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0. Introduction

Let BE be the space of holomorphic functions f in the unit ball B” of C” such that
f e LP((1 = |z)* VPdm), where 0 < p < oo and a > 0 (weighted Bergman
space). In this paper we study the interpolating sequences for various Bf. The
limiting cases o = 0 and p = oo are respectively the Hardy spaces H” and A7,
the spaces of holomorphic functions with polynomial growth of order o, which
have generated particular interest. Note that the class of spaces we are considering
is invariant under restriction to balls of lower complex dimension, which justifies
the choice of those special weights.

As far as we know, for n > 1 the first research on this subject was carried out by
Amar [Am] for the classical Bergman spaces, which in our notation correspond
to the case @ = 1/p. Amar’s main result states that separated sequences (in terms
of the Gleason invariant distance) can be written as finite unions of interpolating
sequences for Bf,.

A sufficient condition due to Berndtsson [Be] is known for the case H*°. Also,
Varopoulos [Va] showed that if {a}x is H*-interpolating then ), (1 — |ag 12)"8, ‘
is a Carleson measure. Later, Thomas [Th1] proved that the same necessary con-
dition holds for H' and that it actually characterizes the finite unions of H!-
interpolating sequences.

On the other hand, after Seip’s characterization of A™%-interpolating sequences
in the unit disc ([Sel], see another proof in [BO]), Massaneda [Ma] obtained some
results for the case n > 1. In particular, {a,}; is a finite union of A™*-interpolating
sequences if and only if Y, (1 — |a klz)"“&,k is an (n + 1)-Carleson measure or,
equivalently, if and only if {a;}, is a finite union of separated sequences.

It is worth noting that in [Sel], Seip also implicitly gives a characterization of
interpolating sequences for all weighted Bergman spaces in the disk. In Section 5
we spell out the details for the reader’s convenience.

Here we deal with different aspects concerning B -interpolating sequences. In
Section 1 we first collect some definitions and well-known facts about weighted
Bergman spaces and then introduce the natural interpolation problem, along with
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some basic properties. In Section 2 we describe, in terms of « and p, the inclu-
sions between BY spaces; in Section 3 we show that most of these inclusions also
hold for the corresponding spaces of interpolating sequences. Unfortunately, our
proof does not capture the intuitive conjecture given in [Th1] to the effect that, for
p' < p, every HP-interpolating sequence is also H? -interpolating. Section 4 is
devoted to sufficient conditions for a sequence to be BZ-interpolating, expressed
in the same terms as the conditions given in [Th1] for the Hardy spaces and in
[Ma] for A™*. In particular we show, under some restrictions on « and p, that fi-
nite unions of BZ-interpolating sequences coincide with finite unions of separated
sequences.

We thank Pat Ahern for useful conversations, and the referee for detailed and
thought-provoking suggestions.

1. Definitions and First Properties

1.1 Notation

For z, w € C", we set zw := ) _7_, z;Wj, |z|* := zZ, the unit ball B" := {z €
C" : |z| < 1}, and the unit sphere S := 0B".

Given a € B”, ¢, is the involutive automorphism of the ball exchanging 0 and
a (see [Rul, 2.2.2]). Fora, b € B", d(a, b) := |p.(b)| = |pp(a)) is the invariant
distance between a and b. Recall that

(1—la»( —|b?)
|1 — abl|? '

We call the sets E(z,r) :={¢ € B" : d(z, {) < r} hyperbolic balls.

The normalized Lebesgue measures on the ball and the sphere will be denoted
by dm and do respectively (dm,, and do,,_; when we want to stress the di-
mension). The measure dt(z) := (1 — [z|>)~®+tDdm(z) is invariant under the
automorphisms of the ball [Rul, 2.2.6]. In particular, t(E(z, r)) depends only
onr.

We write A < B, or equivalently B > A, when there is a constant C such that
A <CB,and A >~ Bwhen A < Band B < A.

Throughout this paper we will use the following estimates.

1 —d(@, b =1—|p.(b)* =

LEmMMA 1.1. Leta,beB”, ¢ >0, andt > —1. Then:

(1~ 2P .
do ©) . .
®) [ e dm@ == (1= laP); and
(1~ IeP)
= d
(© [l;" (1 — Za|n+1+c+t|1 — zb|n+1+c+t m(z)

< Il _ al_vl—("+1+c+'){min(1 _ |al2, 1 — |b|2)}—c.
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Proof. (a)and (b) are given in [Rul, 1.4.10]. To prove (c), first split into the cases
|1 za| > 2|1 —ab| and |1 — za| < ‘/-Il — ab|, which implies |1 — zb| >
2|1 — ab| by the triangle inequality [Rul, 5.1.2(i)]; then apply (a). g

1.2. Weighted Bergman Spaces

For p > 0 and o € R, let L% (B") be the space of all measurable complex-valued
functions on B” such that f € LP((1 — |z|)* VPdm); that is, for p < oo,

1FIE = f F@IP( — 2P~ dm(z) < oo,
]BH
and for p = oo,

Il flloo.a 1= sup(1 — |z|))%| f(z)| < oo.

zeB?

For p > 0 and « > 0, and denoting by H (B") the space of holomorphic functions
in the ball, the weighted Bergman space B (B") := H(B") N L5 (B").

For « < 0, the above condition holds only for the zero function, but we some-
times will use the limiting case of the Hardy spaces:

Bl = HP(B") — {f e HB" : I fllur = 1110,

= sup [ nlf(rs“)l”da(s“)«m]-

O<r<l

The facts presented in this section are essentially well-known, but we recap them
here for the reader’s convenience, and also to write them in notation inspired by
Seip [Sel; Se2], which differs from that in Horowitz [ Ho], Coifman, and Rochberg
[CR; Ro].

The following statement is an immediate consequence of {Rul, p. 14].

LemMA 1.2. Ifl € Zy and f € BE_, p(IB"‘H) then its restriction to B" x {0}
lies in BE (B"™); conversely, whenever g € BL(B"), its trivial extension (constant
along the vertical directions) must be in Ba_ Ip (B,

LEMMA 1.3. For p > 0 and a > O, there exists a constant ¢ = c(a, p,n) > 0
such that, for all z € B",

|f @ < ell fllpa(l = |2)~®/PF,

and this is the best possible exponent.

Proof. Lemma 1.2 allows us to reduce this to the case n = 1 by considering the disk
through 0 and z. Then use the mean value inequality on the disk D(z, %(1 —|z|)).
That the estimate is sharp can be seen by considering the functions fy ,(z) :=
(1 —za)™ fora € B" and N > n/p + «. Lemma 1.1 shows that || fy 4llp.e =
(1 _ |al2)n/p+a-N. .

Lemma 1.3 says that BY C B%
be given in Section 2.

n/p+a- A more complete catalog of inclusions will
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LEMMA 1.4. There exists ¢’ = ¢'(a, p,n) > 0 such that, for any a, b € B" with
d(a, b) < 1/2,

If@ — f®B) < | fllpe( —la>)~ /P9 4(a, b).

Proof. We apply the generalized Schwarz lemma (see [Rul, 8.1.4]) over E(a, %)
together with the estimate from Lemma 1.3. O

1.3. The Interpolation Problem

We call a sequence {a;}; C B” interpolating for the space BY if, given arbitrary
values {v;}; subject to some reasonable restrictions, there exists f € BY such that
f(ar) = v forall k € Z,. It is not so easy in general to determine what the re-
strictions of holomorphic functions to a sequence of points are; see [BN@] for the
case of H? (D).

Here we want to impose growth restrictions only on the sequence {v};; more
precisely, we shall work with weighted /7 spaces.

DEerFINITION. For p > O and 8 € R, let

1f =15({ar)) == {{wh € C : {(A — |axYPuik €17},
oll} g := 32400 — |al®Pluel1?, and [|v]loo,p = sup[(1 — |ax|*)P |ue]].
Lemma 1.3 motivates the following.

DEFINITION. We say that {a;}; is an interpolating sequence for BY, denoted by
{a;} € Int(BY), iff, for any {v;} € l,f/p+a, there exists f € BE such that f(a;) =
v for all k.

This definition appeared in [SS] for the case « = 0 and n = 1, and occurs un-
der various guises in [Am; Ro; Sel; Thl; Th2]. There is an immediate necessary
condition.

DeFINITION. We say that a sequence {a} is separated iff there exists § > 0
such that, for all j # k, d(a;, ax) = 8.

LEMMA 1.5. Forany p > O0and o > 0, if {ax}x is an interpolating sequence for
BZ then {a;}y is separated.

Proof. Setv] := (1 — |aj|?)~®/P+9)§,, where §j is the Kronecker symbol. All
the v/ are in the unit ball of I /p+a- APPlying Baire’s theorem to the closure of
the images under the restriction map of balls of arbitrarily large radius, we see
that there is an M > 0 such that, for any £ > 0, there exist f; € BE such that
| fillpe < M and || fj(az) — v]}, lp,n/pte < &.

Applying Lemma 1.4 to the function f;,

(1 — |g;|H)~ P+ — o < 'M(1 — |a;|)~ /P d(a;, ay),

and we get the result by taking & small enough. O
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PROPOSITION 1.6. Fora > 0or p > 1, if {ax}x € Int(BY) then

(@) the restriction map f v+ {f(ai)lkez, is bounded from BE to lf Ipta and
(b) there exists a constant M > 0 such that the interpolating function f can be
chosen with the additional condition || f ||« < M||Vllp,n/p+a-

The best such constant M is called the constant of interpolation of {ay}.

Proof. If we can prove the first statement, then the second will follow by applying
the open mapping theorem. For p = oo, boundedness of the restriction is trivial.

In the case where a > 0, notice that Lemma 1.5 implies that for some § > (
the hyperbolic balls E(ay, §) are pairwise disjoint. Thus

=D A — (2?7 f(@)IP dm(z)
k

E(a,8)

=8 (1 — |aHP T f@nl?,
k

using the plurisubharmonicity of | f|?.

Fora = 0 and p > 1, applying Baire’s theorem as above to rectify the proof of
[Th1, Thm. 2.2], we can see that {a,}; € Int(H?) implies that ), (1 — lax|?)"8q,
is a Carleson measure (see [ Th2] for a direct proof when p > 1), and this implies
the boundedness of the restriction mapping by Lemma 3.1 ([Hr]; see the begin-
ning of Section 3 for a definition of Carleson measures). [l

REMARK. The condition that {a;}; be separated implies that it has finite density,
if one defines the density as (say) the upper limit of the number of sequence points
in a hyperbolic ball of fixed radius as its center tends to the boundary. (For a more
rigorous definition, adapt the one in Section 5, which is taken from [Sel]). How-
ever, the density we would get from Lemma 1.5 depends on the constant M of
interpolation. We conjecture there is some necessary condition for a sequence to
be interpolating, in terms of its density, depending only on « and p but not on the
constant M, as was proved in [Sel] whenn = 1.

1.4. Invariance under Automorphisms and Restriction to Subspaces
For any automorphism (holomorphic self-map) ¢ of the ball, let

n/p+a
1— o~ 10)?
T = — o .
of (@) ((1—zga~1(0))2) fop(@)

LEMMA 1.7.
(@) T, is an isometry of BY.
(b) If ¢ is an automorphism of the ball and {at}x is an interpolating sequence
for BE, then so is {p(ar) }x, with the same constant of interpolation.

Proof. (a) is trivial when p = co. Any automorphism is a composition of a map
@, and a rotation, and the result is immediate in the latter case. For the former, in
the case where p < co and a > 0,
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fB NS @A =12 dm@) = | (1= loa@ )" 1f (ga()I de ()

= Bn(l — e PP FOIP dT(§)
= 1fl1}.a

which finishes the proof since (7,)~! = T,-1, as can be seen by an elementary
calculation using [Rul, 2.2.5] and the fact that |~ (0)| = |¢(0)].

(b) Take v € I}, ({¢(ar)}). Then

( 1— o~ (O
(

n/pta
— v g €Il o (ard),
1 - akco—l(ow) o

with the same norm, so there is an F such that || F||, o < M||v|lp,n/p+« and
n/p+a
1— o 1(0)
F(ak) = ( V.

(1 —arp~1(0))?
Then G := T,-1 F solves the original problem, with ||G||, o < M||vlipn/pte. O

The next lemma, which follows immediately from Lemma 1.2, has been used in
[Am], and provides some necessary conditions for a sequence to be interpolating.

LeEmMA 1.8. Suppose {a;} C B” x {0} C B"H, wherel € Z%. Leta > 1p.
Then {a} € Int(Bz (B")) if and only if {ai} € Int(B;_,,,B"*")).

1.5. Stability under Perturbation and Finite Sets
The proof of the following lemma was sketched in [Lu, Sec. 6.11].

LEMMA 1.9. ForO0 < p <occanda > Qorforl < p <ooanda > 0, let
{ax} € Int(BE) and let {a} }x be another sequence in B". There exists § > 0 such
that if

d(ax,a;) <8 VkeZ,

then {a;} € Int(BE).

Proof. Case @ > 0. Letv €1}, .. Denote a = {arl, @’ = {a}}i, and 2° = v.

By hypothesis there exists fo € BY such that fo(a) = v° (fo(ar) = v,? for all k)
and || follp.a < M|Iv%), where M denotes the constant of interpolation of {a, }s.
Consider now v! := v° — fi(a’).

Claim: For 8 small enough, ||[v!|| < y[[v°], withy < 1.

To see this, we use a general estimate for holomorphic functions that is a refine-
ment of Lemma 1.4. Let f be holomorphic and let z, w € B” withd(z, w) <r <
1. The plurisubharmonicity of | f (z) — f(w)|? as a function of z, together with a
gradient estimate, shows that there exists a constant C = C(r) > 0 such that (see
[Lu, Lemma 3.1] or [Th2, Lemma 2.4.4]):
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|f @) — f(w)|? < CdP(z, w) | £ (O d ()
E(w,r)

forany r > %—d (z, w). With this estimate applied to fp we have, provided that r is
chosen small enough so that the invariant balls E (ag, r) are pairwise disjoint:

1M 1P =D (1 = lae®"*?| folar) — fol@p)l?
k

< CY (1 —laly*rd? (ar, a}) 8 )Ifo(§)|” dz(¢)
k ak,r
<csry f P =BT me) < CILAIL,
k E(ag,r
< C8?MP ||V

Choosing § so that y? := C8”?M?P < 1, the claim is proved.

Take now f; € B% with fi(a) = v! and || fillp. < M|v!||, and define v> =
v! — fi(a’). An iteration of this construction provides functions f; € BZ with
fi@ = v = v — fi_1(@) and || fjllpa < MIlv7]| < My7||0°]. Finally, the
function f =) ; fj solves the interpolation problem for {az ).

Casea =0, p > 1. We can use Luecking’s estimate, together with the fact that,
when {a;} € Int(H?), p > 1, the measure Zk(1—|ak|2)"aak is a Carleson measure
[Th1, Thm. 2.2], and therefore so is the measure Y, (1—|ax|*) ™! xg(as.,rydm. Then,
applying Lemma 3.1 (see Section 3) we get _ (1 — |ax|®)"| f(ax) — fla)I? <
| £ 1%, for any function for which the right-hand side is finite. The proof then pro-
ceeds as before. Ol

The results described above also hold for the corresponding interpolating se-
quences for the spaces by of M-harmonic (instead of holomorphic) functions
in L%. This is so because the main ingredients used above, namely Lemma 1.3
and the separation of the interpolating sequences, can be proven likewise in the
M-harmonic case.

It is also important to know that the interpolation property does not depend on
changing a finite number of points. Note that the union of two B} -interpolating
sequences is not in general BY-interpolating [Am].

THEOREM 1.10. The union of a BL-interpolating sequence and a finite number
of points is again BL-interpolating.

Proof. It is enough to show that the union of a Bf-interpolating sequence and one
point is Bf-interpolating and—by invariance under automorphisms of the Bj-
interpolating sequences—we can assume that this point is 0. Let then {a;}; be the
original sequence and let § > O be such that |a;| > § for all k.

We claim first that it is enough to find f € Bf with f(a;) = O for all k and
£(0) £ 0. To see this, let {v;} U € l,f/era ({ax}UO0) and let g € BL be such that
g(ay) = vi. Then the function
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vp — g(0)
f0)
belongs to B, and F(0) = vp and F(a;) = vy for all .
Suppose that all f € BY with f(a) = 0 for all k have f(0) = 0. This implies
that, for any f € BY, the value f(0) is determined by the values f(ay), since the

difference of two functions with the same values on {a}; vanishes at 0.
Assume 1 < p < oo and define the functional A:l? — C by

A({ue)) = £(0),

where f € BY is such that f(ay) = (1 — |ag|?)~®"/P+¥y; for all k. Since f(0)
is determined only by these values, which are actually independent of f, we have
that A is linear. It is also continous:

A = 1f O < cll fllp.a < eMI{A = 1ael) P D9} pnspra = cM o],

where M denotes the interpolation constant of {a};. So A € 9, in the sense that
there exists {cy}x € 19 such that

F(z) =g(@) + f(@)

e8]

AQ@) = ver Yv = {w} el”.
k=1

Consider now the sequences v/ = {&;}x € I” and a function f; € Bz with
fiar) = (1 — |ag[»)~®/P+9)s,, . By definition,

A@)) = £;0) =) dcr = ;.
k=1

Take now the functions Fj(z) = (Ia,-l2 — a;z) fj(z). Obviously F; € BY and
Fj(ax) = 0 for all k. Therefore F;(0) = |a;|? f;(0) = |a;|*c; = 0, and hence ¢; =
0. This shows that A = 0, which is evidently false, since there are many functions
in BY not vanishing at 0.

The case 0 < p < 1 is solved in the same way, using that the dual of /7 is [*°.
For the case p = oo we can restrict the functional A to the subspace co C I*° of
sequences with limit O and apply the same argument. O

2. Inclusions for B?, and lg

Our purpose is now to describe, in terms of the values a and p, the relationship
between BE spaces.

LEMMA 2.1.

(@) Ifp < p’, then B C Bg: ifandonly if « +n/p <a’'+n/p’.
(b) If p> p'and o' > 0, then BE C Bg: ifand only if o < o',

In particular, if @ < o’ +n(1/p’ — 1/p)+ then B C BP,, and if B C B?, then
a < a' +n(l/p’ — 1/p),. Those results have been obtained in the case n = 1
by Horowitz [Ho]. Seip [Se2] has shown that forn = 1, @ > 0, and p > p’, the
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zero sets for Bé" are also zero sets for B2 and that the converse is not true, so in
particular Bf ¢ BY.

Among many other results, Coifman and Rochberg [CR, Prop. 4.2, Prop. 4.4]
provethatif p < p’ <1, a’,a > 0,and o +n/p = o’ +n/p’, then By C Bg:.
Their proof is valid for a whole class of symmetric domains.

Proof of Lemma 2.1. (a) Assume o« +n/p < o' +n/p’ and f € BY. The case
p’ = oo was settled by Lemma 1.3. For p’ < oo, one has

[ 1@ @~ Pyt dm

<cP-p lf(Z)lp(l _ 1212)(n/p+a)(p—p )+a'p'—1 dm(z).
Bn

This integral is controlled by || f||%., whenever (n/p + a)(p — p’) +'p’ > ap,
thatis, whena +n/p <a' +n/p’.

Conversely, assume « + n/p > «’ +n/p’. As in Section 1.2, let f, ,(z) =
(1—z-a)~". Whenevery > a'+n/p", | fy.alle,p = (1—|a|?)*+/P'~7  Choos-
ingy > a+n/p, weseethat|| fy ollo’, ' /Il fy,alle, p Cannot be bounded as |a| tends
to 1.

(b) Assume o <’ and f € BY. Holder’s inequality with exponents p/p’ > 1
and p/(p — p’) yields

i £ @I (=127~ dm(z)
Plp
< ( If@IP(1 = |z)*)*P! dm(Z))
]Bn
) ) ) (p—p"/p
% ( - IZIZ)(O! —a)p’'p/(p—p')—1 dm(z)) ,
Bn

and by hypothesis both integrals are finite. If p’ or p is infinite, the analogous
proof goes through even more easily.

When a = 0, the hypothesis becomes f € H?. Using [ | f|P'do < fs1f1Pdo
and integration in polar coordinates, we see that

i
@I (= 127~ dm(@) < [ £IE f (=271 gy < oo,
Br 0

Whena =o' =0, BY = H? c BY' = H” ifand only if p > p'.

Assume now « > o’ > 0 and p > p’. In order to construct a function F €
BE([@™)\ Bg,' (B™), we use the Ryll-Wojtaszczyk polynomials: there exists a fam-
ily of homogeneous polynomials W; of degree k such that c™! < ||[Wy|lyz <
| Weilue < 1 for some constant c independent of k (see [Ru2, Thm. 2.1, p. 4]).

It clearly suffices to prove the following.
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Claim: The gap series F(z) = ), axW,«(z) satisfies the estimate
= lal?
L PEDIE
k=0
Proof. The homogeneity of Wy and [Rul, 1.4.7] yield:
IFN} o = fB IF@)P(1 — 1z~ dm(z)

P
—2n (1 —r2* P12~ gr do (0)

1
D aWy(r)
k

0
1 2r
1
sJo 27 Jo

x (1 =r*= 12 dr do (1)
Applying now [Zy, Chap. V, Thm. 8.20], it follows that

. k p
D ax(re”y? Wz*(é’)l dé
k
2
171 = | f = (/

pl2
de)
x (1 —r?)*P=tp2e- ldrdor({)

1 k+1 p/2
= [ [ (et )" a -yt dras ),
§JO k

which by [MP, Thm. 1] finishes the proof.

Zak(re"’)2 Wae (¢)

The sequence spaces we are considering verify similar inclusions.

LEMMA 2.2. Suppose {a;}, is separated. Then:

@ ifp < psthenll, . Cl? . ifandonlyifn/p +a <n/p +a;
M) ifp>p anda <o, thenl? cl?
Conversely to (b),

n/pta nfp'+a’

) ifp > and o > o, then there exists a separated sequence {a}; such that
P p 14 q

L pta & W
Proof. (a) Left to the reader (similar to Lemma 2.1).

(b) First observe that the separation of the sequence implies that, for any & >
0, >, (1 — |ag/®)"** < oo (see Lemma 4.1). For p < oo, applying Holder’s

inequality yields
DA = lag Py
k

/b plp
< (Z (1 =ty o)™ (1 — lak|2)")

k

1-p'/p
/ N 1/A=p'/p)
x (Z ((1—tak|2)<“ —“"’) (1—|ak|2)") :

k
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Now the exponent of 1 — |a|? in the last sum is (@’ — a)/(1/p' = 1/p) +n > n,
so we are done. Notice that if the sequence {ay}; were sparse then we could allow
smaller values of a’, so there is no hope of a general converse statement analogous
to case (a). The reasoning in the case p = oo is similar and simpler.

(c) Our example will be a separated sequence that is as crowded as possible (a
net in the sense of [Ro] or [Lu]), that is, having the property that all points in the
ball are less than a constant invariant distance away from a point in the sequence.

Letr € (0, 1). We pick a sequence

{am,ls me Zj_s O 5 l .S Lm}

such that, for any /, a,,; = 1 — r™ and for each m the set {a,,;, 0 <[ < L,}
is maximal in the sphere of radius 1 — r” for the property that the invariant balls
E(an 1, r) be disjoint. It is easy to check that this sequence is separated and that
L, ~r™"m,

We choose vy, ; so that u,, := |v,, | depends only on m. Now, for 0 < p < oo,

Z(l — |ag )n+aplv 1|7~ Z ——nm+m(n+ﬁtp)u’I;t

m

and
Z(l — lag Y ~Z P yE > Z(rmapup pip,

By choosing u,, appropriately, we can then make the last sum diverge, while
3o Pyl < oo.
In the case p = oo, simply taking u,, = r~™%, we see that Zm r’”""l”u,’f, >

> . 1=o0. O

3. Inclusions for Int(B?%)

In this section we show that the inclusions given in Lemma 2.1 and Lemma 2.2
are also verified by the corresponding spaces of interpolating sequences. First
we recall some known facts about Carleson measures, which will also be used in
Section 4.

For any t > 0 and ¢ € S, consider the Carleson window with center ¢ and ra-
dius ¢ defined by C;(¢o) = {z € B" : |1 — {oz| < t}. A Borel measure v in B" is
a g-Carleson measure if

V(Ci (L)) = O(tY) Vt>0, V& e S.

An n-Carleson measure is simply called a Carleson measure. What we call g-
Carleson measures were studied in [AB] under the name “Carleson measures of
order g/n’.

One of the main features of Carleson measures is the following.

LEMMA 3.1 [Hr; CW]. Letq > p > 0and a > 0. Let p be a positive measure.
Then the following are equivalent:
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@ ([ 1@V dp()""? < cll flp,a for all f € BE;
(b) u(C,(2)) = 0@ ®/P+®9) forallt > 0 andforall ¢ € S.

In the sequel, we will be mainly interested in Carleson conditions for the measures
> (1 —lag 12)48,, , which have important relationships with the values

(1 — lax|®)? (1 — |aj|*)?
11 — Graj|P*e

K({a}, p,q) := sup ) ., p.q>0.

kel jijtk
LEMMA 3.2.
(@ If>., Q10— lak|?)"8y is a Carleson measure then, for any p > 0,
K({ak}, p,n) < oo.

(b) A positive measure . on B" is a Carleson measure if and only if there exists
some B > n/2 such that

(1= b2y
sup

- du(z) < oo.
beBr JBr |1 — bz|*P

Part (a) is an immediate consequence of [Ma, Lemma 1.4]. Part (b) is a well-
known result that can be found in [Ma, Lemma 1.2] and ultimately goes back to
[Ga, p. 239].

We now come to the main result of this section.

THEOREM 3.3. Let p, p' > 0 and a, «’ > O satisfy one of the following condi-
tions:

@ p<pandn/p+a<n/p +a;

(b) p>panda <o’'.

Then Int(B) C Int(BP)).

In the special case where n = 1, Seip [Sel] has proved a stronger result than The-
orem 3.3(b), namely, that Int(B3°) = Int(B%) (see Section 5). This suggests that
the inequality @ < &’ in (b) is critical.

In fact, if we take a sequence a C B! x {0} c B”, then we see by Lemma
1.8 that a € Int(BZ(B")) iffa ¢ Int(Bg+(n_1)/p(IB‘)), which, by Seip’s result, is
the same as Int(Bgi(n_l) Ip (B1)). Since we know from [Sel] that Int(B§°(IBl)) g
Int(Bg?(IBl)) when B < p', this shows that Int(BZ (B")) # Int(ng(IB")) when
a4+ (n—1)/p#a + @ —1)/p’, and that Int(BY (B")) ¢ Int(Bg:(B")) when
a+(n—1)/p>ea + @n—1)/p'. This shows that the inclusions in parts (a) and

(b) of Theorem 3.3 are strict.

Proof of Theorem 3.3. Let {ax}; be Bf-interpolating, and take f; € BY with
{1 - Iajlz)"/”+°‘fk(aj) = 8jx and || fx|lp,« < c for some constant ¢ > 0 indepen-
dent of k. Given m > 0, define G (z) = gv(2) - fi(z), where

(1 _ Iak|2)n,’p+a+m

gk(Z) = (1 _ akz)n/p'+a’+m :
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For a given {\¢) € 17, let G = >~ At Gy. From this definition it follows imme-
diately that (1 — |a,|2)"/P*+% G(ax) = A, and we need to prove that G € B,
Assume first that o > 0.

Case 0 < p’ < 1. Since | - l| o satisfies the triangle inequality, it is enough to
show the following.

Claim: There exists ¢ > 0 independent of k such that |G|l «» < c for all k.

Proof. By definition of Gy,

(1 _ |ak|2)(n/p+a+m)p’

4 e’ p—1 ’
16k} = [ 7=z comarmy L~ DA dn@.

(a) Since p < p’, estimate | f¢(z)]” ~? by Lemma 1.3. We see that

/ ’_
1Gkly o = I fills 7

(1 = |ag[H)@/pratmp’ (] — |z|2)@ P +(p=p)n/p+a)—ap

B |1 — az|®/p'+a'+m)p’
x (1 — zH*7 £ @)|P dm(z),

which, since (n/p + « + m)l?’ + [a'p’ + (p—pYan/p+a)—apl=n/p +
@' +m)p', shows that |Gell}, » =< Il fillp.a-

(b) We may assume p > p’, and apply Holder’s inequality with exponents p/p’
and p/(p — p’). Since &’ — a > 0, one has, for m large enough,

1G1 o
P—pP

21 (5 +a+m) L 2 (Ot’—a)-——p’p/*-l
(1 —lag]®)'? ”"(1 1z}") pr '
By , am@|  UflZ

B~ ll . &k |(?+Ot’+m)—p_—p,

2,[(5 +a+m) , ( +a +m) +(a a)” —14n+1128
< (I —la])? 2 Ilf I|

’
~ || fellZ-

This concludes the case p’ < 1. O
Case p’ > 1. First we give a useful estimate.

LeEMMA 3.4. Let {ar}r and {gi}r be as above, and let A be such that

(n/p+a+m)A > n.

Then
Z ng(Z)lA =< (1 — lzIZ)A[(R/p+a)—(n/p’+a')].
k

This is a consequence of [Ma]; more precisely, it follows from Lemma 4.1(d) below
with exponents P := A[(n/p’ +a’) — (n/p+«)land Q := A(n/p + o + m).
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(a) Using in succession Holder’s inequality (with 1/p’ + 1/4’ = 1), Lemma
3.4, and Lemma 1.3 for | f;(z)|, we obtain

’

14
(1 — |z/H*P~ dm(z)

161 = [ ¥ k@i
"k

B rle
= /n ;lgk(z)lq'] [; Mklp’lfk(Z)Ip,:I (1 —zH¥" " dm(z)

< fB > Al 1 @I — 2!
"k

x (1 — |Z|2)P (n/pta—n/p' —aYy+(p—p')(n/pt+a)+a’'p’'—ap dm(2),

which is controlled by 3, |A«|?’, since
Plin/p+a)—@/p' +a)1+(p— p)n/p+e)+a'p —ap =0,
(b)Let 1/p + 1/g = 1. We first estimate

1G(2)| =

D M@ fi@)
k

l/q 1/p
s(lekl‘l—f’””’ﬂgk(z)rI) (leu"’lfk(z)lp) :

k k
Then, applying again Ho6lder’s inequality with exponents p/p’ and p/(p — p’), it
follows that [|G|| ﬁ,’a, is bounded by

4
-4 g Ry
[ [Zlm“ P g () (1 — |27 7 ]
B~ k

pl

P

X [Z IMelP ] fie@)IP (1 — lziz)‘”’—*] dm(z)
k

P'p P
q(p—p’)

- fgad L
= / [Zlkkl”—ﬁ”“’lgk(z)r’(l—lzlz)"‘“ i "')] dm(z)
Bn k

?
x[fB pr’lfk(z)w(l—|z|2)“P-1dm(z)] :
"k

The second factor is controlled by 3", [Ae|? || fello.w < 34 |Ax]?. Taking y, 8 >
1 with 1/y + 1/6 = 1 and applying Holder’s inequality with exponents a =
pr'/q(p —p'yand b = p'(p — 1)/p(p’ — 1), using Lemma 3.4 we can bound
the integral appearing in the first factor by
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fﬁ [Z lgk(Z)I%{I [Z il 2 @I (1 - |z|2)"“‘“"“+”75""’] dm(2)
"Lk k

’ n 94
< [ Sl - e
"k

(1 — (g7 @O~ HF Gramgy—a)

— 5 dm(z).
We can choose § > 1sothatga(a’—a)—1+4+(qa/8)(n/p+a—n/p'—a') > —1
and the integral is finite. Then, once more by Lemma 1.1, we see that the integral
is bounded by ), |Ax|?’. This concludes the case o > 0.

We now turn to the case ¢ = 0. First we handle the special situation p’ = p.
LEMMA 3.5. Forany o' > 0, Int(HP) C Int(BE)).

Accepting this, suppose (p’, «’) satisfy (a) in Theorem 3.3; then there exists ¢y >
Osuchthatn/p+a; < n/p’+a’. Likewise, if (p’, o’) satisfy (b) then there exists
a; > 0 such that ¢; < «'. In either case, applying Lemma 3.5 followed by the
case @ > 0 of Theorem 3.3, we get Int(H”) C Int(B%,) C Int(BZ)). O

Proof of Lemma 3.5. Define fi, gr, G, and G as before for {7} € 7.
Case p < 1. Itis enough to prove that |Gy ||5,a, < c for all k, that is,

(1 = 12PN g @I fu(@)|P dm(z) < ¢ forall k.
]Bn

Applying Lemma 3.1 with p = g and o = 0, we see that it suffices to prove that,
for an appropriate choice of the parameter m in g,

(1 = 1212 P ge (@I dm(z)

is a Carleson measure with Carleson norm independent of a. To see this, we ap-
ply Lemma 3.2(b) with 28 = n + «’p + mp. By the hypothesis on &’ and m, we
have 28 > n + mp > n. Then, by Lemma 1.1(c),

su f (1- |b|2)2ﬂ-—n(1 — |Z|2)a'p—-l(1 _ IaIZ)mp-l-n (@)
= m(z
a,be%" n [1— bzlzﬂll —_ ﬁzln+a’p+mp
1 — b2 a'ptmp (] _ |q|2)ymptn
ﬁ Sup . ( I | ) ( |a| ) {min(l . la[2, 1 _ 'blz)}—mp,

a,beBn |1 — ab|r+o'ptmp

which is finite since max(1 — |a|?, 1 — |b|?) < |1 — ab|.
Case 1 < p < 2. By Hoélder’s inequality,

(1 — 2P G )P dm(z)

r/q
<> InlP ]B (1 — |z?y?! (Zlgk(z)rf) | £ (@)IP dm(2),
j g k

]Bn
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where 1/p 4+ 1/q = 1. Again by Lemmas 3.1 and 3.2(b), it is enough to consider

1— b2 28—n , rl/e
sup [ LD et (Z lgk(z)rf) dm@). (1)
k

beBr JB» |1 — bz|?B

Since p/q = p — 1 < 1, this integral is bounded by
1 — b2 28—n 1— Qa'p—1 1 — 2\mp+n
iy [ QBP0
k n

|1 — bz[?P|1 — @yz|rte’pme dm@).

Choosing again 28 = n +«a'p +mp > n+ mp > n and applying Lemma 1.1(c),
we get S < §; + 53, where

. (1 — [B)* PP (1 — |ai|?)"
Sy = Z |1 — ayb|n+e’p+mp

9

k:1—lag|2<1—bJ?
(1 — 1B|D*P(1 — |ag|?yrP+
= 2 :

‘1 —_ &kb|n+ot’p+mp

b

k:l—|ag|?>1—]b|2

SO Sup,cp- S1 < K({ax}, ¢’'p 4+ mp, mp + n) and sup,p. S2 <X K({ar}, a’p, n).
Because {a;} € Int(H?), p > 1, we know from Theorem 2.2 of [Thl1] that
> (1 —lag |2)"6ak is an n-Carleson measure, so Lemma 3.2(a) allows us to con-
clude that both quantities are finite.

Case 2 < p < oo. As before, it is enough to consider (1). We first apply
Holder’s inequality with exponents (p — 1)/(p — 2) and p — 1 and then apply
Lemma 3.4 to yield

p—2

p—1
(Z lgk(z>|‘1) < (): |g (z)lf’ﬂ“’"”) > la()1P”?
k k k
< A= 1z2H™P2) " la(2)IP?,
k
so that in this case the integral in (1) is controlled by

1 — bI2Y2B~1(1 — [212Y° 211 — |g,|2) 2 (mp+m)
g supz (I =[P~ (1 — [z|7) 27 (1 — [ak|”)?

_ - dm(z).
beBr 77 Jpn |1 — bz|?B|1 — agz|z@+e'ptmp)

This time choose 28 = %(n +a'p+mp) > max(%(mp + n), n), which requires
m > n/p —«'. As above, S < S§; + S, where

Su= )] (1 — |b|2)z PR (] — |g, 2y
L= 11 _&ka%(n+a’p+mp)

?

k:1—]ag|2<1—|b?

5= Y (1= b (1 — |ay?) 1P+
2= Il_&kbl%(n‘i—a’p—i-mp)

k:l—lag|2>1—|b2

and requiring finally mp > n, we conclude as before.
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Case p = 0o. We can estimate sup, g (1 — 1212 1G (2)| by a straightforward
application of Lemma 3.4. U

REMARK. We have actually shown a slightly stronger result—namely, that if
functions f; exist with the properties mentioned at the very beginning of the proof
(i.e., interpolating values that are zero at all but one of the points), then {a;} €
Int(Bé’:) for («’, p) verifying (a) or (b).

Notice that the proof of Theorem 3.3 cannot be used to show the intuitive con-
jecture that Int(H?) C Int(H P’) for p’ < p. It is also interesting to note that
the proof uses only that _, (1 — |a|*)"8,, is an n-Carleson measure in the case
{ar} € Int(H?), p > 1, which follows the arguments of {CG] and is much easier
to prove than for p = 1 (see [Th2, Sec. 2.2]), while the case p < 1 is not known
to us forn > 2.

4. Sufficient Conditions

In this section we give sufficient conditions for a sequence {ay}; to be Bg-interpo-
lating in terms of the values K ({a;}, p, q) defined in the previous section.

LEMMA 4.1 [Ma). The following conditions are equivalent:

(@) {ar}x is the union of a finite number of separated sequences,
(b) K({ar}, p,q) < +oo forallq > nandall p < q;
(c) there exist g > n, p such that K ({a;}, p, q) < +00;
(d) forall p > 0andallq > n,
N (1— (21770 — |ag*)?

sup E - < +00;
z€B” 1 |1 - akzlp+q

€ X (1 — |axl?)98,, is a g-Carleson measure for q > n.

We will consider, given a sequence {a;}, the restriction map T (f) = {f(ax)}:.
Notice that
1T, = 2o1F@IPA—lax®™* = | 1F @I du@),
k n

n/p+a

where p =) (1 —|a |2 +eP§,, . From Lemma 3.1 and Lemma 4.1 we thus de-

duce that T maps BZ boundedly on , /p+a({ax}) if and only if {a} is a finite

union of separated sequences. This gives a partial converse to Proposition 1.6.
The first result we give in this section deals with the case p = 1.

THEOREM 4.2. Let {a;}; be a separated sequence in B". If there exists an m >
0 such that K ({ai}, m,n + &) < 1, then {ay) is Bl-interpolating.

Observe that, by Theorem 3.3, this implies that {a;}; € Int(Bg,' ) whenever p’ >
landn+a <n/p’ +a'.
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Proof. For the case @ = 0, see [Thl]. Consider T:Bl — I} +a({ak}) defined

above. In order to show that T is onto, we define, given v = {v;} € I} +oard),
the approximate extension

[o%0) 1 — |ak|2 n+oa+m
E(v Z -_— .
)(2) = k}; (l—akz)
Using Lemma 1.1, it is immediately verified that E(v) is in Bl:

( _ IaklZ)n+a+m

IE@)|1a < — |z ‘Zl 5.z dm(2)

ln+ot+m

o (1__ ZZ)ot—l
skZ;wkla—laklz)“ f | " ) = ol

B~ 1 — akzln+ot+m

On the other hand, TE — 1d, regarded as an operator on /! +o({ar}), has norm
strictly smaller than 1:

ITE(@) - v|| = Z(l — lax Y (TE ()) — vil

<Zl_ 2n+az | Iaj|2 n+a+m
(1 - la® lv; |1—aka,|

Jij#k

00 2ym 2\n+a
— L 2yntay., (1 —la;|")" (1 — |ax]”)
= ]=ZI(1 la;|*) |vj | ( Z 1 — &kaj|"+a+m

k:ks j

< |jv].
Hence the series

o0
Id + Z(TE —T1a)*
k=1

converges and defines an inverse to TE. The operator E = E(TE)™! provides, fi-
nally, the inverse of T'. O

Notice that, by the invariance under automorphisms of the BZ-interpolating se-
quences, the hypothesis in Theorem 4.2 can be replaced by the seemingly weaker
assumption of the existence of an automorphism ¢, such that

K({e (ar)},m,n+a) < 1.

COROLLARY 4.3.

(a) Let {ai}x be a separated sequence. There exists a > 0 such that {a;}y is
Bl-interpolating.

(b) Let ¢ > 0. There exists a § € (0, 1) such that any sequence {a;} verifying
dg(aj,ax) > 8 forany j # k is Bl-interpolating.
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Proof. Lemma 4.1 shows that

K({ai}n+a/2,n+a/2)=sup ¥ (1 - d3(a,an)" " < +0.
ko jijk

If § is such that dg(a;, ax) > 8, we have

sup 3 (1= d3(@,a0)™™ < (1 — K (a}, n + a/2,n + /).
kel jij#k

In both cases (a) and (b), we can finish the proof by choosing (respectively) o or
8 so that (1 — 6%)*2K ({ax}, n + /2, n + a/2) < 1 and then applying Theorem
4.2. O

Theorem 4.2, along with the following lemma, provides another characterization
of the sequences appearing in Lemma 4.1.

MiLLs’s LEMMA (cf. [Ga] or [Thl]). Let Aj, j, k € Z., be nonnegative real num-
bers such that Ajx = Ayj and Ajj =0 for any j and k. If supyez, 3 icz, Ajk =
M < +o00, then there exists a partition Z,. = S; U S,, S1 N Sy = @, such that

COROLLARY 4.4. A sequence {a}y is the union of a finite number of separated
sequences if and only if it is the union of a finite number of Bé-interpolating se-
quences.

Proof. The reverse implication is given directly by Proposition 1.6. To see the di-
rect one, we apply (b) of Lemma 4.1 with p = g = n 4+ « and Mills’s lemma
with

(1 = lag?)"+ (1 — |a; 12"+

A; =
Jk |1 _ akaj|2(n+a)

For any N € Z. one can split {a;}; into 2% sequences {bi}, I = 1,...,27,

such that K({b,ﬂ}, n+a,n+a) < 1/2Y)YK{ar}, n + a,n + «). Taking N suf-
ficiently large, this term becomes smaller than 1, which (by Theorem 4.2) yields
the stated result. O

With the same methods it is also possible to obtain sufficient conditions for a se-
quence to be BY-interpolating, p > 1. However, these conditions are not so well
adapted to the nature of the BY spaces, in the sense that they are symmetrical in p
and the conjugated exponent gq. In the proof, which follows [Th1, Prop. 3.2], we
will use the duality between BY spaces. Consider the product given by

(f g) = fB FQE@DA - 2P dm ().

Using Lemma 1.1 and some standard results for classical Bergman spaces (see
[Am, Lemme 1.2.3] and [Rul, Chap. 7]), it is easy to prove that when 1 < p < oo
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the dual space of BY with respect to this product is Bg, where 1/p+1/q = 1 and

Bq = ap. Furthermore, there is a reproducing kernel for BY functions, namely,
I'(n + ap) 1

T'(n+ DT (ap) (1 — gz)mter’

THEOREM 4.5. Let1 < p < oo and let q be its conjugated exponent. Let f =
ap/q. If there exist ¢y, c; > 0 such that cic, < 1 and

Kz(f) =

then {ay ) is BL-interpolating.
Notice that n/p + o < n yields results that do not follow from Theorem 4.2.

Proof. Given {v;} € l,f Ipta ({ax}), take the approximate extension

(1= lakP)”*‘"’
E = —_— .
0l ;vk ( -

Using the duality described above, the reproducing kernel for BY, and Lemma 4.1
with o = Y, (1 — |ag|>)"*#45,,, one has that [|E(0)|p.¢ < cllvlip.n/pte-

On the other hand, if T denotes the operator on BY associated to {a;};, we have
ITE — Id|| < 1, since

> A~ lae®"PTE (v) — v)el”
k=1

p/q
B i i G i
= |1 — aga;|m+er

9 Z (1 — larPyMPre(1 — |a;|?)"/a+h
11 = Gra;|+er

(1 — |aj[»)"+eP|v;|P
Jjii#k

(o 0]
2
<cf ) (= gy |y
j=1

Z (1 — |a; Y1 — |ag|>) /Pt
Kok j |1 - &kaj|"+dp
= (CIC2)p”U”p.n/p+a-

This shows that TE is invertible and, as in Theorem 4.2, that 7T is onto. O

Similar results to Corollaries 4.3 and 4.4 can be derived from Theorem 4.5, with
some restrictions on the values p and «.

COROLLARY 4.6. Let p > 1, let q be the conjugated exponent, and denote
A(e, p) = (n +ap)min(l/p, 1/q).
(a) If there exists cy < 1 such that

K({ax}, Ae, p), Aa, p)) < 2~ C+ep1=2/pl;,

then {ay )i is B%-interpolating.
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(b) Let {ai)x be separated. Then there exists an o > 0 such that {a,} is BE-
interpolating.

(c) Let A(a, p) > n. Then there exists a & > 0 such that any sequence {a};
verifying dg(aj, ar) > 8 for all j # k is BE-interpolating.

(d) Let A(a, p) > n. Then {a; ) is a finite union of separated sequences if and
only if it is a finite union of Bj-interpolating sequences.

Part (c), like (b) of Corollary 4.3, is a particular case of a theorem of Rochberg
which actually shows that the result holds for any p > 0 and o > 0 (see [Ro,
p- 231]).

Proof. Part (a) is the analog of [Th1, Cor. 3.3]. Parts (b), (c), and (d) are derived
from (a), as in Corollaries 4.3 and 4.4. t

In view of Theorem 1.10, we see that the conclusions of Theorems 4.2 and 4.5
(and their corollaries) still hold if their hypotheses are verified only for the origi-
nal sequence deprived of a finite number of points. This, however, is still far from
giving us a sufficient condition in terms of density.

5. Appendix

Given a sequence {a;};x C B!, consider its upper uniform density

21/24 (ap)l<r log(1/|p.(ax)D
D({a})) = lim sup su 124N
{aih) =Hm e sop log(1/(1 =)

LEMMA 5.1. Let {ay}x C BL. Then {ax} € Int(BY) if and only if D({ay)) < a.

Proof. Assume first that D({a;}) < « and define € = 1/2(e — D({ay})). There
exist functions f; € B°, and C > 0 with || fxllco,e—e < C forall k and fi(q;) =
Sk (1 — lag|?)~2F€ (see [Sel, p. 34]). As in Theorem 3.3 (see the remark at the
end of the proof), this implies that {ay} is Bgf-interpolating for any (p’, «’) such
that «’ > a — €, and in particular for ¢ and p.

Assume now that {a;}; is B%-interpolating.

LEMMA 5.2. Let z € B! such that d(z, {ay}) > &y. Then there exists an f € BE
with f(ay) =0 forallk, f(z) =1, and || fllpa <1+ MSO'I, where M denotes
the constant of interpolation of {a;}.

Proof. By invariance under automorphisms we can suppose that z = 0. There
exists an fo € B& such that fo(a1) = 1/a;, fo(aj) = O for all j > 2, and
| follp.e < Méy !, Then the function f(z) = 1 — zf(z) satisfies all the require-
ments. O

We now resume the proof of Lemma 5.1. Since M7 (f, r) = 02” | f(ret®)|P deo is
an increasing function of r,
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! i1
11 = | 2wMp(An 0 =t dr = ME () 2= rye.
’ 0 ap
Hence, MJ(f,r) < | fll5«(1 — r?)~@P. By Jensen’s inequality,

27
exp(p fo log| f (re®®)| ;ii—) < M2(f,r) < C(1 =¥,

and thus

4 o do 1 1
/ log|f(re'®)| — < —log C + a log .
0 27 T p 1 —r2

From Jensen’s formula it now follows that

1
Z log__r_.ﬁ—logC+alog( 2),
1/2<|@Z(ak)l<r l(pZ(ak)I p 1 —7r

and therefore D({ax}) < o. To see that the inequality is strict, take a sequence
{a}x and & such that d(ay, a;) < 8 for all k and (1 + §p)D({ax}) < D({a;})
(see the proof of [Sel, Lemma 6.6]). An application of the argument above to the
sequence {a} }; shows finally that D({a;}) < . O
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