Contraction Properties of the
Poincaré Series Operator

DAviD E. BARRETT & JEFFREY DILLER

1. Introduction

In a striking pair of papers, McMullen gave a new proof of the contraction prop-
erties of Thurston’s “skinning map”—an iteration on the Teichmiiller space of a
Riemann surface. His approach was to reduce the problem to the study of a push-
forward operator (called the Poincaré series operator) for quadratic differentials
[MZ2], and then show that this pushforward operator is itself contracting [M1]. Our
aim in this paper is to give new proofs of McMullen’s estimates on the norm of
the Poincaré series operator. Our methods differ significantly from McMullen’s,
especially in that we avoid the notion of “amenability,” and some of the related
combinatorial arguments, in favor of more complex analytic and geometric tactics.
Our methods have the advantage of yielding estimates that are completely explicit
in terms of the injectivity radii of the Riemann surfaces involved. On the other
hand, our methods address only the case of covering surfaces with finitely gener-
ated fundamental group. This is not too serious a shortcoming, since McMullen
uses only the finite topology case in his applications to the skinning map.

In the rest of this introduction, we will provide some basic definitions, state
our main results, and explain the organization of this paper. The introductions to
McMullen’s papers do a wonderful job of summarizing the connections between
quadratic differentials and Teichmiiller theory, and between Teichmiiller theory
and Thurston’s program. A good reference on quadratic differentials is [Ga].
Buser’s book [Bu] offers a point of view on Riemann surfaces that is particularly
well-suited to the methods we use here.

Let X be a Riemann surface. A quadratic differential on X is an expression of
the form ¢ = ¢ (z) dz? in local coordinates. Put more abstractly, a quadratic dif-
ferential is a section of the square of the holomorphic cotangent bundle of X. The
differential ¢ is called holomorphic if its local trivializations ¢ (z) are holomor-
phic. “Taking absolute values”—|¢| = |¢(z)| |dz|*—identifies any quadratic dif-
ferential with a measure on X in a coordinate independent fashion. Thus it is nat-
ural to consider the L! norm ||¢|| of ¢. We denote the space of all L! holomorphic
quadratic differentials on X by Q(X). If X is of finite type (i.e., if X is obtained
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from a compact surface by removing finitely many points), then the dimension of
Q(X) is finite-and is determined by the genus and number of punctures of X.
Now suppose that 7: ¥ — X is a holomorphic covering of one Riemann
surface by another. Then there is a natural corresponding pushforward operator
®: 0Y) » Q(X), similar to pushforward of measures. Given ¢ € Q(Y), one
defines ®¢ by
O = Y (T,1)¢.

wen~1(2)

Taking absolute values shows that this sum converges in L!. In fact, we have
1001l < [y mlol = [y 1¢] = ||¢ll, so that © has an operator norm no greater
than unity. But L! convergence of holomorphic functions implies uniform con-
vergence on compact sets, so the sum defining ®¢ converges pointwise to a holo-
morphic quadratic differential. For historical reasons ® is known as the Poincaré
series operator.

With this notation, we now describe the main results and organization of this
paper. When we say that a constant depends only on the topology of a surface,
we mean that it can be taken as a function of the number of generators of the
fundamental group of the surface.

THEOREM 1.1. Suppose that X is a Riemann surface of finite type and that Y is
a Riemann surface of infinite type with finitely generated fundamental group. Let
w: Y — X be a holomorphic covering map. Then the norm of the corresponding
Poincaré series operator satisfies

IOl <1—-k < 1. (1.1)

Furthermore, k > 0 may be taken to depend only on the topology of X and Y, and
on the length |l of the shortest closed geodesic on X. As a function of 1, k may be
taken to be continuous and increasing.

The metric implied in the statement of the theorem is the Poincaré (hyperbolic)
metric—that is, the constant curvature — 1 metric that X (and Y) inherits from the
Poincaré metric on the unit disk A. A hyperbolic Riemann surface is of finite or
infinite type according to whether it has finite or infinite area, respectively, in the
Poincaré metric. Theorem 1.1 is essentially the same as Theorem 1.4 of [M1]. It
includes, among other things, an affirmative answer to “Kra’s theta conjecture,”
which asserts Theorem 1.1 in the case Y = A.

After fixing some notation and stating a few preliminary facts in Section 2, we
prove two estimates in Section 3 that constitute the main part of the proof of Theo-
rem 1.1. Although either estimate would suffice for the proof, we choose to elabo-
rate on the first. Both estimates depend on the existence of small solutions to a par-
ticular differential equation on the covering surface, as described in the following
theorem.

THEOREM 1.2. Let Y be a Riemann surface of infinite type and with finitely gen-
erated fundamental group. Let wa be the Poincaré area form on Y, and let ly be
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the length of the shortest closed geodesic on Y. Then there isa (1,0)-formnonY
such that

n=wsy and (n) =<t,

where (n) is the pointwise length of n in the Poincaré metric and t can be taken to
satisfy

t<C/if

for constants C and k that depend only on the topology of Y.

A proof of this theorem in the case of infinite type surfaces without cusps can be
found in [Di]. In Section 7 we describe the fairly straightforward modifications
to [Di] that are required to obtain the same theorem for infinite type surfaces with
cusps.

The proof of Theorem 1.1 given in Section 3 has the virtue of being very short.
However, the constant k that it provides is not very explicit. In Sections 4 and 5
we revisit Theorem 1.1 with an eye toward estimating & in more detail. Section 4
presents some detailed results about the geometry of a hyperbolic Riemann sur-
face. Most of these results are well known, but to our knowledge Theorem 4.4 has
not been employed elsewhere.

In Section 5 we use the results from Section 4 to provide a value of & that is
completely explicit in its dependence on ¢ and /. The next two theorems follow as
corollaries.

THEOREM 1.3. The constant k in Theorem 1.1 can be taken to be
k= AV

where A < 1 and C > 0 depend only on the topologies of X and Y.

This theorem gives a rather weak value for &, but if one is willing to fix the cover-
ing surface (as, for example, in Kra’s theta conjecture) then a much stronger result
is possible.

THEOREM 1.4. The constant k in Theorem 1.1 can be taken to be
k=1Cl,

where C is a constant depending only on the constant t in Theorem 1.2 and on the
topologies of X and Y.

Note that the statement of this theorem would be absurd if / could be arbitrar-
ily large. In what follows we will rely repeatedly on the fact that, excepting an-
nuli and the disk, / is always bounded above among hyperbolic Riemann surfaces
of a given topological type. For instance, we will assert without comment that
tanh/ ~ CI. We conclude Section 6 and the main body of this paper by presenting
an example from [M1] showing that the inequality given by Theorem 1.4 is sharp.
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2. Preliminaries

In this section we make definitions, introduce notation, and state several results
that we will need below.

THE POINCARE METRIC. Any hyperbolic Riemann surface carries a complete,
constant curvature —1 metric, which we call the Poincaré metric (or hyperbolic
metric). Holomorphic covering maps preserve this metric locally, so we use the
notation dA and ds to refer to the associated length and area densities, regardless
of which surface we are working on. We will abuse this notation and denote also
by dA the corresponding area 2-form wy,.

For the convenience of the reader who wishes to reproduce any local coordi-
nate computation that we omit, we recall that on the unit disk A = {|z| < 1}, the
Poincaré metric has the form

2|dz|
ds = ————; 2.1
= 12P (2.1
on the upper half plane H = {Im z > 0}, it has the form
d
|——ZI—; (2.2)
Imz
on the annulus A = Ag = {e™® < |z| < eR}, it has the form
d
7 ldz] ; 2.3)
2R|z| cos((x log|z|)/2R)
and on the punctured unit disk A* = {0 < |z] < 1}, it has the form
d
__ 2.4)
|z| log|z|

Given a hyperbolic Riemann surface X # A and a point p € X, there will be
some largest R such that the set of points lying within Poincaré distance R of p is
a topological disk. We call this R the injectivity radius I (p) of X at p.

MORE ON PUSHFORWARD OPERATORS. The discussion in the introduction and
the references listed in the bibliography provide sufficient background on push-
forwards of quadratic differentials, but since we will want to consider similar op-
erators applied to functions, forms, and densities, we offer more discussion here.

Suppose we have a holomorphic covering 7: Y — X of one hyperbolic Rie-
mann surface by another. The following discussion will apply specifically to a
1-form n on Y, but with minor modifications it will apply equally well to forms of
any degree (including functions) and quadratic differentials. Given a point p € X,
we let (n(p)) denote the length of the covector 7( p) as measured by the Poincaré
metric. We define the L! norm of 5 by

linlly = /(n) dA.
Y
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We also define the 1-density associated with n by [n| = (n) ds (for 2-forms w, we
set |w| = (w) dA; for functions F: Y — C, we set |F| = (F); etc.). Finally, we
define the pushforward of n by 7 as

On(p)= Y [ n(p),

gen~1(p)

and the pushforward of the corresponding density as

mdnl={ Y. n@)] ds.

gen=1(p)

If ||n}|; is finite and 7 is holomorphic then Cauchy estimates [Ho, Thm. 1.2.4]
imply that the sums defining ®n and 7, |n| converge locally uniformly. Clearly,

«|nl = |On].

The same remarks will hold for a (not necessarily holomorphic) 1-form Fn
where F is holomorphic and L! and () < C on Y, since (®(fn)) < Cn.(F).In
particular, if n is the (1, 0)-form guaranteed by Theorem 1.2, then

3(O(Fn)) = ©(3(Fn)) = O(Fw,s) = (OF) dA, (2.5)
since the sums defining both ®@(Fn) and (® F) dA converge locally uniformly.

3. Two Estimates on ||@||

This section contains the core of the proof of Theorem 1.1. We prove two lemmas
that bound the norm of the Poincaré series operator below 1. We elaborate on the
first of the two lemmas in order to relate the amount of contraction to the constant
t given by Theorem 1.2, the topology of X, and the length of the shortest closed
geodesic on X.

Throughout the rest of this paper, X will denote a hyperbolic Riemann surface
of finite type (i.e., of finite volume), g will denote the genus of X, and / will de-
note the length of the shortest closed geodesic on X. By X we mean the compact
Riemann surface of genus g that one obtains by adding a single point to each end
of X. Welet P = X \ X denote the (finite) set of punctures of X, and we let | P|
denote the cardinality of P. By a topological constant, or a constant depending
only on topology, we will mean a constant that can be prescribed purely in terms
of g and | P|.

As in Theorem 1.1, m: Y — X will be a holomorphic covering of X by an-
other Riemann surface Y. We assume that Y satisfies the conclusion of Theorem
1.2, and take ®: Q(Y) — @(X) to be the Poincaré series operator corresponding
to 7r. The surface Y will enter into estimates on ||®|| only through the constant ¢
given by Theorem 1.2.

Suppose that ¢ € Q(Y) satisfies ||¢|| = 1. We assume without loss of gener-
ality that ®¢ = 0. Since O is linear, we can prove Theorem 1.1 by appropriately
estimating
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1 —|©¢].

Because ®¢ € Q(X), we see that ® ¢ extends to a meromorphic quadratic differ-
ential on X with at worst a simple pole at each point in P. Consequently, if Z de-
notes the set of zeroes of ®@¢, then the Riemann—Roch theorem implies both that
Z U P is nonempty and that | Z| is bounded above by a number depending only on
g and | P]|.

We define a meromorphic function F: ¥ — C by

¢ = Fr*(09). 3.1

We will want to apply ® to F, so we prove the following lemma.

LEMMA 3.1. Let U be any relatively compact subset of X \ Z. Then the L! norm
of F is finite on ~1(U).

Proof. There exists a constant € such that (®¢) > € on U. Thus,

(F)
F)dA = —(p)dA
/;r—l(U)( ! .[1“(U) (o) A

— f (r* (©)) (]
b X (%))

<L N
€
Note that
O¢ = O(Fr*(0¢)) = (OF)(0¢), (3.2)

sothat OF =1 off Z.

Now we come to the first of our two main lemmas. Let K C X be any closed
set such that ZU P C K and bK is smooth (allowing point components) and com-
pact in X. For all r > 0, let K, be the set of points whose distance from K is no

greater than r. We define
m(r) = min (O¢).
pebk,

LEMMA 3.2. For any ry < 00,
1 —-|1®¢|l = foro m(r)[t~! Area(X \ K,) — Length(bK,)]dr. (3.3)
Proof. Since a measure and its pushforward have the same mass, we have
1= lioglh = [ mig1 - 109!
= fx(n*(F) — 1){(O¢)dA > /X (m(F) — 1)(O¢) dA

\K
(since m(F) > (OF) = 1)

— / N f (T (F) — 1)(©¢) ds dr
0 bk,
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ro
> [ ] @im - n©e)dsar
0 bK,

> fro m(r) [f . ({(F)ds) — Length(bK,)] dr.
0 bK,

Now let 5 be the (1, 0)-form guaranteed by Theorem 1.2. Using this form, we

obtain
[ marvas = [ ®(Fn)‘
bK, bK,
=71 f é@(Fn)l
X\K,
=1 [ (OF) dA’ (by (2.5))
X\K,
=11 Area(X \ K,),
which is what we need to complete the proof. g

Proof of Theorem 1.1. In order to use Lemma 3.2, we need to define the set K.
Were P empty, we would simply take K = Z. Then K, could be no worse than
a disjoint union of |Z| disks of Poincaré radius r—that is, direct computation in
local coordinates reveals that Area(K,), Length(bK,) < 2m|Z]sinhr. For each
p € P, we add a set K, to K as follows:

By dividing the universal cover of X by a deck transformation corresponding to
a simple closed curve about p, one obtains a natural holomorphic covering map
m,: A* — X that extends to a holomorphic map of A into X such that ,(0) =
p-Fixanumber0 < x < 1, and set K, = 7, (|z| < x). Then another direct com-
putation shows that Area(K, ,), Length(bK, ) < —2me”/log x. Thus K is the
union of Z and all the sets K, and we have that

P r
Area(K,), Length(bK,) < 2:rr(|Z|sinhr _ |Ple )
log x

By Lemma 3.2, we have

- ll0g] = ! fmm(r)
0

x (Area(X) —(+1) (|Z|sinhr - 'PW)) dr. (34
log x

Since Area(X) depends only on g and |P|, and since |Z| is bounded above in
terms of g and | P|, we can choose x and ry depending only on g and | P| so that
the integrand remains positive for all 0 < r < rg.

The proof will be complete once we address m(r). In Sections 5 and 6, we de-
rive explicit bounds for m(r). For now, we argue abstractly for a bound. We can
assume that ||®¢]|| > 1/2; if this were not true then we would already have that
1 —1]|®¢|| > 1/2. Note that m(r) will vary continuously with ®¢. In particular,
scaling ® ¢ will scale m (r) by the same amount. Since Q(X) is finite-dimensional
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and we have a lower bound on ||®¢||, we see that m(r) admits a positive lower
bound independent of ¢. It is well known in Teichmiiller theory that Q(X) varies
continuously with the location of X in the Teichmiiller space for surfaces quasi-
conformally equivalent to X. Hence we may also assume that our lower bound
on m(r) varies continuously. Now /~! is a continuous exhaustion function on the
Teichmiiller space of X. So a positive lower bound on / forces X to lie in a com-
pact subset of Teichmiiller space. On this set, we can choose our lower bound on
m(r) to be independent of X. Such a bound suffices for our purposes, and it fin-
ishes the proof. O

We conclude this section with our second, alternative estimate on 1 — ||®¢}|. Al-
though we do not pursue it further here, one could also use this lemma to prove
Theorem 1.1.

LEMMA 3.3. Let x: X — R be any smooth, compactly supported function van-
ishing in a neighborhood of Z, and let t be the constant given by Theorem 1.2.
Then

1—||®¢u>( f———)f(r‘ (3x)) dA. (35)

Therefore, by picking any function x that vanishes near Z, one obtains an estimate
on the extent to which ® shrinks ¢. It requires more work, though, to eliminate
the dependence on ¢ from the right-hand side.

Proof. As in the last lemma, we write 1 — ||®¢]] as

(©¢) ( f (3x) / (3x) )
* C nf —— Ty T s
[ w01 - I¢I>X(x) g~ [ 1081
<®¢>(/ <x>_/5 dA)
inf = ([ mlol gy — ), Bx0d4).
Now let n be the form guaranteed by Theorem 1.2 and let F be the meromorphic
function defined by (3.1). We have

Gx) (r*3x)
/ PG g) = fx”*("’s' <n*®¢>)

> [@(F(éxon)dA)l
X

> f@(z—lF(éxon)/\q)l
X

1f®(F(xon)dA)l
X

=1 /(@F)dil
X

=t_1f X dA,
X

which is what we need to finish the proof. O
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4. More Preliminaries

In order to derive more explicit bounds for ||®}|, we need some detailed resulis
concerning the geometry of a hyperbolic Riemann surface X.

LocAL CoorDINATES. Recall that the injectivity radius of X at p is the largest
number I (p) such that {g € X : d(p, q) < I(p) }is atopological disk. By stan-
dard coordinates about p, we will mean a uniformization map 7r,: A — X that
maps 0 to p. The map m, will be a local isometry in the Poincaré metric, and it
will map the subdisk {|z| < tanh(/ (p)/2)} injectively onto the disk of radius I (p)
about p. Consequently, 7, defines local coordinates in the usual sense on this disk.

Suppose that y is a shortest path between two points p;, p» € X. The notion
of injectivity radius can also be used to give local coordinates about y. If I, =
min{ I (p) : p € y } then we have the following.

LEMMA 4.1. Let wx: H — X be a uniformization map, and let y be any lift of
y. Then wx maps the set

Uy ={z e H:dist(z, y) < I,,/3}
injectively onto the corresponding neighborhood U, of y.
Proof. Suppose that 7y is notinjective on Uy —that is, that there are points 2, z» €

U; such that wx(z1) = mx(z2). Let wj € y be chosen as close as possible to z;,
Jj =1, 2. Note that

d(wy, wa) = d(wx(wy), Tx(w2))
< d(mx(wy), tx(z1)) + d(x(w2), wx(z2)) < 21,/3,
since z; and z, have the same image. On the other hand,
d(wy, z2) < d(wy, wo) +d(wy,22) <21, /3+1,/3=1,.
But now we have a contradiction, because both z; and z; lie within I, of w;,

whereas we know that 7y is injective on the disk of radius I, about w;. O

We will also be concerned with coordinate neighborhoods of punctures and of sim-
ple, closed geodesics. Given either a puncture p or a simple closed geodesic y, let
T be the corresponding deck transformation on the universal cover A of X. Then
there is a natural covering of X by A /{T"}. In the case of a puncture we obtain a
holomorphic cover

T, A* — X,

which one can extend holomorphically past the origin by setting 7,(0) = p. We
define the cusp C = C,, about p to be the image under , of the set

{0 <|z] <e™™}.
In the case of a simple closed geodesic, we obtain a holomorphic cover

wy,: Agp = X,
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where R = w2/ Length(y), and 7, maps {|z| = 1} onto y bijectively. We define
the collar C = C,, about y to be the image under m,, of the set Ag:, where

nR’ 1
2R sinh(] Length(y))’

tan “4.1)

This is equivalent to setting

. L 1

C, = [p € X : dist(p, y) = sinh sinh(% Longth) } .
We refer to the covering map associated with a closed geodesic (or a puncture) as
standard coordinates about the geodesic (or the puncture, respectively). We will
generally use standard coordinates for computations performed on cusps and col-
lars, a practice justified by the next theorem. By a short geodesic we mean a closed
geodesic of length less than 2 sinh™! 1. Let I" denote the set of all short geodesics
on X.

CoLLAR THEOREM (cf. [Bu, Sec. 4.1, 4.4] or [Ke]). The following statements
hold for X.

(1) If y is a simple closed geodesic on X then w, is injective on Ag:. Similarly,
if p is a puncture then mp, is injective on {|z| < e™"}.

(2) [T} <3g — 3+ |P|, and all geodesics in T are simple.

(3) Cusps and collars about short geodesics are mutually disjoint from one
another.

(4) Let C be a collar of a short geodesic or a cusp. Then

I(p) > sinh~! ¢~ dist(p.b0)

for every p € C.
(5) Any point p that does not lie in a cusp or in the collar of a short geodesic
satisfies 1(p) > sinh™! 1.

For reference purposes, we designate several important subsets of X:
Xeore = X\ U Cps
peP
Xeore(s) = {P €X: diSt(P, Xcore) < 5},
Xihick = Xcore \ U Cyv
yel
Xunick(s) = {p € X : dist(p, Xwick) < 5}.
We refer to Xcoe as the core of X and to X,k as the thick part of X. One can

derive useful diameter estimates for the core and thick part of X in terms of / and
topology.

LEMMA 4.2. There exists a topological constant Cy such that any two points in
the same connected component of Xmicx are joined by a path in Xy of length
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less than C. There exist topological constants C,, C3 such that any two points in
Xcore are joined by a path y in Xcore satisfying

Length(y) < C, + C3log(1/1).

The first statement in this lemma follows from Lemma 4.1, the absolute lower
bound on injectivity radius among points in X;ck, and the fact that the area of a
component of Xk depends only on topology (see [Di] for a full proof of a simi-
lar result). The second statement follows quickly from the first statement and the
collar theorem.

Harnack’s Inequality and Change in the Size
of a Quadratic Differential

By restating the classical Harnack inequality for harmonic functions in an invari-
ant form, we are able to obtain useful pointwise estimates for the size of a quadratic
differential in the Poincaré metric.

LEMMA 4.3. Let X be a hyperbolic Riemann surface, W C X a domain, and
h: W — RY a positive harmonic function. Then

1
tanh(} dist(p, bW))

(dlogh(p)) =<

Proof. Instandard coordinates about p, we have that £ is positive and harmonic on
the disk {|z| < tanh(% dist(p, bW))}. After rotating coordinates, we may suppose

that dii(re®) /dr |,—o is maximal when 6 = 0. Then

1dlogh(r)

{dlogh(p)) = > ar
=0

1 tanh(3 dist(p, bW)) +r
ro02r 8 tanh(3 dist(p, bW)) — r
B 1

~ tanh(} dist(p, bW))’

We have used the classical Harnack inequality in the transition between the sec-
ond and third lines. O

THEOREM 4.4. Suppose that  is a holomorphic quadratic differential on X with
zero set Z. Suppose that W C X \ Z is a domain such that

(¥v(p) <M

forall p e W. Set p(p) = min{d(p, bW), 1}. Then if y C W is a parameterized
path connecting p| and p,, we have
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’

) _ ((a/f(pz»)-“exv[f,, s |
(¥(p2)) ~ \ CM

where C is a universal constant.

This theorem is especially useful when p, can be chosen so that (¢ (p,)) is close
to M.

Proof. Fix p € W. In standard coordinates about p, we have ¥ = f(z) dz? and
(W) = | f@|( — |z|*)?/4, where f is defined on {|z] < tanh(p(p)/2)}. If we
take C = (1 — tanh?(1/2))?2, then log(4M/C|f]) is a positive harmonic function
on {|z| < tanh(p(p)/2)}. We apply Harnack’s inequality and obtain

(dloglog(M/C(¥))) = (dloglog(@M/C|f]))|:=0 < 1/ tanh(p/2).

After integrating this becomes

ds
tanh(p/2)

The theorem follows after we exponentiate and rearrange. O

|log log(M/C ((p1))) — log log(M/C{¥ (p2)))| < f
Y

Maxima of Quadratic Differentials

We now prove two results about the maximum value () of a nonzero element
¥ € Q(X) and about the location in X where the maximum occurs. As before,
let Z be the zeroes of .

LEMMA 4.5. () realizes its supremum at a point pyax € Xcore- There exist
absolute constants Cy, Cy such that

WA _ ey < SV

Area(X) — 12 (42)

and
dist( pmax, Z) = Ca. 4.3)

Proof. LetCbeacuspin X, and in standard coordinates on C write ¥ = f(z) dz?/z.
Since v is integrable, it has at worst a simple pole at any puncture. So f extends
holomorphically across z = 0. Let M = maxj;<.-~ | f (z)|. By the maximum prin-
ciple, this maximum is realized at some point in the boundary of the cusp. We
then have

(¥) = lzf @ (ogiz])?| < Mlz|(log|z|)?

for all |z] < e™™, with equality achieved at some point where |z| = e™™. One can
check by hand that r (log r)?is increasing on the interval 0 < r < ™. Hence the
maximum of () on C occurs on bC. It follows that the maximum of () on X
occurs in X ore.

The left estimate in (4.2) is immediate. To get the right estimate, we work in
standard coordinates about pp., writing ¥ = f(z) dz? for some holomorphic
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function f and (¥) = | f|(1 — [z[®)?/4. In particular, | f (0)] = 4(¥ (Pmax)). The
disk {|z| < tanh(Z ( pmax)/2)} injects into X, so we have

2 tal'lh(I(Pmax)/‘?-) 0
||¢||=f<w>dAzf f f (re'®) | dr 6
X 0 0

tanh(7 ( pmax)/2)
>27 / & dz' dr
0 lzl=r <
tanh(I (pmax)/2)
= 27| f(0) /0 rdr = 47 (Y (Pmax)) tanh? (I (Pmax) /2)-

Since pmax € Xcore, W€ have I (pmax) = /2. Thus we have

1l Cilivll
(¥ (Pmax)) < o tanh2(1/4) < 2

for ! < 1 and some absolute constant Cy.
To get (4.3), note that

(¥ (Pmax)) < dist(pmax, Z) - max{d(y)). (4.4)

Moreover, working in standard coordinates about any point in X, we estimate

_Fol _ 1 / f@dz
[z|=1/2 z?

d =
@A) <~ = —
(4.3) follows after we use this estimate in (4.4). il

< C(¥ (Pmax));

LEMMA 4.6. Let M(s) = max{(¥(p)) : p € Xui«x(s)}. Then there exists a
topological constant Cy such that

M(©) = CillyllL
Secondly, if 0 < s <t, we have

M(s) > e "M(t).
Finally, if pmax(s) € Xuwick () is a point where M (s) is achieved, then

dist(pmax (5), Z) = C2

Jor some absolute constant C,.
Proof. Suppose first that at least half of the mass of i is concentrated outside col-
lars of short geodesics. It follows that () > ||{||/2 Area(X) at some point in
Xtick Or in a cusp. Arguing as in the previous lemma, we see that in fact this oc-

curs in Xpick. Since Area(X) depends only on the topology of X, the estimate on
M (0) holds.

Now suppose that at least half the mass of i is concentrated inside collars of
short geodesics. By (2) of the collar theorem, there exists a collar C = C,, con-
taining a definite fraction of the mass of . In standard coordinates on C, we write
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¥ = f(z)dz?/z? and let M = max;|f| = maxc|f|. Then for R’ < R =
n?/ Length(y) satisfying (4. 1) we have

2x 27
itz [wi=[" ", '{Z(I?'dde | /_R,Tdrd() 4m MR’

Using (2.3) to express () in standard coordinates on bC gives

4MR? o2 TR
c
w2 2R
C R? Length
> ___||l£!| tanh? ﬁl—%—(—y—) > Cl|¢r|| Length(y)
= CillyllL.

To prove the inequality relating M (s) and M (¢), we again use standard coor-
dinates on C and write ¥ = f(z)dz?/z>. The inequality then follows from the
maximum principle, equation (2.3), and a straightforward computation. One con-
sequence of the inequality between M (s) and M (¢) is that, for dist(p, pmax(s)) <
1/2, we have (Y (p)) < C{¥(pmax(s))) since p € Xpiek(s + 1/2). The lower
bound on dist( pmax (5), Z) is then established just as it was in the previous lemma.

O

M(0) > max({y) =

5. Explicit Bounds for ||©||

In this section we return to the proof of Theorem 1.1. Our goal is to obtain an ex-
pression for the constant k in the theorem which is explicit in terms of the length
I of the shortest closed geodesic on X and the constant ¢ that arises in Theorem
1.2. In order to accomplish our goal, we will apply the results from the previous
section to the bound (3.3) appearing in the conclusion of Lemma 3.2. As in Sec-
tion 2, we let ¢ € Q(Y) satisfy ||¢]| = 1, and consider Y = O¢. Without loss of
generality we can assume that ||{|| > 1/2. Unless otherwise stated, we will as-
sume implicitly that constants in this section depend only the topology of X. We
will also assume for ease of stating results that/ < 1 and ¢t > 1.

In order to apply Lemma 3.2, we must first choose a compact set K C X. Our
choice here will differ from the one we made in the proof given in Section 2 for
Theorem 1.1.

LEMMA 5.1. There are constants Cy, ..., Cs such that if s = log Cit and U is
any connected component of Xuicx(s), we have:
(1) Area(U) — ¢t Length(bU) > Cy;
(2) I(p) = C3/t forall p € U;
(3) given any p;, pa € U, there exists a parameterized path y C U connecting
p1 and p, such that Length(y) < C4 + Cslogt.

Proof. We will find a constant s that guarantees (1) and then show that (2) and (3)
follow. Let gy denote the genus of U. Let Ay, ..., A, C X denote the embedded
annuli bounded by short closed geodesics on one side and components of bU on
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the other side. We allow for the possibility that, for some values of j, A; is ac-
tually part of a cusp—in this case, we have a puncture rather than a short closed
geodesic bounding one side of A;. In what follows, it makes sense to treat the
puncture as a geodesic of length 0.

By the Gauss—Bonnet theorem,

Area(U) = 2m(2gy +n—2) — Y _ Area(4;).

If n = O then U is all of X, which gives (1) automatically. Otherwise, either gy >
landn > 1, or gy = 0 and n > 3. Thus

Area(U) > 27 (n/3) — ) _ Area(4;).

Let /; denote the length of the geodesic component of bA;, and let L; denote the
length of the other component. Then

Area(U) — t Length(bU)
> 27(n/3) + Y (¢ — 1) Area(A)) — t(Area(4;) + L))).
By differentiating, one shows that
e—*l;
Area(A: Li=— 39
reald) + L = Gy, /4

is an increasing function of /;. It will be greatest when the two boundary compo-
nents of A; coincide, [; = Lj, and Area(A;) = 0. In this case, s measures the
distance from the geodesic to the edge of the collar containing A;. Therefore

sinh(/;/2) = 1/sinh s

and
4 . 1
Area(U) — t Length(bU) > 2n| — — tsinh™" ——
3 sinh s
T
>
-3
if
] 1
s >sinh™" ———.
sinh(7r /6¢)

Since ¢ > 1, the quantity on the right side is bounded above by log(C,1).

(2) is a direct consequence of item (4) of the collar theorem. (3) follows from
the diameter estimate for X, given by Lemma 4.2, and from the definitions of s
and Xpick (5). O

We now fix U to be the component of Xk (s) containing the point ppa(s),
where s is given by the previous lemma and pp,.x (s) is given in Lemma 4.6. We
set K’ = X \ U, let Z be the set of zeroes of ¥, and define K = K’U Z. As usual,
K'(r), Z(r), K (r) denote the closed sets of points within distance r of each of
K’, Z, K, respectively. Recall that the cardinality | Z| is controlled by the genus
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and number of punctures of X. Since bU is contained entirely in cusps and col-
lars of short geodesics on X, one can show by direct computation that there are
constants Ci, C, such that, forall r < 1,

Length(bK (r)) < Length(bU) + Cr
and

Area(X \ K(r)) = Area(U) — Car.
Hence,

Area(X \ K(r)) — tLength(bK (r)) > Area(U) — t Length(bU) — Ctr

is positive on an interval of length comparable to ¢ ..

LEMMA 5.2. There are positive constants Cy, Cy such that if r < Cy/t, then any
two points in X \ K(r) can be joined by a path in X \ K(C,r).

Proof. We first claim that, for C; small enough, any connected component of
K (C,r) that intersects K'(C,r) must actually lie in K’(r). Hence, such compo-
nents do not separate components of X \ K (r). Indeed, if V is a component of
K (Cyr) thatintersects K'(Cor) andif p € V\K'(C,r), then pisjoined to K'(C,r)
by a chain of disks of radius C,r about points in Z. Hence, dist(p, K'(C,r)) <
2C,|Z|r. Choosing C, smaller than (2|Z| + 1)~! proves the claim.

If the lemma is false for small C, then we can assume that some curve y in
bZ(C,r) separates components of X \ K(r). If we assume thatr < C,/t < Ci1,
where [ is the minimum injectivity radius among points in U, and if C; is small
enough, then we have that y—and hence some component W of X \ K (r)—lies
entirely inside a hyperbolic disk of radius C3C,r. But this forces W to lie within
distance C,r + C3C,r of some point in Z. Since dist(W, Z) > r, we have a con-
tradiction for C, small enough. U

LEMMA 5.3. Letr < Cy/t be as in Lemma 5.2. Any two points in X \ K (r) are
joined by a path y C X \ K(C,r) with the following properties:
(1) y consists of length-minimizing geodesic segments and at most one connected
segment of each connected component of bK (Cyr).
(2) Length(y) < C3 + C4logt.
(3) Length(y N Z(s)) < Css forall s > 0.

Proof. Given any two points pj, p2 in X \ K (), first choose y to be a length-
minimizing geodesic connecting p; to p;. By (3) of Lemma 5.1, we know that
Length(y) < C1+Cslogt. If y intersects acomponent V of K(C,r), letq;, ¢ €
bK (C,r) be the first and last points of that intersection. By the previous lemma,
we know that there is a segment in bV connecting g, to g,. We replace y NV
with this segment of bV, possibly increasing the length of y, but by no more than
a constant times r. After carrying out this modification of y on each component
of K (C,r), we obtain a new path connecting p; and p», satisfying item (1). Item
(2) of the lemma follows since, after modification, the length of y has increased
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by at most a constant times ¢ ~!. It is not difficult to verify item (3) by considering
geodesic segments of y and segments of y in bK (C,r) separately. O

Recall that in Section 3 we defined
m(r) = min ().

bK(r)

We are now in a position to estimate m(r). Fix a point p; € bK (r) and let y be
a path from p; to pmax(s) = p2 satisfying the conclusions of Lemma 5.3. We
can apply Theorem 4.4, taking the set W in the statement of that lemma to be
Xiick(s + 1) \ Z. By Lemma 4.6 we can assume that the number M in Theorem
4.4 satisfies M < C{(¥(pmax(s))). For all p € y we have that

dist(p, bW) > min{l, dist(p, Z)}.

Hence,

ds
(¥(p1) = (W(Pmax(S)))eXp(Clj; min{1, dist(p, Z)})' (5.1)

To estimate the integral, we split the domain of integration into those points where
dist(p, Z) > 1 and those points where dist(p, Z) < 1. We have

/ ds < Length(y) < C, + Cylogt
Y\Z(1)

in the first case. In the second case, by Lemma 5.3 we have

[ o[ (1/u)d
—_— = Length(y N Z(1/u)) du
ynzq) dist(p, Z) 1 s /
/e ¢ g 1
=[ u:Cl—l—Czlog—.
1 u r

Altogether, the integral in (5.1) is dominated by
C, 4+ Cylogt + Cslog(1/r).

We apply Lemma 4.6 and the assumption that ||y || > 1/2 to estimate (¥ ( Pmax (5))),
concluding by Theorem 4.4 that

m(r) > lexp(—At®r=°)

for positive constants A, B, C. Inserting this estimate (valid for r < D/t) into
(3.3) gives

D/t
1— vl > / (E — Ftr)exp(—At2r=C) dr
0

)
> t—zexp(—AtB)

for positive constants A and B. Since the right side does not depend on v, we have
proved the following theorem.
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THEOREM 5.4. Let X be a Riemann surface of finite type. Let Y be a Riemann
surface of infinite type with finitely generated fundamental group. Suppose that
n:Y — X is a holomorphic covering map and that ®: Q(Y) — Q(X) is the
corresponding pushforward operator. Then

el <1-k
for a positive constant k. We can take

I _c

k = 't'—z'k ’
where A and C are positive constants depending only on the topology of X, t is
the number associated with Y by Theorem 1.2, and l is the length of the shortest

closed geodesic on X.

Theorem 1.4 is an immediate consequence of Theorem 5.4. In particular, we have
the following.

COROLLARY 5.5. Supposethatm: Y — X is a holomorphic cover of a surface of
finite type by a disk or an annulus. Then the norm of the corresponding Poincaré

series operator satisfies
el <1-Ci

for some constant C depending only on the topology of X.

This corollary holds because we can take + = 1 if Y is a disk or an annulus (see
[Di]). On the other hand, by Theorem 1.2 one can take t = C/I2, where C, D
are constants depending only the topology of ¥ and [y is the length of the short-
est closed geodesic on Y. Since holomorphic covers are local isometries we have
ly > 1. Theorem 1.3 follows.

We close this paper with an example that demonstrates that Corollary 5.6 is
sharp. The example appears in [M1].

Let y C X be the shortest closed geodesic on a surface X of finite type. Let
m, . Agr — X be the covering map giving standard coordinates on the collar about
y. We consider ©¢ where ¢ = dz?/z> € Q(ARg). Since m, is injective on Ag-
(R’ asin (4.1)), we have

u®¢||z/ |¢|—f 8.
Apgr AR\Aps

An easy computation now shows that

®
ol = 129 _ ¢

el

for some absolute constant C.

6. Concluding Remarks

We stress again that the covering surface Y enters into the proof of Theorem 1.1
only through Theorem 1.2. If one is unconcerned with tying the bound on 1 — [|©]|
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to the geometry of X, then one can replace the assumption that Y has finitely gen-
erated fundamental group with the assumption that there exists a bounded solution
of 87 = w, on Y. The proof of the existence of 7 given in [Di] relies chiefly on the
existence of a Green’s function on Y that admits adequate uniform upper bounds.

On the other hand, McMullen [M1] showed that ||®]]| < 1 whenever the cover
m:Y — X is nonamenable. It would be interesting to know whether one can
demonstrate the existence and appropriate boundedness of a Green’s function on
Y from the assumption that there exists a nonamenable cover of some finite type
surface X by Y.

7. Appendix: Extending Theorem 1.2 to Infinite
Type Surfaces with Punctures

Theorem 1.2 for infinite type Riemann surfaces Y without punctures has been
proved in [Di]. It is not difficult to extend the proof in that paper to handle infi-
nite type surfaces with punctures. Let Y be a Riemann surface of infinite type and
finitely generated fundamental group, and let Y be the compact bordered Riemann
surface obtained by adjoining the ideal boundary of Y to Y. Note that bY consists
of a nonempty, disjoint union of simple closed curves. The proof in [Di] consists
of the following main steps.

(1) Given any connected component y of bY, there is a simple closed geodesic
y C Y homotopic to y. One can write down a (1, 0)-form n,, such that 577,, = wy
and (n) < 1 on the annulus between y and y.

(2) After choosing appropriate cutoff functions on each such annulus, finding a
global bounded solution to 37 = w4 on Y reduces to solving the equation with w,
replaced by a form wg with compact support. Because Y is of infinite type, there
exists a Green’s function G (p, g) with pole at g on Y. We set

h(g) = / G(z, w) wo.
Y
Then, if o = 8h/4 we have 399 = Ah = wy.

(3) It is not hard to show that (1) is controlled by estimates involving wq and
G(z, w). We then relate the size of G to the geometry of Y via the estimate

G(z, w) < log* dist(z, w) + C/1%,

where [ is the length of the shortest closed geodesic on Y.

(4) The estimate on G depends in turn on a sort of inradius estimate for the core
Yeore C Y that one obtains by removing all boundary annuli. In particular, we
show that

d(pa bYcore) = Cl + C2 log(l/l)
forall p € Yeore.

To handle the case where Y has punctures, one needs to make the following
modifications to the proof of Theorem 1.2.

(1) As on boundary annuli, one can write down an explict bounded solution of
dn = w4 on the cusp about a puncture in Y \ Y. After we choose further appropriate
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cutoff functions on the cusps, the differential equation is again reduced to one with
compactly supported data.

(2) We use the same method to obtain the global form 7. The geometric esti-
mates on G and the inradius of Y .. are the same as before. However, one must
also remove cusps from Y to obtain Y.

(3) The proof of the inradius estimate for Y. becomes slighly more elaborate
in the presence of cusps. It proceeds roughly as follows. Any p € Yo is joined
to bYore by apath y C Yeore that decomposes into (i) length-minimizing geodesic
segments lying in components of Yipick N Yeore, (i) length-minimizing geodesic
segments lying in collars of short geodesics, and (iii) connected arcs in the bound-
aries of cusps or collars of short geodesics. The number of pieces in the decom-
position is bounded above in terms of topology. The Gauss—Bonnet theorem gives
a topological upper bound on the area of a component of Yiick N Yeore. Combined
with a slight variant of Lemma 4.1, this implies a topological upper bound for the
length of a type (i) piece of y. Direct computation shows that pieces of type (ii)
have length no greater than C log(1/L), where L is the length of the core geo-
desic of the collar. Likewise, another computation shows that the length of pieces
of type (iii) admits an absolute upper bound.
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