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0. Introduction

In the present work, we study the structure of closed ideals in algebras of functions
f on the cube Q¢ := [—1, 1]” satisfying, for a given majorant w, the Zygmund
condition | f(x + h) — 2f(x) + f(x — h)| < Cw(Jh|). It is assumed that

1
t
f 20 4t = oo ©)
o !

or equivalently that A® is not contained in C!(Qy). The main result of the paper
is a theorem on spectral synthesis of ideals in Zygmund algebras A” (Theorem
2) claiming that, for regular majorants w (i.e., those subject to regularity condi-
tions (R1) and (R2) below), every closed proper ideal in the algebra A® is an inter-
section of closed primary ideals. Assertions of such type go back to the classical
algebraic works of E. Noether and E. Lasker on ideals in Noetherian rings. Later,
theorems on spectral synthesis of ideals were proved (or disproved) for various
algebras of smooth functions. For more extensive discussion, see Section 1.

Our proof of Theorem 2 depends on two major results: on an abstract spec-
tral synthesis theorem for a class of functional Banach algebras, called the class
of D-algebras and defined in terms of point derivations (Theorem 0) [H2; H4];
and on a special extension theorem for Zygmund functions (Theorem 1) which
implies that the algebras A® are D-algebras.

The main difficulty in proving Theorem 1 arises from the absence of an intrin-
sic description of traces of Zygmund functions to general sets in R” for n > 2.
Using such descriptions for n = 1, 2 [Shv; H4; HS5], direct proofs of Theorem 1
(and thereby of the spectral synthesis theorem) for algebras A® with arbitrary ma-
jorants w satisfying condition (0) were obtained in [H3; H5]. An alternative proof
of Theorem 1 in the case n = 1, w(t) = ¢, is presented in [H4].

Our proof of Theorem 1 is based on the method of quasiharmonic extensions of
smooth functions [D1; D2]. This method works for any dimension n; however, it
presupposes certain regularity of majorants w.
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Results of this work are related with the classical problem of spectral approx-
imation. The latter consists of describing, for a certain space of functions (not
necessarily an algebra with respect to pointwise operations), the closure Jg of the
set of functions vanishing in a neighborhood of a given closed set E. Stimulated
by the classical theorem of Malliavin [Ma] on the lack of spectral synthesis in
Wiener algebras for noncompact abelian groups, the problem of spectral approx-
imation was studied originally in the framework of harmonic analysis. The most
interesting results in the nonharmonic setting are exemplified by the solution of
the spectral approximation problem for Sobolev spaces [He; HW], and for Besov
and Lizorkin—Triebel spaces [N]. For every function in Jg, its derivatives (what-
ever they are) vanish in an appropriate sense on E. This renders the problem of
spectral approximation for many natural classes of smooth functions (in particu-
lar, for nonseparable Zygmund spaces A“) too restrictive. For functional Banach
algebras, a more general approach based on the property of spectral synthesis of
ideals was suggested by Shilov [Shi]. In this case, Jg turns out to be the minimal
closed ideal with the cospectrum E.

As a corollary of Theorem 1 we obtain a solution of the spectral approxima-
tion problem for Zygmund spaces A® with regular majorants w. Also, we show
that every closed ideal in the corresponding “small” Zygmund algebra A* is com-
pletely determined by its cospectrum (Theorem 3). In the casesn = 1 and n =
2, these two facts are valid for any majorant w subject to condition (0) (see [H4,
HS5]). For arbitrary n and w(?) = ¢, Theorem 3 was obtained in [D2].

In Section 1, we give the main definitions, examples, and results related to spec-
tral synthesis of ideals, including the concept of D-algebras. Notation and some
preliminary facts are outlined in Section 2. In Section 3, we recall the definition of
Zygmund spaces and state some of their properties. Main results of the paper are
formulated in Section 4 where we deduce spectral synthesis theorems for “big”
and “small” Zygmund algebras and the theorem on spectral approximation from
the special extension theorem. The proof of the latter is presented in Section 5.

1. Spectral Synthesis of Ideals: Definitions and Examples

Let X be a locally compact Hausdorff space, and let .4 be a Shilov regular Banach
algebra of real or complex continuous functions on X with respect to pointwise
operations. We assume that the space of maximal ideals of algebra A coincides
with X. :

For every ideal 7 in A, we define a closed subset in X, o (1) := [ {{ f ~10) :
f € I}, which is called the cospectrum of 1. An ideal I is called primary at a
point x € X if o (/) = {x}. We associate with every closed subset E in X the set
M of all functions in A vanishing on E, and the closure Jg of the set of functions
in A vanishing in a neighborhood of E. It is well known (see e.g. [GRS, Sec. 36])
that Mg and Jg are the maximal and the minimal closed ideals in .A with cospec-
trum E (in particular, M, is the maximal ideal at x and J, is the minimal closed
primary ideal at x). Thus, for every closed ideal I in .4 with cospectrum E, we
have Jg C I C Mg.
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The primary component I, of an ideal I at a point x € X is defined to be
the smallest closed primary ideal at x containing /. It is easy to see that I, =
closa(I + Jy).

We say that the algebra A admits spectral synthesis of ideals (notation: A €
Synt) if, for every closed proper ideal / in A,

I=(L:xeo()}. (1.1

In other words, A € Synt if every closed proper ideal in 4 is an intersection of
closed primary ideals. If J, = M, for all x € X, then (1.1) becomes

I =Mg, E=0(l), (1.2)

and in this case we write A € synt.
Here are a few basic examples of algebras of smooth functions admitting spectral
synthesis of ideals.

(1) The algebra C(X) of all continuous functions on a compact Hausdorff space
X equipped with the norm || f|lx := sup{|f(x)| : x € X}. As shown in
[S; Shi], C(X) € synt. More generally, this is true for the algebra Cp(X) of
continuous functions on a locally compact Hausdorff space X “vanishing at
infinity”.

(2) The “small” Lipschitz algebra lip(K, p) of functions on a compact metric
space (K, p) with the finite norm || f ||k, , := max{|| f||x, | f|k, p}, where

flk.p = sup{ 'f(z)(; )’;(”' xyeK, x#y }

and satisfying the condition lim,(, yy»o(f(x) — f(¥))/p(x,y) = 0. The
algebra lip(K, p) possesses the spectral synthesis property (1.2); see [She].

(3) The “big” Lipschitz algebra of all functions on a compact metric space (X, p)
with the finite norm || - || ¢, , [Wa]. (The particular case K C R", p(x,y) =
|x — y|%, 0 < @ < 1, was treated in [G].)

(4) The algebra C™(Q) of m times continuously differentiable functions on a
closed cube Q in R” [W2; M] (for m = 1, this was independently estab-
lished in [Sn]). Also, C*°(Q) € Synt [M].

(5) The algebra C™ lipw(Q) of C™-functions on Q with higher-order deriva-
tives in lipw (@) [H1]. Here w is any nondecreasing function on R, such
that 0 (0) = 0w (0+) =0, w(t) > O fort > 0, and lim,_, g4 w(¢)/t = +0o0.

(6) The algebra C™ Lipw(Q) for n = 1 [H5] with a majorant w satisfying the
above conditions except possibly for the last one.

(7) The Sobolev algebras Wi(R") forn =1 < p < +ooand2 <n < p <
+o00 [H1; H5]. For all other possible values of parameters p, [, n, Sobolev
algebras fail to admit spectral synthesis of ideals.

The proofs of these results for every particular algebra are very specific. In [H2;
H4] the second author developed a unified approach to spectral synthesis of ideals
in a certain class of Banach algebras which we shall briefly describe.

Let A be a Shilov regular Banach algebra of continuous functions on a com-
pact Hausdorff space X containing the unity function and having the following
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inversion property: if f € Aand f(x) # Oforall x € X then 1/f € A. Hence,
the space of maximal ideals of A coincides with X.

DEeFINITION 1. A bounded linear functional D € A* is called a point derivation
of algebra A at a point x € X if

D(fg) = f(x)Dg + g(x)Df forall f,ge A.

Let D, be the linear space of all point derivations of A at a point x. Observe
that, due to the regularity of A, D(J,) = {0} for all D € D,. For a closed sub-
set E in X, define Kg :={D : D € D,, x € E, ||D|| < 1}. Obviously, Kg is
compact in the weak* topology on A*.

Toeach function f € A, we associate a function f € C(Kg) by setting f (D) :=
Df, D € Kg. This formula determines a linear mapping dg: A/Jg — C(KE)
such that || f ke <l fllg forall f € A, where || f || ¢ stands for the quotient norm
of the class f € A/Jg containing f.

DEFINITION 2. An algebra A is called a D-algebra if, for every closed set E C
X, there is a constant A(E) such that

Ifle < AE) fllk, forall fe Mg. (1.3)

Condition (1.3) is a kind of an extension theorem which implies in particular that
the “trace” of a function in a D-algebra to a closed set £ C X is completely deter-
mined by values of the function on E and those of its point derivations at points
of E.

Introducing the class of D-algebras is justified by the following result.
THEOREM O [H2; H4]. Every D-algebra admits spectral synthesis of ideals.

The most important examples of D-algebras are as follows.

(1) Algebras satisfying condition (1.2) and hence having only trivial point deriva-
tions. This is the case for algebras C(X), Co(X), lip(X, p), and\Wp1 (R"™) with
n=1<p<+4ococand2 <n < p < +o0.

(2) Lipschitzalgebras Lip(X, p). Inthereal case, inequality (1.3) is satisfied with
A(E) =1 and thus turns into equality (see [She; Wa] for substantiation).

(3) Algebras C!(Q) on a closed cube Q in R”. In these algebras, every point
derivation at a point x is of the form f — Vf(x)v for some vector v € R”,
that is, is a directional derivative. Hence, (1.3) follows from the Whitney ex-
tension theorem [W1; M] with a constant depending only on n. It is worth
noting that the algebras C! Lip w(Q) fail to be D-algebras [H5].

(4) Inthe presentcontribution we show that Zygmund algebras A® are D-algebras
for majorants w subject to (0) and satisfying, for all ¢ € (0, 1/2] and for some
constant C > 0, the following regularity conditions:

t
f ©6) 45 < Coto), (R1)
0

S
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1
r2/ %(—;zds < Co(?). (R2)

Observe that in the case of power majorants w(¢) = t%, conditions (R1) and
(R2) are satisfied for 0 < o < 2 while condition (0) is fulfilled for 0 < o <
1. Note also that if 0 < & < 1 then A* = Lip«. Thus, in the power scale, the
only case of interest is w () = ¢, that is, that of the classical Zygmund space
A [Z].

2. Preliminary Observations and Notation

We denote by | x| the Euclidean norm of a vector x € R”, and set x? := |x|%. For
acR"andr > 0,weset B(a,r) :={x e R": |x —a| <r}(ifa =0, we write
B(r)). An interval in R” is a set of the form [a, b] ;= {a+t(b—a) : 0 <t <
1}, wherea,b € R". Aset S = Q(a,d) = {x € R” : maxj<j<y|x; —ai| < d}
witha € R” and 0 < d < 400 will be called a cube, and we will write cs = a,
ds = d, and diam S = 2./nd.

For a multiindex « = (¢y, ..., a,) € Z", we denote by D“ the corresponding
partial derivative of order |@| = «; + - - - + «,. Partial derivatives of the first or-
der will be written also in the form d/dx;,i = 1,...,n. Symbols V, V2, and A
stand for the gradient, the Hesse matrix, and the Laplacian, respectively. Support
of a function will be denoted by supp .

In the sequel, C will stand for various positive constants that may depend only
on n and may differ even in the same chain of estimates. Every cube in R” of the
form Q(0, C) will be denoted by Q.

For a function f defined on a cube S in R” and for all admissible x and &, we

set A, f(x) == f(x +h) — f(x), A} f(x):=f(x+h) =2f(x)+ f(x—h),
w2(f; 8; 1) :=sup{ | AL f(x)| :x£h €S, |h| <t}, t=0,

and || f|ls ;= sup{|f(x)| : x € S} (if S = R” we write || f|lo0). Let P; be the set
of polynomials in n variables of degree not greater than 1. For a bounded func-
tion f defined on a set F in R”, we denote by E(f; F) :=inf{||f — Pllr: P €
P, } the uniform best polynomial approximation to f on F of order 1. It is well
known [B] that, for every cube S in R”,

Ei(f;S) = Cwa(f; S5 ds) 2.1

(the converse inequality w,(f; S; ds) < 4E,(f; S) is obvious).

The Euclidean distance from a point x € R” to a set E C R” will be denoted
by d(x, E), and d(F, E) = inf{d(x, E) : x € F } will stand for the distance be-
tween sets F and E. Foré > 0, weput E; = {x €¢ R"” : d(x, E) < é}. Asusual,
x e denotes the characteristic function of a set E.

For a closed set E in R"”, we denote by W the Whitney decomposition of R" \
E [M], that 1s, a collection of cubes with disjoint interiors such that:

(i) R*\ E = |J{K : K € Wi}, and the multiplicity of this covering is uni-
formly bounded by a constant depending only on n;
(it) diam K <d(K, E) <4diam K, K € Wg.
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Associated with the Whitney decomposition W is a partition of unity by functions
Yk, K € Wg, possessing the following properties:

(i) Ygew, ¥x(¥) =1, x € R"\ E;
(ii) supp¥x C Q(ck,2dk); N
(iii) forevery K € Wg, ¥x € C®(R") and || DYk ||oo < Cd,;'“l, lee} < 2.
The function p(x, E) := ) _ kewg 4K, E)¥k(x) is called the regularized dis-
tance from a point x to the set E. An easy calculation shows that

3p(x, E) <d(x,E) < 30(x,E), xeR". (2:2)
Besides this, p € C*°(R") and
|D%(x, E)| < Cd(x, E)!™™, 1< la] <2. (2.3)

Vectors z € R*+! will be represented in the formz = (x, y), wherex € R*and y €
R. To distinguish n-dimensional cubes, balls, and neighborhoods from their (n-+1)-
dimensional counterparts, we supply the latter with the symbol “~”. We recall that
the Poisson kernel for R”*! is the function P(x, y) := c,y/(x% + y?)®*tD/2 (x ¢
R", y € R), where ¢, is defined by

/ P(x,y)dx=1, y>0. (2.9

A nondecreasing function w on R, such that w(0) = @ (0+) = 0, w() > O for
t > 0and w(t) = w(1) = 1 fort > 1 will be called a majorant. It can be easily
checked that every majorant has the following properties:

1 1
sf w(:)dv5th ©W) g, 0<s<t<172, 2.5
s U t v
1
tf w::)dv—»O as t — 0+, 2.6
t

3. Zygmund Algebras: Definitions and Main Properties

For a given majorant w, the Zygmund space A“ = A“(Qy) is defined as the set
of all bounded functions f on the cube Q¢ = [—1, 1]” satisfying, for all admis-
sible x and 4 and for some constant A > 0, the (generalized) Zygmund condi-
tion |A% f(x)| < Aw(|h|). Everywhere below we will assume without loss of
generality that the function

w(t)/t? is nonincreasing for ¢ > 0. R)
This implies
w(at) < o), o>1,
an inequality that will be (sometimes tacitly) exploited throughout.

The space A® is supplied with the norm || f ||« := max{|| fll gy, | fla=}, where
the Zygmund seminorm | - |5« is the infimum of all constants A involved in the
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above Zygmund condition. We define the “small” Zygmund space A to be the set
of all functions f € A satisfying the condition w,(f; Qo; t)/w(t) > Oast —
0. A standard argument shows that A is a linear closed separable subspace in A“.
Similarly, one can define the space A“(R").
Note that by the Marchaud inequality [Mar], for every function f defined on an
interval L =[a —d,a+d] and forall x and 4 # O suchthatx,x +h € L,
d .7
1AL f ()] < Clh) [ f —-———"’“{;L’ 2 dr + "Z"L]- 3.1
I

h

Hence, in view of (2.6), A® C C(Qyp). Also, the space A® is imbedded in C!(Qp)
under the following condition.

PROPOSITION.  For any majorant subject to (R),
1
w(t
A® c CY(Qo) iff f T(szt < 00.
0

Furthermore, this condition implies

" w

(;) ds.

A® C C'Lipy(Qo) with y(2) :=/ ,
0

The proof of the Proposition can be found in [H3, H5].
The Zygmund space A® is a Banach algebra with respect to pointwise multipli-
cation. In fact, we apply (3.1) and the inequality

1 2
[:[ () ds] <Co(), 0<t<1/2, (G.2)

$2
(for the proof of (3.2), see [H5]) to the identity
AL (fR)(x) = AL F(x)g(x+R) +2A, F(x—h)ALg(x) + f(x =) Ajg(x)  (3.3)

to obtain || fgllae < Cl|fllacliglla«. The algebra A“ obviously meets all the re-
quirements of Section 1.

If lim,_, 04 w(t)/t? = 400, that is, for all majorants w(¢) except for those
equivalent to ¢2, then inequality (3.2) can be strengthened—namely, in this case,

) 1 Lw(s) 2 _
Il_1>r(§1+ w(t) [t[, 52 ds] o 34

(see [HS]).

4. Main Results
The ensuing result is the main contribution of this work.

THEOREM 1. Suppose w is a majorant satisfying conditions (R1), (R2), and (0).
Let E be a closed subset in Qq, let f be a function in A®(R") with support in
Q(0, C) such that f|g =0, and set
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A2
M := limsup i—hm
d(x,E)—0,h—0 @(|h])
Then for every € > O there exist § > 0 and a function g € A°(R") with g|g;, =

fles and ||glla» = C(M + ¢).

Theorem 1 will be proved in Section 5.

Applying the argument developed for the case w(¢) = ¢ in [H4, Sec. 2] (for the
general case, see [HS]), by invoking (3.4) we show that M = || f |k . Therefore,
Theorem 1 implies that A® is a D-algebra. Together with Theorem O this leads us
to the following spectral synthesis theorem for Zygmund algebras.

THEOREM 2. For majorants w satisfying conditions (R1), (R2), and (0), A® €
Synt.

Using regularization, we extract from Theorem 1 the following corollary; see [H4,
Sec. 5] and [H5] for further details.

THEOREM 3. Let majorant w satisfy (R1), (R2), and (0). Then A* € synt.

Another result that can be derived immediately from Theorem 1 is the follow-
ing theorem on spectral approximation. We recall that, given a closed set E C
Qo, JE is the closure in A? of the set of functions in A® vanishing in a (relative)
neighborhood of E.

THEOREM 4. ' If w is a majorant with properties (R1), (R2), and (0), then for any
closed set E in Qg we have

AL } .

Jg = € A?: =0, -
E { f fle d(x,E)-l—l;r(l), 0 w(| h |)

5. Proof of Theorem 1

5.1. Auxiliary Results

Collected in Section 5.1 are a few results of analytical nature used in our proof of
Theorem 1. A crucial role in this proof is played by the quasiharmonic extensions
of functions that appear in the context of the following assertion.

LEMMA 1. Let w be an arbitrary majorant, and let f € A®(R"™). Then there
exists a function u € CLR"1) N C®R"*! \ R") such that:

(1) u(x, —y) = —u(x, y) for (x,y) € R"*! (in particular, u(x,0) =0 forx €
R"™); :

(ii) zu(x,0) = f(x), x € R

(iii) |Au(x, Y)| = Clflae@(yD/Iyl, x € R, y #0;

(iv) if supp f C B(r), then suppu C B(Cr).

Moreover, this function « has the following local properties.
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LEMMA 2. Suppose the majorant w satisfies condition (R1). Let f € A”(R"),
let u be the function from Lemma 1, and let E be a closed subset in R". Suppose
that f|g = 0 and that for some § € (0,1/2] and A > 0, IA%f(x)I < Aw(lh|)
whenever d(x, E) < 8 and |h| < 8. Then, for every z = (x,y) € Rl with
d(z, E) <4, the following conditions hold:

@ Au(@)| < CAw(lyD);
1
Gi) Vu@] < Cllflned@ B [ 2L ar;
d@z,E) 1t
1
(i) u@I < Clflwed?eB) [ 2L
d@z,Ey 1t

For the proof of Lemma 1 and of assertion (i) in Lemma 2 we refer the reader
to Theorem 1 in [D2], which discusses the case of power majorants w; however,
the proof is the same for any majorant. Bounds (ii) and (iii) in Lemma 2 are es-
tablished in [D2, Lemma 4] for w(¢) = ¢, but the proof carries over without any
difficulty to any majorant with the property (R1).

LEMMA 3. Let G be a closed set contained in a ball B = B(r) C R", and let w
be a majorant satisfying condition (R1). Then, for every harmonic function F in

2B\ G,
f_ P2 4, < cf_ () 24
B\G |yl 2B\G d(z)

where d(z) :=d(z, G), z € R**1L.

Proof. Observe thatif z € B \G, ¢ eR*! and |t —z] <d(z)/2then¢ € 2B
and %d (¢) <d(z) <2d(¢). By the mean value theorem for harmonic functions,
we have

C -
F(z) = F)dt, ze B\G.
d"t1(2) Js@.de)
Hence,
w 1
[ oren2Xasc [ 2B o F()dt dz
B\G |yl ae 1Y d"(@) Jaeaw

1 o(lyD
<C F _— ——dzdct.
- fzé\cl (C)ld"“(f) Be.aey 1yl ze

For every point ¢ = (&, n) we have || < d(¢). Therefore, E({, d)) C
B(,d(¢))x[—2d(t),2d(¢)]. Now we continue the previous estimates and make
use of (R1) to obtain

w(lyD) / 1 (29 ()
F()|——dz <C F(¢)|—— —d
/ii\cl @ |yl ¢= 21§\G| (C)Id(é') 0 .

w(d(%))
C F deg,
< [ZE\G| @2 de
which completes the proof. O
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Our next result is a generalization of the corresponding statement in [D2], which
was established there for power majorants and proved via a different method.

LEMMA 4. Suppose the majorant w meets conditions (R1) and (R2). Let ¢ be

a measurable function on R™' with supp¢ C QO such that, for some constant
A >0,

lp(x, y)| < A%, y #0,
and let
g(x) = ¢(x+1t,y)P(t,y)dtdy, xeR", S.1)

R+l
Then g € A® and ||g|la» < CA.

Proof. Due to (2.4) and (R1), the integral in (5.1) converges absolutely. In view
of w(1) = 1 we find that

C w(s)

lglleo < 2A/ @) 4o < ca.
0 S

While estimating the second difference Afl g(x) we may assume that |2]| < 1/2.
We have

ster=[ [ gt nPeyday
Iy|<lh| JR”
+f [ ¢(x +1,y)ALP(t, y)dt dy
[yl>h| Jit]1=2]y|

+/ / ¢(x+t,y)A,2,P(t,y)dtdy=11+Ig+13.
IyI>1hl J121>21y]|

Proceeding from the trivial estimate || A,%q&lloo < 4||¢||o and using (2.4) and (R1),
we conclude that

|h]
L] < CA/ @) 45 < CAw(I].
0 S

Note that, for every function f € C?,

|ALf(x)] < Clh> max |[V2f(t)).
telx—h, x+h)

For the Poisson kemel, for ¢t € R” and y € R we have
|AZP(x, y)| < Clyl(e* + y») 0472, (5.2)
Hence, |A2P(¢, y)| < C|h|*|y|~®*?. Using (R2), for the integral I, we obtain

the following estimate:

C
L < CAAP %f%)dy < CAw(lh]).

|h|
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If |¢| > 2|y| then (5.2) implies |A2 P(¢, y)| < C|h|?|y||t|~"+3. Therefore,

C
] < CAlhP? f o) [ 1™ aray
|k] [t|>2y

< CAIh[Z/ —Ey—)dy < CAw(|h)).
7] y3

Thus we conclude that |A g(x)] < CAw(|h|). Consequently, g € A and ||g|lae <
CA. Lemma 4 is proved. O

Our next assertion provides a formula for the integral fanH Av(z) P(z) dz, where
veC 2(]1{”*”1 \ R”) and P is the Poisson kernel. Formally, the classical Green’s
formula does not apply in this case. However, the result is the same if we assume
that v € CI(R"*!) and understand the integral as the limit as § — 0+ of the
integrals over R” x ((—o0, —86] U [8, +00)).

LEMMAS. Letv € CYR"HNC2R*\R") be a function with compact support
such that v(x, 0) = 0 for all x € R". Then

0
f Av(x +t,y)P(@, y)dtdy = ——2—1—)(x,0), x e R”,
Rr+1 3}7
Proof. Clearly, it suffices to show that
av
/ Av(t,y)P(t,y)dtdy=—_‘(0,0).
1+1 ay

Integrating by parts and taking into account harmonicity of the Poisson kernel, for
all § > 0 we have

f fooAv(t,y)P(t,y)dtdy=—f a—v(t,S)P(t,S)dt
n 8 n

f v(t, 3) (t 8)dt. 5.3)

Observe that
oP t2 — né?

—a;(t’ 8) = ¢x (t2 + 32)(n+3)/2 :

Hence,
aP aP
an :=—f 8——(t,8)dt=f §—(@,8)dt <+
[ti<ms Oy tl>ms 0y
and does not depend on §. Setting

K () := —a, 16 (t 8 xpmn®), K :=a, ‘6 (t 8) X rr\ By (1)

and recalling that UIRn = 0, we rewrite (5.3) in the form
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f foo Av(t, y)P(t, y)dtdy = —/ g—;(t,S)P(t,B)dt
nJs n
/ v(t, 8) — v(t, 0)
—dy
Rl‘l

; K)(t)dt

+an/ v(t,8)—v(t,O)K§o(t)dt

8
= —11(8) —anh(8) +a,I3(3).
It is easily seen that if {Ks}s-0 is a family of nonnegative measurable functions
on R” with the properties
(i) fgn K5(t)dt = 1 for each & and
(ii) ftt|>r Ks(t)dt - 0asé — Oforeachr > 0,

then for every continuous function f on Ri“ with compact support,

f(t, 8)Ks(t)dt — £(0,0) as § — O.
]Rn

Applying this argument to the above three integrals, we readily see that [, (§) —
a%v(O, 0)aséd — 0, k = 1,2,3, which leads immediately to the required con-
clusion. |

5.2. Proof of Theorem 1
By definition of M, for given f and ¢ > 0 we choose &y € (0, 1/2] so that

|A2 f(x)] < (M +&)w(lh]) for x,h e R"
with d(x, E) < 8, |h| < &. (54)

For the function u provided by Lemma 1, we have suppu C B(r) withr < C.
Indeed, we may assume that B(r) D Ej,.

Let O be a cube in R” containing B(@2r). For 8 € (0, 8 /20), define the space
F; of all harmonic functions F in O \ E;s with the finite norm

w(d(z, E5))
1F1z = [ IF@IZe e e
s O\E;s | d(z, E3)
Clearly, F; is a linear subspace in L'(Q \ Es, 1) with
A = w(d(z, E5))
" d(z, Es)
The mapping
®:Fr | F@Au(x)dz, F eF;,
O\E;

defines a linear functional @ on F;. In view of property (iii) from Lemma 1 and
according to Lemma 3 with G = Ej, its norm ||®||; is finite and depends on the
global estimate of Au. A more detailed analysis shows, however, that the norm of
the functional @ is bounded by a constant depending on the estimate of Au in Ej,
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only (i.e., near the essential part of the boundary of the harmonicity domain for
functions in F;) whereas the latter estimate depends in turn on (5.4) (see claim (i)
in Lemma 2). This fact is a matter of the following assertion, which is one of the
driving forces of the proof.

LEMMA 6. There exists a 8 € (0, 8¢/20) such that ||®|s < C(M + ¢).

The proof of Lemma 6 is given in Section 5.3, so we continue with the proof of
Theorem 1.

We fix § from Lemma 6 and denote hereafter G := Es, d(z) := d(z, G). Using
the Hahn—-Banach theorem, we extend ® to a linear functional on LI(Q \ G, u)
with the same norm and thus get a function ¥ € L®(Q \ G, ) satisfying

d
[ F@)Au(z)dz = | v@FD2D 4 Fe, (5.5)
O\G O\G d(z)
and, owing to Lemma 6, such that A := ||[{']lco < C(M -+ &).
For t € R", we define the function F;(z) := —P(x — t,y)/2, plug it into

both sides of (5.5), and study the two functions of ¢ thus obtained. First, due to
Lemma 5,

[ F(9)Au(z)dz = f(t), teR". (5.6)
O\G
Further, let
go(t) := f vF 02D 4 e R, 5.7)
RAI\G d(2)

In the simplest case w(s) = s, we finish up the proof in the following way. For
t € G, the function F;(z) is harmonic in R**! \ G, and

FreFs, teg. (5.8)

Then, combining (5.5), (5.6), and (5.7), we see that g¢ coincides with f on G.
Also, by Lemma4, [|gollae < CA. Thus, in the case under study, go is the function
desired.

Now pass to general majorants w. As we shall see later, (5.8) remains true;
hence, gol¢ = flc. However, go does not necessarily belong to A®! To overcome
this difficulty, we need an additional technical step. First, we extract a “good”

part, g1, of function gy with
g1llae < CA. (5.9)

Then we subject the remaining “bad” part, g, := go — g1, to a special nonhomo-
geneous averaging and thus obtain function g, such that g, = g, on G, and

Ig2llae < CA. (5.10)

Setting finally g := g; + g2, we see that ||gllae < CA < C(M +¢) and g|g =
8olec = flc- Therefore, g is the function required in Theorem 1.

To complete the proof, we must establish the relations (5.8)—(5.10). Observe
that if d(x) < |y| (in particular, if x € G) then |y| < d(z) < +/2|y|. Hence we
may apply Lemma 4 to the function



552 Evsey DYN’KIN & LEONID HANIN

w(d(z))

d
i) ¢

a(t) = f V@ X< F @)
R”“\G

and obtain the estimate (5.9).
Now turn to the function g, = go — g1, which has the form

82(1‘)=f / T(x,y)w—(d@f’(x—t, ydydx, teR",
mG J)yl<d(x) d(x)

where suppt C @ and ||7|loo < CA. We claim that, for every such 7,
lg2llo = CA (5.11)

and
|A2g5(t)] < CAw(max{|h|, d(1)}). (5.12)

We start the proof of our claim by observing that, for any point a € G and for
eachr > 0,

f / T(x,y)———— @(d(x) P(x —s,y)dydx
B(a,m\G Jly|<d(x) d(x)
<CAw(r), se€ B(a,r). (5.13)

To prove (5.13) we consider the following two cases, in which the corresponding
integrals are denoted by /; and 1.

(1) |x —s| < d(s)/2. In this case, ;d(s) < d(x) < 3d(s) and hence, by (2.5),

w(d(s))
d(s)
(2) |x — s| > d(s)/2, in which case d(x) < 3|x — s|. Therefore, using the
estimate P (¢, y) < C/|t|" and (R1), we have

d _
|12|5CAf deSCAf de
B@a,\G X — S| B(s,2r) |X —s["

2r
< CA[ "’f}”) dv < CAw(r).
0

|| < CA

2d(s)
f P(x—s,y)dxdy < CAw(d(s)) < CAw(r).
0 n

Relation (5.11) is now derived directly from (5.13). Together with ||g;]lco < CA
(see (5.9)), this yields |lgollco < CA. Indeed, the latter estimate holds true for

every function ¥ € L®(R"!) with suppy C Q involved in (5.7) (recall that
A = ||¥ o). By setting yr(z) = —signyxs = sign F¢(z) x5 in (5.7), we obtain
(5.8).

To verify (5.12), denote a pointin G closestto ¢ by a and set p := max{|Ah|, d(¢)}.
We invoke (5.13) withs = ¢, t & h, and r = 3p to get

/ f T(x, y)w—(c—lﬂA%P(x —t,y)dydx| < CAw(p).
B(a,300\G J|y|<d(x) d(x)

For |x —a| = 3p we have |x —t| > 2|h|. Note also that if |s| > 2|k| then by (5.2)
|A2P(s, y)] < C|h|>s~®*+?_ Using (R2), we estimate the remaining part of the
integral,
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f / r(x,y)MAiP(x——t,y)dydx
RP\(B(a,39)UG) J |yl<d(x) d(x)
w(d(x)) w(|x —t|)

—""_dx < CA|h|? f —
O\B(a,3p) | X — t|"*2 O\B(a,20) |X — t["F?

C
<CA|h|] —Qd v < CAlh| -—(32<CAw(p)

< CAlh|?

and (5.12) follows.

Let ¢o be a C*-function on R such that supp¢o C [—1, 1], [ do(s)ds =
1, and [ ¢o(s)sds = 0. We set ¢(v) := [[/_; do(vi), v € R”". Obviously,
Jrn ®()dv =1and [, vi¢(v)dv=0,i =1,...,n. Now define

g2(t) == jn g2t + p(HV)P(v)dv, teR"

(we recall that p(¢) is the regularized distance from a point ¢t € R” to the set G).
Indeed, g,(t) = g,(¢) forall ¢t € G.
Relation (5.11) implies
1g2ll0 < CA. (5.14)

To estimate the second difference A? +82(t), consider the following two cases.

(1)yd@) < 2|h|. Set Ky := Q(¢,7|h|) and let P € P; be the polynomial of
best uniform approximation to g, on K;. It follows from (2.1) and (5.12) that
lg2 — Pillx, < CAw(|h|). For s =t, t & h, we derive from (2.2) the inclusion
s + p(s)Qo C K. Hence, from the identity

g2(s) = Pi(s) + | [g2(s + p(s)v) — Pi(s + p(s)v)]¢p(v) dv
-~ R~»
we conclude that |A 82(t)] < CAllg2 — Pillx, < CAw(|h]).
(2) d(t) > 2|h|. Let P, € P, be the polynomial of best uniform approxima-
tionto g, on K := Q(t,4d(t)). Clearly, if s = ¢, t £ h thens + p(s)Q¢ C K>.
Using the identity

g2(s) = Pa(s) + Rn[gz(v) Pz(v)]¢( ())p‘"(S)dv,
we find that
1838201
< CAllgs — Palig,|h?d"(®) sup  sup |V, [¢(U ) ‘"(s)]
selt—h,t-+h] ves+p(s) Qo (s)

An easy computation shows the inner supremum does not exceed Cp~"+? (s).
Hence, by (2.1), (2.2), and (5.12), we obtain, upon recalling that the function
w(r)/r? is nonincreasing, the following estimate:

|12

d2(t)

|A22,(t)] < CAw(d (1)) < CAw(lh)).
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Thus, |g2]ae < CA, which together with (5.14) yields (5.10). The proof of The-
orem 1 is now complete. 0

5.3. Proof of Lemma 6

Denote by A a C*°-function on R suchthat A(#) = 1forO0 <t <landA(¥) =0
fort > 2. Let p(2) = p(z, E) be the regularized distance from a point z € R"*!
tothe set E, andlet E, := {z € R"! : p(z) <}, @ > 0. Given § € (0, 8,/20),
for B € (46, §p/5) we set

vp(2) = u(Ar (!%) , wgil=u-—vg, ZE€ R,

Observe that functions vg, wg € CL(R"1) N C®(R"*! \ R") and have compact
support. Moreover, vg = u on Eg, and vg vanishes outside Eg.
We claim that

f F(2)Awg(z)dz =0, F € F;. (5.15)
O\E;s

(The left-hand side of (5.15) is thought of as an improper intq_gral, but—as we shall
see later—this integral converges absolutely.) In fact, let @, = {z = (x,y) €

Q : |y| = o }. Integrating by parts and using the harmonicity of F, for every o >
0 we have

/~ F(2)Awg(z)dz = f [6(x,0) —0(x,—0)]dx, (5.16)
Qo o

where 4 oOF
0(x,0) := F(x, cr)—w—é(x, o) — —(x,0)wg(x, 0).
dy dy

Since wg vanishes in Eys, 6 is a continuous function on Q x R; with compact
support. Hence, passing in (5.16) to the limit as c — 0, we see that the improper
integral in (5.15) exists and equals zero.

Equality (5.15) implies

<I>(F)=/_ F(z)Au(z)dz=/_ F(z)Avg(z)dz, F e F;s;. (5.17)
O\E; E2p\Es

We will now estimate the last integral. Toward this end, write

Av = A@uAr(p/B)) = Aur(p/B) + 287X (p/B)VuVp
+u[B72N"(p/B)(Vp)* + BN (p/B) Apl.

Note that if p(z) < 28 then, by virtue of (2.2), d(z) := d(z, E) < 58 < 8. Using
Lemma 2, relation (5.4), and estimate (2.3), for p(z) < 28 we have

|Avg| < C(M +8)%
1 1
+Cll e [ﬂ"d(z) N o a0 B oy dt] X\ D
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Invoking Lemma 3 and property (2.5) of the majorant w, we use (5.17) to obtain

1
|¢(F)|sc<M+e)||F||f5+C||f||AwL “Par [ F@ldz 19

E3pg\Ep
Now our claim is as follows.

CLAIM. There exists a § € (0, 8¢/20) such that, for every function F € Fjs, one
can find a B € (46, 8y/5) for which

1
Clisine [ 22ar- [ \F@ldz<elFliz.  (519)
B Ejp\Ep

To show this, suppose the claim is false. Then, for every § € (0, §p/20), there is
a function Fs € F; with || F5||z;, = 1 such that

1 -1
f_ _IF(z)ldzzy[/ 2g—)dt] , 48 < B < &/5,
B

Eyg\Eg

where y := ¢/(C|| f || a»). Multiplying both sides of this inequality by w(8)/82,
integrating, and recalling that fol (w()/t%) dt = +00, we obtain

80/5
f4 5”@ __|F5(2)|dzap

s B JEpEs

80/5
.. / 0@ i
48 [B? [lw@®)/t?)d1]

Lot el(;
=ylogU iz)dr/f iz)dt]—>+oo as § > 0. (5.20)
45 ! s/ 1

On the other hand,

min{p(z),80/5} w(B)
/ dpdz

maxip(z)/2,45) B>

S0/5
/ B[ \B@ldds=[ 1R

J B Exp\Ep E2sy/5\Eas

p(2)
<[ im@i[  “Rdpa

O\Ess o2 B

Observe that if p(z) > 448 then, in view of (2.2), d(z) > 2§, which implies
d(z, E;s) = &. Therefore, in the last integral, p(z) < 2d(2) < 2[d(z, Es) + 8] <
4d(z, Es). Also, again by (2.2), p(z) > 2d(z) > %d(z, E;). Now we are in a
position to continue the above estimates:

8o/5
L Q_(zﬁ __ |Fs(@)dzdp

é ﬂ Ep\Eg

4d(z,Es)
_<_f__ B 2P 4 dz

O\E4s d(z,E5)/5 B

w(d(z, E5)) , _
= CfQ\Es |F8(Z)|W dz = C||Fslls, = C < 4+o00. (5.21)



556 EvSEY DYN’KIN & LEONID HANIN

Comparison of the relations (5.20) and (5.21) leads to contradiction, and claim
(5.19) follows.

We finish our argument as follows. Fix § € (0, §p/20) satisfying the above
claim. For any function F € Fj;, we pick an appropriate 8 € (48, §p/5). The
above construction carried out with this particular 8 yields (5.19), which in com-
bination with (5.18) leads us finally to the estimate

|®(F)| = C(M +e)||Fllx, FeFs.

Lemma 6 is proved. U
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