatible with a sequential order of I_;.

Suppose that Qy € Q;. Then there are o; and §; depending only on c, n, and i
as well as an s-scaled (0;, 6;)-family Ji C I such that, setting Jo = 0,

(iii) Jcl B
J<k
(iv) Ikﬂint(U Qj) = Jkﬂint(U Qj),
i<k J=k
(v) L\ Jy C Lo \ Ji—ts
(vi) T\N20 =N\ 0.

Proof. We will first say how (g;, ;) are defined. The first pair (g, 81) is given by
Lemma 3A when P° = P; = . If g; and §; are given, then (0;1, §;+1) is the pair
(@', 8") given by Lemma 3A when (o, §) = (0;, §;) and P° = P;;;. In addition,
we assume that g;+; > g; and that

8 < min(s5, 0; ' (3))- €
Since it is always possible to decrease §;s and increase g;s, we can clearly make

this assumption. If this is true then Lemma 2I will allow the following inference.
Let Q € Qanddefine U; for1 <i <4as

U; = int(1 + 5) 0,

so that U; C U;4+1 and d(8U;, dU;4;) = s/10. Thus the sets satisfy the condi-
tions of Lemma 2I with d = s/10, and we can use Lemma 2I to show that, if
(L', L") is a suitable (U;)-division of an arc family L, then L’ and L" are s-scaled
(0, 8)-families if L is and vice versa.

We now construct I;. As already indicated, Iy = A and Jy = @ and these sat-
isfy vacuously the required conditions. Now let £ > 0 and assume that /; and
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Ji have been constructed for i < k. Denote Q = Q; and let U; refer to the sets
above. The set I is constructed as follows. Outside 1@ we do not want to make
any changes, but possibly some components of I;_; \ int Q will drop away.

We now consider J;_;. We represent J;_; as

Je-1 =Jo U Ly, (3g)

where (Jg, Lg) is the canonical (U;)-division of J as in Section 2. Thus (cf. (2h))
JQ C U,, LQ C Jr-1\ Uy, and

Je-1NUs CJg and Jy_1 \ U, C Ly, (3h)
implying by (iv) of the inductive assumption that
L1 NUsNint Py C Jg. (31)

Suppose that Q € Q;.If i = 1, then the cubes 12 QJ (1 < j < k) are disjoint
from Q and hence (iii) implies that Jo = @.If i > 1 we will show that Jg is an
s-scaled (0i—1, 8;—1)-family. We can see this as follows. Let Q,, be the last cube
in Q;_;. We find the canonical (U;)-subdivision J,, = Jo U L), of J,, as in (3g).
By the inductive assumption, Jm 1s an s-scaled (g;—1, 8;—1)-family and hence also
J’Q is an s-scaled (g;_1, §;—1)-family.

We now examine the transformation of J,, to Ji_;. Let Q = 10 Q,,,.H Uu..-u

leBy(n) Ikl\QCIkz\QC CIm\Q Smcelklandl are
arcs with the same endpoints, _; \ Q is obtalned from 1,, \ Q by omitting some
components. Applying now (vi) repeatedly, we find

T\ Q=D NL A\ Q=L aNhaNL \Q=--=Jy NI\ Q.

Consequently, Jr—; \ Q =1 N1 \ Q is obtained from J,, \ Q by omlttmg
some components. Since all Q; € Q; (m < j < k) are disjoint, the set Q Uy
is disjoint from Q and it follows that J;_; N Uy is obtained from J,, N U4 by omit-
ting some components. When forming the canonical (U;)-division (K’, K”) of an
arc family K, the part lying outside Uy has no effect on K’. The final conclusion is
that Jg is obtained from J;, by omitting some components. Since J o isan s-scaled
(i—1, 6;—1)-family, it follows that also Jg is an s-scaled (g;_1, §;—1)-family.

Let Dy be the set of arcs contained in fx_; \ [U3z Nint(Q U Py)]. Let £y be the
set of equivalence classes of the relation ~ of Q N X suchthatx ~ y if x and y
are es-chainable in Q N I;_;. So, remembering (iv) and (3i), we see that I;_; =
U(DQ U&g UDWJg)).

We order I;_; so that a is the first point of I;_;. Let x; be the first point of
Ir—1 that is in some E; € £p. Let x, be the last point of I,_; N E;. We con-
tinue and let x3 be the first point of I;_; after x, that is in some E; € £g. We
let x4 be the last point of E; N I;_;. We continue in this manner and find dis-
tinct sets Ey, ..., E, € Ep as well as points xy, ..., x2, in increasing order on
Ir_;. Although it may be that x5;_1 = x3;, still x2; 7% x7;41 and if we set L; =
Ir—_1[x2i, x2;+1] then L; is a nondegenerate arc. Set Ly = Ir_i[a, x;] and L, =
It_1lx3,,b]. Then Ly, E, Ly, ..., E,, L, is an alternating sequence of sets of £y
and subarcs of I;_; joining a and b. Note that Ly and L, may be points, and in
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this case we remove Lg and/or L,. We note that obviously the L; are on I;_; in
sequential order.

By construction, the arcs L; are disjoint from Q except possibly for endpoints.
Hence, by (3i), Jg and | J D¢ covereach L; except possibly for an endpoint x such
that x € Q. Let x be an endpoint of L; such that x € Q. If x & int(Q U Pyp),
then x € I_; \ [Us Nint(Q U Pg)l and so x € | JDyp. If x € int(Q U Pp), then
there is a small nondegenerate subarc L’ of L; with endpoint x such that L'\ {x} C
int Po N Us. Butthen L'\ {x} C Jg and hence, since Jg is closed, x € Jg. Thus
Jo and Dy cover all of every L;.

Now J, is obtained from a canonical (U;)-division and hence is finite. Thus
each L; \ Jg has a finite number of components. It follows that we can cover each
L; by an alternating union of nondegenerate arcs D(Jp) and of arcs K € Dy such
that K is the closure of a component of L; \ Jop.

Replacing each L; by this sequence covering L;, we see that there is an alter-
nating sequence Ay, ..., A, joining a and b in (Dg, g, D(Jp)) with alternating
indexes (ap, ag,oy) suchthat A; e Dp ifi e ap, A; € &g ifi e ap, and A; €
D) ifi e ay. Ifi € ap, then A; is a subarc of I;_; and obviously, since the L;
are in sequential order on I;_;, the subarcs A; (i € «p) are also in sequential or-
deron I;_;. If i € ap, then A; minus endpoints is by construction a component
of some Ly \ Jgp and hence, if i, j € ap and i # j,

AiNA;j =0 and i)
Ap ﬂ( U Aj) C {endpoints of A}

j€ap
ifk € ay.

It NQOg=0,wesetly =I;_jand J, = Jy_jaswellas By = I, Bp =
{1}, and Bx = @. Since in this case J;_; covers also int(|J;_, Q;), the Claim is
trivial. Otherwise we note that there is more than one element in the sequence
Ay, ..., Ap. Since the elements of £g U Dy (Jg) are contained in Uy, the inter-
sectlon Al NA; C U4 = Q is nonempty; we can thus choose u to be a point
of AyNUs. Ifa € Uy, we set ug = a. Thus, unless 1 € ap, ug = a. Similarly,
we choose a point vy € A; N Uy and can assume that vg = b unless g € ap. In
addition, we can obviously require thatif ug € Jg orvg € Jg then ug or vy (re-
spectively) is an endpoint of a component of Jg. So we have points ug and vy in
U, Jjoined by the sequence Ay, ..., A,.

We now apply Lemma 3A in the following situation. Let X° = hoX, u =
hQ(uQ) U—hQ(UQ) De° —{hQDﬂ QO'DEDQ} E° -—thQ—{hQE
E € &}, AL = hoArn 1 Q° and J° = hgJg. Then Af, ..., A} is an al-
ternating sequence joining u and v in (D°, £°, D(J°)) with alternating indexes
(ap,og,ay) and

A’ =AJU---UAS =ho(uy NU). (3k)

Note that the intersection of successive elements of the sequence A7 is indeed
nonempty since always A; N A;+1 C Us.
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We will now check that the assumptions of Lemma 3A are true. Obviously, £°
is a family of e-chainable closed subsets of Q° such that d(E, F) > eif E, F ¢
&° are distinct. Similarly, since Jo C (?4 is an s-scaled (g;—1, 6;—1)-family, J° is
a (gi—1, 8;—1)-family of X° N %%Q°. Since forno i € ap U ag does A; intersect
with int Pg N Uz, we have Jp Nint Py N Uz = Ix_; Nint Py N U3 and hence the
set A° of Lemma 3A satisfies (3c).

Thus we can apply Lemma 3A and obtain a (g;, §;)-family K° of X° N -}% o°n
(rQ°UtP°) such that # and v can be joined by an alternating sequence By, ..., B]
of (D°, D(K*)) with alternating indexes (Bp, Bx) such that B € D° ifi € B)p
and BY € D(K®) if i € Bx. The sets By and B° = By U - - -U By satisfy conditions
(1°)—(5°) of Lemma 3A.

Now it is time to change back to Q. If i € Bg, we set B; = hélB;’. Ifi € ap,
then By = Aj, and we would like to set B; = A,,. The problem is that although
B can, by (4°), intersect only the preceding and succeeding B}’ at the endpoints
of B if i € Bk, this might not be true if i € 8p. We noted in (3j) that A;, i €
ap, are disjoint. Hence, remembering (4°), it follows that A,,, i € Bk, are dis-
joint and that A,, can intersect Bj, j € Bp, only if |j — i| = 1. Thus we can find
a subarc B; of A, for i € fBp such that each B;, i € Bp U Bk, intersects only the
preceding and succeeding B; at the endpoints of B;. In addition, we can require
that a and By N B, are endpoints of B;, as can be seen by (5°) if 1 € 8p and by
(4°)if 1 € Bk. Similarly, b and B,_ N B, are the endpoints of B,. Thus, if we set

Iy =BiU---UB,
then /I, is an arc with endpoints a and . We note that
LNJO=1NnUsChy B 3D

Thus B; = hy'Bf C ;3Q ifi € Bg, andif i € Bp then B; C A, and is
thus a subarc of I;_,. The arcs A;, i € @p, were in sequential order on I;_; and,
by (4°), the subarcs B; of I;_; for i € Bp are still in sequential order on I;_;.
Consequently, the first paragraph of the Claim is true.

We now define Ji, but will need some preliminary estimates. If x € (I N U4)\
tQ, then hg(x) € B°\ tQ° C A° by (2°) and hence x € hélA0 C Ir—1 by (3k).
On the other hand, if x € Iy \ Us thenx € B; C A,, forsome i € Bp, and sucha
B; is a subarc of I;_;. Hence

L\tQ C L1 \tQ andso [; C I_UtQ. (3m)
Since I and I;_; are arcs with the same endpoints, it follows that if L is a subarc
of Iy_; \ tQ such that L N I, # @, then L C I.
In particular, this is true if L is a component of L which is a subset of I_; \
U, = Iy_1 \ tQ; thus, if we define
Ly=U{LeD(Lg): LN #@} then
Lb ={LeDLg): LC Ik} =LgNI.
Thus L’Q is obtained by dropping some components from L. It follows that L,
is an s-scaled (g;-1, 8;—1)-family and hence an s-scaled (g;, 8;)-family, since Ly
is an s-scaled (0;—1, 6;—1)-family.

(3n)
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LetK, = hélK° = Ujep, Bi (obviously we can assume that K° = Uiep, Bis
possibly by dropping some components of K°). Then K, is an s-scaled (¢, é;)-
family since K° is a (g;, §;)-family. We define

Je=K,UL), (30)

Now K, C U, and Ly CLo C 1 \Ui C Ujsk_l %Qj since (iii) is true for
k — 1. This implies (iii) for k. Since J; is a finite union of subarcs of I, itisa
union of disjoint closed arcs.

We show that J; is an s-scaled (p;, 6;)-family. By Lemma 2] and (3f), it suf-
fices to show that (K, L) is a (U;)-division of J;. We already know that K, y
U, and L C Ji \ U;. Thus, in order to have (2h), it suffices to prove that

LyNUsC Ky and K,\U,C L. 3p)

We prove the first inclusion of (3p). Let x € L;g NU; C LoN Us C Jio N Us
and so x € Jg by (3h). Suppose that x € A;; theni € oy U ap since x ¢ tQ. Our
construction of A; fori € ay U ap implies that i € «y; if x is an endpoint of A;
then there is also a j € ap such that x is an endpoint of A;. Since x persists to I,
it follows that x € B, forsome r € 8p U Bx.If r € Bx thenx € Kb and so we are
done. If r € B then B, is a subarc of A,,_, and since Ay (k € ap) are disjoint ex-
cept for endpoints from A; (I € «;), x must be an endpoint of B,. But then x is an
endpoint of some B; where s € Bx unless x =aorx = b, andsox € K. Ifr €
Bp and x = a or x = b, then by (5°) x is the endpoint of some A; where i € ap
not intersecting with any A; with ! € o;; hence x ¢ Jg and, since we know that
x € Jp, this case is impossible.

Similarly, suppose that K’ is a component of K, \ U,. By (3°), K’ C hy, AR
U, = Jo \ Uz and hence K’ C Jx—1 \ Uz and so 1s contained in a component L
of Lgy. We have seen (cf. (3n)) that either L C Iy or L N Iy = @. It follows that
a component of K ;2 \ U2 is contained in a component of L, implying the inclu-
sion Kj, \ U, C L, and the second inequality of (3p) follows. Thus (K 0’ 0) i
a (U;)-division of J; and so J; is an s-scaled (g;, 6;)-family by Theorem 2I. We
also obtain

Jk\ﬁ2=Lb\02=LQﬂlk\02CLQ\02=Jk-1\02,
using (3n) and the fact that (Jp, L) is a (U;)-division of J;_;. This implies (vi).
_ We have now only to prove (iv) and (v). Let U = int(Uisk 0:)-By (3D, Ix n
Us C hy' B® and so (1°) implies
IkﬂU3ﬂUChQ [B°ﬂmt( 50°N(Q°U P))]
C hQ K°NUsNint(Q U Py) = K’Q NU; Nint(Q U Pp) C Ji.

On the other hand, using (3m), the fact that (iv) is known for k — 1, as well as (vi),
LNU\ND) =LNLNU\U) CLNJ_1NWU\T) =5 NU\ D).

These two inclusions prove (iv).
We already have (vi). To obtain (v) we observe that, by (3m) and (vi), (fi \ Ji) \
U, C [ \ (e N Je—1) ]\ U, C L, \ Jx—1. Consider then the situation in Us. For
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technical reasons it is simpler to prove cl(f; \ J;) N Us C cl(x_y \ Jr—1)N Us, and
this of course implies the inclusion without the closure. We first use (31) to trans-
fer the situation to % Q°, remembering that J; N Ug, = K’Q N l73 = h51K° N Us.
Then we use (4°) in the first equality below and (3j) in the last equality:

el \ J) N U3 C hg'[cl(B° \ K°) N 2 0°] =iy, [(UB;’)n%g]

i€eBp

(el (U)o

= Cl[:( U A,) \ JQ] N 03 C Cl(Ik—l \ Jk—l) N l}3,

i€ap

since Jo N Us O Ji—; N Us. Our Claim follows. 0

Proof of Lemma 3B (conclusion). After the last cube P = Qg, we have an arc
I = Is with endpoints a and b such that, by (v), Is\ Js C Is_1\ Js—1 C --- C
Iy \ Jo = A. Since A C int(|J Q;), it follows by (iv) that Is = Js implying
that I = Js is an s-scaled (on, 8y)-family. Since s = £/2./nN = g/2./n2", it
follows that (3d) is true for some r and M depending only on n and c.

The arc I is also contained in U.(A). To see this, let k;,...,ky = P be the
numbers such that Oy, is the last cube of Q;. Then, by (ii),

Iy, C I, U( U %QJ> C U2ﬁs (T;_y)
k

i-1<j<k;

(where Ip = A and kg = 0) and so I C U,y /s (A) = Uc(A).

We must still prove (3e). As before, let k; be the index such that Qy, is the last
cube of Q;. When we changed A = I first to I;, then to I, and finally to I,
we basically changed A first around Q, to obtain I, then around Q5 to obtain I,
and so forth. The arc I; could be subdivided into subarcs I3, ..., I} where alter-
natively either I ! 14 16 Q1 or 1] ! is a subarc of Iy = A (they are the sets B; of the
Claim). By the Clalm the order of subarcs of A in the sequence /; ! is the same as
their order on Iy = A.

Similarly, we changed I, to I; by changing I, around tQZ, and obtained a sim-
ilar subdivision of I, into arcs alternatively contained i 1n Q2 and into subarcs of
I, so that the order of these latter arcs in the sequence is compatlble with a sequen-
tial order of 1. Slmllarly, we change from I, to I3, and so on, until we reach ;.
Since the cubes Q 0 € Q,, are disjoint, it follows that there is a subdivision of
I, into arcs Jl, ..., Jr such that alternatively either J; C 14 5 @ for some O € @,
(say, this happens 1f i € o) or J; is asubarc Iy = A (and thls happens if i € o).
In addition, the subarcs J; such that J; C Iy are in sequential order on Iy = A.

Define o1: Iy, — Ip = Abyo1(¢t) =tift € J; and i € «; so that J; is a sub-
arc of Iy; if i € «p then define o (¢) as an endpoint of J;; in this case J; C %Q
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for some Q € Q. Now |o1(x) — x| < —}%s n < g¢/N and, since the order of the
arcs I; C Iy is preserved, one easily sees that (3e) is valid for o = oy, I = [,
and A = I if ¢ is replaced by ¢/N.

Exactly in the same manner, one sees that there is a map o;: Iy, — Ii;_, such
that (3e) is true for o = 03, [ = I}, and A = I, _, if € is replaced by &/N. It fol-
lowsthato = oy o---007 : I = Is — A satisfies (3e). O

Proof of Theorems 1A and 1B

Now we have at our disposal the tools needed to prove the main theorems. We will
first consider Theorem 1A. Let a and b be two elements in a c-BT set X. We claim
that we can connect a and b by a ¢yp-BT arc J of X where ¢y = co(c, n). Since
we can transform the situation by a similarity, we can assume thata = 0 and b =
e1 =(1,0,...,0). Thus we can connecta and bby aset A C B"(c)N X. We can
assume by Lemma 2C that A is an arc if we allow the connection to be made in a
slightly bigger ball, say A C B"(c + 1).

Letr = r(c,n) and M = M(c, n) be as in Lemma 3B. We now choose § =
r/5 < 1/5. Thus § = §(c, n). We will apply Lemma 3B repeatedly so that ¢ in
Lemma 3B will assume the values &, i > 0. By Lemma 3B (using 8% =1ase),
we can connect a and b by an arc Iy in B”(c + 2) such that d(ly[x, y]) < M if
x,y€lpand |x —y| <r.

The arc I starts induction. Assume that we have found Iy, ..., Ix such that
(3d) and (3¢) are true with = I, 1, A=1I,,and ¢ = 8PTLif p + 1 < k. In this
situation we apply Lemma 3B with ¢ = 6**! and with A = I;, and let I;; be the
arc I given by Lemma 3B. In this manner we find I} C Ug(lx—) forallk > 0
such thatif x, y € I, and |x — y| < r8 then

d(I[x, y]) < M§*. (39)

Suppose now that x, y € I and i < k. We apply (3e) repeatedly and find points
x',y € I; such that |x — x'| < 8% 4 ... 4+ 8+l < 28*! and similarly |y — y'| <
28'*! and such that

It[x, y] C Upsin (I;[x', y']). (3r)

In particular, since Iy C B"(c + 2), it follows that
I, C B"(c + 2+ 28).

We claim that there is ¢y = cp(c, n) such thatif x, y € I and |x — y| > §*2,
then

dIxlx, y]) = colx — yl. (3s)

Assuming this, it follows by Lemma 2F that there is a subsequence I, tending to-
ward an arc J in the Hausdorff metric. In addition it follows by (3s) and (2c) that
d(Iy) < cglx — y| forall x, y € J and hence J is co-BT.

Thus we have only to prove (3s). If |x — y| > §, then (3s) is true with cg
(c + 2 + 28)87L. Otherwise, if |x — y| > 8%*2, choose i < k such that §*2
|x — y| < 81, As we have seen, there are x’, ¥’ € I; such that |x — x’| < 28+

<A
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and |y — y’| < 28°*! and such that (3r) is true. Thus |x’ — y'| < 56+1 = ré’ and
so d(I;[x', ¥']) < M&* by (3q) and consequently

d(I[x,y]) < M8 +48! < (M +468)8" < (M +48)67%|x — y|

by (3r), proving our claimif ¢y = co(c, n) is the maximum of numbers (M +45)5~2
and (c +2+8)57".

This proves Theorem 1A. The proof of Theorem 1B is the same. As above we
can assume that A is an arc. We can also normalize the situation so that, say, £ =
4. Then the foregoing proof finds an arc I in U,(A) such that d(1,,) < colx — y|
if [x — y| < 4. This easily implies Theorem 1B. O

4. Proof of Lemma 3A

The proof involves two steps. In the first step we prove the lemma except for the
part that claims that K°is a (o', 8')-family with o’ and 8’ depending on (1, c, e, 0, )
as claimed. We refer to this situation repeatedly and so, in order to avoid clumsy
language, will say that K ° satisfies Lemma 3A* when K° is a union of disjoint arcs
satisfying Lemma 3A except that K° need not be a (o', 8")-family with o’ and &’ de-
pending only on (n, c, e, g, §). Of course, each such family K° is a (@', §")-family
for some o’ and §’, and our basic idea is that we move in a compact set defined by
(n, c, e, 0, 6) and hence can choose o’ and 4§’ uniformly.

Before we start, we make the following observation. Since d(E, F) > e, the
number of elements of £° is bounded by a number Ny = Ny(n, ¢). Similarly, the
distance of components of J° is at least §, and hence the number of components
of J° is bounded by a number N; = N,(n, §). Because, in the sequence A?, the
sets A7 alternate in D°, £°, and D(J°) so that two successive elements are in dif-
ferent families, we will consider only sequences A7 such that no set of £° or of
D(J°) occurs twice in the sequence A7. (However, a set of D° may occur more
than once; this is needed since we will go to a limit and different sets of D° might
converge to the same set.) Thus we can assume that

PN (4a)
forsome N = N(n, e, §).

Step 1: Step 1 proves Lemma 3A*. Let {1,..., p} = ap Uag Uay be asin
Lemma 3A; that is, A} € D°if i € ap, and so forth. Here p < N as in (4a). If
I € ag, then A7 C X° N Q° and is e-chainable, and it follows by Lemma 2D that
we can find arcs L; C Uz..(A7) N X° C inttQ° for i € ag such that L; inter-
sects A7_; and A7, ;. (However, if i = 1 and 1 € ag, then L, intersects A3 and
u € Af;similarly, if i = p and p € ag, then L, intersects A;_l andv € L,.) Let
L be the set of components of J°U {L; : i € g }. Then each L € L is a finite
union of arcs of (tQ° UtP°) N —}% 0° N X°, and u# and v are joinable in D° U L by
a sequence Af, ..., A; which can be constructed as follows.

Set A} = A§$. Suppose, for instance, that 1 € ap. Then we put 1 to Bp and de-
finev; = 1.If p  @p and thereisan L € L suchthat LN A] # P andv € L,
we set A, = L, put 2 to Bk, and end the construction so that we have obtained
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a two-element sequence A}, A5. Otherwise we choose L € £ with the property
that L N A} # @ and such that if k = k; € ap is the maximal number such that
Ay N L # @, then L is chosen to make k as big as possible. We set A, = L, put
2 € Bk, set Ay = A3, put3 to Bp, and define v3 = k. We continue and the process
ends whenv, = p (if p e ap) orve L.

Clearly, we obtain in this manner a sequence A, ..., A} such that each A; in-
tersects only the preceding and succeeding element. In addition, every other A; is
in D° and every otheris in £ so that{1,...,q} = Bp U Bk, where A} € D°ifi €
Bp and A € Lif i € Bx and where i alternates in Bp and Bx. We have also con-
structed an increasing sequence v; € ap fori € Bp such that A} = AS, ifi € Bp.
Also, the construction gives that vy = 1if 1 € ap and v, = p if g € Bp. Since
A; will be By for i € Bp, we have (5°). Clearly, stillg < N.

If i € Bk, then A} € £ and hence A] intersects only A;_, if i > 1 (ifi =1
thenu € A}) and A] | ifi < g (ifi = g then v € A}). Thus it is possible to
find a subarc A7 C A} such that A7 N A]_; and A} N A, are endpoints of A}
(or,if i = 1 ori = p, then one endpoint of A} is u or v, respectively) and such
that A} intersects no other A} or Aj. If K° is the union of the arcs A7, then the
components of K° are just the arcs A} and so K° is a union of disjoint arcs in
@o°utP YN % 0° N X° and u and v are joinable in D° U D(K °). We obtain the
B?-sequence of Lemma 3A° from the A}-sequence if we replace A} by A fori €
Bk sothat BY = A’ ifi € ap and B = A] if i € Bx. Thus (4°) is true.

The remaining parts (1°)-(3°) of Lemma 3A are obvious by construction. Fur-
thermore, we will later make use of the fact that each arc L € D(K°) can be
subdivided into successive subarcs in such a way that

L=K(@L)U---UK,, (L) (4b)

where alternatively either K;(L) C int#Q° or K;(L) is a subarc of some J' €
D(J°). Furthermore, we can orient each L = B € D(K°) so that the beginning
point of L is either u (if i = 1) oris in B;_, and the ending point of L is either v
(if i = g) orisin By, . Thus, in the induced orientation for K;(L), the endpoint
of K; (L) is the beginning point of K;;(L).

If K° satisfies these conditions then K° will be called admissible. Note that
component arcs of K° will be oriented as indicated above.

Step 2: 'We now show that we can choose K ° in Lemma 3A to be such a (¢’, §')-
family of arcs as claimed.

We first introduce some terminology, and define a condition for such arc fami-
lies as considered in Lemma 3A. Assume that there is given a positive number r
and two k-tuples € = (¢, ..., &) and 8 = (81, ..., 8;) of positive numbers. Here
k > 0, and if k = 0 we are given only r. Let K be a family of disjoint closed arcs.
We say that X is an (r, £, §)-family if
(@) d(L, L") > r fordistinct L, L' € D(K), and
(B) ifx,ye L e D(K) and |[x — y| < §;, thend(L,y) < &;.

Thus we can think of ¢ = (r, &, §) as an element of (R,.)?**!; such a triple 7 is
called a k-triple.
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We will first prove a lemma whose formulation depends on a number & and is
different for ¥ = 0 and for k > 0.

LEMMA 4A. (a) [k = O] Thereisanr' =r'(n,c, e, 0,8) > 0 such that there is
an admissible (r')-family K° satisfying Lemma 3A*.

(b) [k > O] Suppose that, for some fixed n, c, e, g, and § in Lemma 3A, there
is a (k — 1)-triple T = (r,&,8) € (R.)**! such that the family K° in Lemma
3A* (with these fixed n, c, e, 0, 8) can always be chosen to be an admissible t-

family. Letv', €, ..., &, and 8}, ...,8,_, be positive numbers such that r' <
r, e < &, and & > 8] if i < k — 1. Then there is a §; > 0, depending only
on(n,c,e 0,8, 7,7, €6,..., s 815, 0,_1), suchthatif & = (g, ..., &) and
8 = (8], ...,8;) then K° in Lemma 3A can be chosen to be an admissible t'-family

for the k-triple T = (', &, §).

The proof of the lemma is based on Step 1, which finds the family K° for Lemma
3A*, and on the fact that we move in Lemma 3A in a compact situation where
compactness is governed by (n, c, e, 0, §). We will prove the lemma under the as-
sumption that k£ > 0. (The proof for k£ = 0 is much the same but some details are
slightly different; we give the changes for £ = 0 inside brackets [ ].) Since the
number of cubes of Q° touching Q° is finite, it suffices to consider the situation
that P° and P° are fixed in Lemma 3A.

Suppose that, given n, c, e, o, and §, Lemma 4A is not true for a particular k
and (k — 1)-triple T = (7, &, 8). First of all this means that we can always choose
K° in Lemma 3A* (with these n, ¢, e, g, §) to be a T-family. It also means that
thereare 0 <r' <r, 0 <48 <é,andeg; > g fori =1,...,k—1as well as
g, > 0 such that, for every §; > 0, there is a situation where the assumptions of
Lemma 3A are true but K° is not an admissible 7’-family whenever the admissi-
ble family K° satisfies Lemma 3A*. [If k = 0, then for every r’ > O there is a
situation such that, however the admissible K ° satisfying Lemma 3A* is chosen,
there exist L, L’ € D(K°) such that d(L, L") < r’.]

Let 7; be the k-triple, where r’, &; fori < k, and §; fori < k — 1 are the numbers
found above when 8; = 2~ . [If k = 0, then r = 27 .]

Thus there are ¢-BT sets X; € C(R"), families D; of closed subsets of (X; N
2 0°)\int(Q°UP®), families £; of e-chainable sets of X;NQ° suchthatd(E, F) >
efordistinct E, F € &;, as well as (g, §)-families J; of tP° N }—g 0° such that there
is an alternating sequence A;1, ..., Ajp, in (D;, &;, D(J;)) joining u; and v; such
that,if A, = A;U---U Aip‘., then

A; Nint(P° N $0°) C J; Nint(P° N 50°),
and such that if the 7-family K; is admissible and if K° = K; satisfies Lemma
3A* for X° = X;, and so on, then K; is not a t;-family, however the t-family K;
is chosen.

We derive a contradiction from this. Let «;p U «;g U «;; be the decomposi-
tion of {1, ..., p;} into alternating indexes so that A;; € D; if j € a;p, and soon.
By (4a), we can assume that p; < N = N(n, e, §) and hence can pass to a sub-
sequence so that p; = p is independent of i. We can also pass to a subsequence
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so that ;p = ap, ojg = ag, and «;; = «y independently of i. By compactness,
we can pass to a subsequence so that X; — X° € C(R™) and A;, — Ay asi —
oc. By Lemma 2B, X° is ¢-BT.

Letnow D° = { A} : k € ap }. If we denote &; = {Ei1, ..., Eig} and D(J;) =
{Ji1, ..., Jir} (as before, since the number of elements of &£; and D(J;) are uni-
formly bounded, we can pass to a subsequence so that g and r are independent of
i), then we can assume that E;; — E? and J;; — J© asi — o0o. We easily see
that £ = {E7, ..., E} is a disjoint family of sets of X N Q° satisfying the con-
ditions of Lemma 3A. Similarly, J° = | J; J7 is a (g, 8)-family of X° N 13 O by
Corollary 2H. We can still assume that u; — u and v; — v and thus A3, ..., A;
is an alternating sequence in (D°, £°, D(J°)) joining u and v. Then («p, g, ay)
are the corresponding alternating indexes.

We now have a situation where the assumptions of Lemma 3A are true. Hence,
by the assumptions of Lemma 4A, we can in any case find K° C (¢Q°UtP) N
% Q°NX° asin Lemma 3A* such that K° is an admissible t-family. [If £ = 0, we
find such a K° by Step 1.] In addition, in this particular instance there is certainly
ad;y > Osuchthatifx,y € L € D(K°) and |[x — y| < 26; then

d(ny) < 8k/2- (40)

This of course gives a contradiction. Namely, if X; is close enough to X°, and
J; is close enough J°, and so on, we can find for big i a set K; such that K; —
K°asi — oo and that K; = K° satisfies Lemma 3A*, where X° = X;, J° = J;,
u; = u, and so on. However, if K; is close enough to K°, then K; must satisfy
(4c) with g and &, if K° satisfies (4¢) for /2 and 26;. Similarly, for big i,

d(Lyy) < & (4d)

ifx,y € L € D(K;) and |x — y| < 8} if j < k — L. Inaddition, if L, L’ € D(K;)
are distinct then d(L, L") > r’ for big i. Thus the family K; is a t;-family for big
i, contrary to the assumption.

More formally, the argument runs as follows. Let By U --- U B7 be the alter-
nating sequence as in Lemma 3A* joining 4 and v in (D°, D(K°)), with Bp U Bk

the division of {1, ..., g} into alternating indexes. Thus B]? = Af,j if j € ap, and
we set B;; = A;y,; if j € Bp. Our tasks are to define B;; for big i if j € Bk so
that the sequence B;j, ..., B, (with v;; = v; as above not depending on i) satis-

fies Lemma 3A* and to show that K; = | J{ B;; : j € Bk } is a 7;-family for big i,
giving a contradiction.

We use the fact that each L € D(K°) is admissible and hence can be divided
into subarcs as in (4b). Thus subarcs of components of J° and arcs in int tQ°
alternate in the sequence K; (L) of (4b). In the following, subarcs of components
of J° are called subarcs of J°.

We fix L = B, where m € Bg, and use the notation K;(L) as in (4b). Let us
consider the situation where K;(L) is a subarc of J°. Now J; and J° are (o, §)-
families and J; — J°. Hence by Lemma 2F (applied to suitable components of
Ji and of J°) there is a subarc K;; of J; such that K;; — K;(L) asi — oo. Now
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both K;(L) and K;; are g-arcs where o depends on o and 8, and hence we can ap-
ply Theorem 2G to find a map o;;: K;; — K;(L) for big i sending the endpoints
K;; onto the endpoints K;(L), so that there are numbers d;; such that

loij(x) — x| <dijj and K;;[x, y] C Uy, (K;(L)[o(x), 0 (] (4e)

where, for each j, d;; — 0 as i — oo. In addition, we orient K;; so that the
beginning point is sent by o;; to the beginning point of K;(L).

We do this for all big i and all arcs K;(L) such that K;(L) is a subarc of some
component of J°, that is, for every other K;(L) in the sequence (4b). The other
case is that K;(L) C X° Nint¢Q°. In this case, by Lemma 2E we can find for big
i an arc K;; C X; Nint¢Q° such that there is a map o;;: K;; — K;(L) satisfying
(4e) with suitable d;; tending to 0 as i — o0. In addition, we can assume K;; ori-
ented in such a way that the beginning point of K;; is the ending point of K; j_;
if j > 1.If j = 1, then the beginning point is a point of B; ,,—; if L = B,, (or the
point « if m = 1). Similar rules apply for the ending point of Kj;.

Define K;o = Bi,m—l (or K;p = {u,—] if m = 1) and Ki,pL+1 = Bi,m+1 (or
Ki p,+1 = {vi} if m = g). Define similarly Ko(L) and K, ;1(L). Then the inter-
sections K;(L) N K;_1(L) and K;(L) N K; (L) are the endpoints of K;(L) for
1 < j < pr. We would like the corresponding statement to be true also for K;;,
at least if i is big. However, (4e) implies that in any case we can have for big i
that K;; intersects only the preceding and succeeding K;,, and that, if there are
multiple intersections, they are near the endpoints. It follows that we can shorten
the arcs K;; for 1 < j < p; (K;o and K; p, 11 are unchanged) so as to obtain
arcs K,-’j C K;j such that Ki’j, 1 < j < p., intersects only K{,j_l and K,.”H_l at
endpoints and such that

sup{d(K) : K is a component of K;; \ K,-’j forsome j} — 0 (4f)

asi — oo. Thus

Li:Ki/lU...UK;pL

will be an arc. Setting B;,, = L;, it follows that, for big i, B;,, intersects B;; only
if j =m —1orj =m+ 1 at the endpoints (or if m = 1 or m = ¢, an endpoint
of B;, is u; or v;, respectively), as follows from the fact that the corresponding
statement is true for B,, = L and that the B;,, are contained in smaller and smaller
neighborhoods of B, asi — oo.

We can now define o; : L; — L by the rule 0;(¢) = 0;;(t) if t € K,-’j C K;j if
t € K| ;N Ki’, j+1 We use 0y; in the definition of o;(¢)). It follows by (4e) and (4f)
that there are positive d; tending to 0 as { — oo such that, for big i,

loi(x) —x| <d; and L;i[x,y] C Uy (L[oi(x), o:(¥)D).

Since d; — 0, it follows that K; = Ui L} will be a t;-family for big i. In addi-
tion, K; is admissible and satisfies Lemma 3A*. This contradicts the choice of X;,
J;, and so on. O

Proof of Lemma 3A (conclusion). The proof is an inductive construction using
Lemma 4A in the following manner. In the construction we will use a descending
sequenceap =1 > a; > --- > 1/2, and we fix such a sequence (a;).
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We now fix n, ¢, and e, as well as ¢ and §, and prove Lemma 3A with these
fixed values. In the first step we use the Lemma 4A withk = O and find r > O
such that the family K° in Lemma 3A* can always be chosen to be an admissi-
ble t-family for T = (r); that is, d(L’, L) > r for distinct components L and L’
of K°. In the next step, we apply Lemma 4A for £ = 1 and find §; > 0 such that
K° in Lemma 3A* can be chosen to be an admissible (a;r, 271, 8;)-family. The
next step uses Lemma 4A with k£ = 2, and the conclusion is that there is a §; >
0 such that we can always find K° for Lemma 3A* such that K° is an admissible
(azr, ((@22)71,272), (a2, 8,))-family.

Since (a;2) "% < 27%*! and a;8* > 8;/2, the inductive construction finds §; >
0 such that if e® = (1,...,2% ) and 8® = (8;/2, ..., 8:/2), then for every k
there is a 7;-family K} for Lemma 3A* with 7 = (r/2, 6%, §®). Thus given A$
(f eapUagUay ={1,..., p}) of Lemma 3A, there is a an alternating sequence
By (i€ BpUBik =(1,....,qxD)in{ A? 1 i € arp } UD(Ky) satisfying Lemma
3A* and where K is a tz-family. Since p < N by (4a), part (5°) of Lemma 3A
implies that also g < N and hence we can pass to a subsequence so that g, =
q does not depend on k. We can also assume that Byp = Bp and Byx = Bk do
not depend on k. Furthermore, for each k there are given numbers vy; € ap (i €
Bp) as in (5°) of Lemma 3A such that A,,, = B;; and where vy; is increasing in i.
Again, we can pass to a subsequence so that vi; = v; does not depend on k.

Now, every K} is contained in % Q¢ and the distance of distinct components of
K} is at least r/2. Thus the number of components of K; is bounded and we can
apply Theorem 2F to single components. It follows that we can still pass to a sub-
sequence so that K; — K°, where K° is a (¢’, §')-family with o’ and §’ depend-
ing only on n, c, e, r, and &; and §;—that is, depending only on (n, c, e, 0, §). It
follows thatif i € B then By; — B; for some By € D(K°) asi — oo.Ifi € Bp
then we set B = A,;. Thus B{, ..., B; joins 4 and v in D° U D(K°®).

It is possible that the sequence B; we have obtained does not satisfy (4°). For
instance, after passing to the limit, it might happen that B? (i € k) intersects B;
even if [i — j| > 1. Therefore we may have to change the sequence B;. Suppose,
for example, that 1 € Bp. Let j be the biggest index in Bg such that B? inter-
sects By, and redefine B; to be B;. After that, we choose the biggest k € Bp such
that the old B} intersects the new B;. We continue in this manner, possibly drop-
ping some B? between the old By and the old B;. We change Bp and Bk appro-
priately and note that we can redefine the increasing sequence of v;s so that B =
A}, if i € Bp. The new By is still an alternating sequence joining # and v with
alternating indexes Sp and Bg.

We have now obtained that if i € Bx then B intersects B onlyif |i — j| =1;
however, it could still be that if i € Bx then the intersection of B with the suc-
ceeding or the preceding B} is not a point. If this is the case, we shorten the arc
B; at the ends so that these intersections will be points. After this we redefine
K° = UiE Bx B;?, which is still a (g, §)-family, and so obtain the final sequence
B}, ..., BS.

All thesz: operations have had the effect that (4°) is now true. Parts (1°)—(3°)
and (5°) are easily seen to be true. Now we finally have a sequence B; satisfying
Lemma 3A and not only Lemma 3A*. O
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