The Real Part of Entire Functions

C. C. Davis & P. C. FENTON

1. Introduction

Given an entire function

f@= Zanz" = u +iv,

let us write, as usual, M(r) for the maximum modulus of f, and A(r) and B(r)
for the minimum and maximum of u, the real part of f. We always have

—M(r) < A(r) < B(r) < M(r),

but in fact the outer inequalities are, for most values of r, almost equalities. Wiman
[14] showed that
—A(r) ~ B(r) ~ M(r)

as r — oo outside an exceptional set of finite logarithmic measure, that is, outside
a set E such that
logmeas E = f dlogt < o0.
En(l,00)

Hayman [10] obtained refinements of these estimates at the expense of a larger
exceptional set, measured in terms of upper logarithmic density. The upper and
lower logarithmic densities of E are defined by

— logmeas Ey

logdens E = lim
r—>00 logr

logmeas E(; )

, logdens E = lim
oo logr

where E(; ) denotes the part of E contained in the interval (1, r). Upper and lower

log log densities also arise in what follows and are defined analogously. Hayman

proved the following.

THEOREM 1 [10, Thm. 10]. Suppose that f(z) is a transcendental entire function,

and set log log M()
P = lim _g_g__(zg___r_. (1)
r—oco  loglogr

Given e > 0,

72(c (P) + ¢)
2log M(r)

2
B(r)>M(r)(1— 1= (G(P)+8)), (2)

)’ _A(r)>M(r)( 2log M(r)
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476 C. C. Davis & P. C. FENTON

outside a set of r of lower logarithmic density less than 1, where o (P) = 0if P <
2,0(P)=(P—-1)/Pif2<P <oo,ando(P)=1if P = 0.

Hayman showed that these inequalities are sharp, but since the hypothesis con-
cerns upper growth, one would expect the estimate for the exceptional set to be
given in terms of upper rather than lower logarithmic density. Hayman’s proof in-
volves Wiman—Valiron techniques in the form developed finally by Kévari {11].
A lower-order version of these methods [5; 6] can be used to prove the following
theorem.

THEOREM 2 [6]. Suppose that f(z2) is a transcendental entire function, and set
loglog M
p= lim 2818 M)
oo loglogr

Given ¢ > 0, the inequalities (2) hold, with P replaced by p, outside a set of lower
logarithmic density no more than o (p) /(o (p) + €).

Although this result has the right form, in that a restriction on lower growth gives
rise to a conclusion outside a set of restricted lower logarithmic density, it skirts
the issue of improving Theorem 1. Such an improvement is not in itself a matter
of great moment, but seems to test the efficacy of Wiman—Valiron methods. The
intention here is to prove the following.

THEOREM 3. Suppose that f(z) is a transcendental entire function, and set

loglog M — loglog M
p = lim 0808 ) (r)’ P = Tim 22957071 (r).
r—oo loglogr r-co loglogr

Given ¢ > 0, the inequalities (2) hold outside a set of r of:
(1) upper logarithmic density 0 if P < 2,
(ii) upper loglog density at most o (P)/(c(P) +¢e)if 2 < P < 00,
(iii) upper logarithmic density at most 6 (P) /(o (P) +¢) if P = oo.
If P is replaced throughout by p, conclusions (i) and (ii) hold with upper replaced
by lower.

Note that when p = oo, P = 00 also, and then (iii) applies. Since [1, p. 447]

logdens E < loglogdens E < loglogdens E < logdens E X 3

Theorem 3 is an improvement of Theorem 2, and suggests that log log density is
the appropriate measure when 2 < P < oo.

2. The Wiman-Valiron Method

The characteristic feature of the Wiman-Valiron method is the analysis of an en-
tire function f(z) = )_ a,z" by means of auxiliary functions associated with its
Taylor series: the maximum term, w(r) = max,>gla,|r", and the central inde,
N = N(r), which is the largest integer for which
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n(r) = layir?.

Kovari [11] established certain inequalities for the general term of the series, in-
volving a decreasing, negative function () on [0, co). With

0y = exp(fon (1) dt), pn = exp(—a(n)), “

it may be shown that

Ianlrn < ﬁ'iplrb—N

u@r) ~ an
for all r outside an exceptional set depending on « and the growth of f. In general,
useful results follow only when o matches the growth of f in some sense, and
Hayman developed three classes of results, covering the cases of arbitrary growth,
finite order, and zero order. These, however, can be unified.

THEOREM 4 [8]. Suppose that f(z) = ) _ a,z" is an entire function and that o(t)
is a decreasing, negative function on [0, 00). Define a, and p, by (4). Given K >
1 and R > 0, we have

anl7” _ SnpnN 0 <n < KN, ®)
p) — ay
and (k-
n —K7)n
lanlr® _ ( i ) ., n> KN, ©)
u(r) PKN
forall r € (0, R) outside a subset of logarithmic measure at most
—a(KNo) + «(0), N

where N = N(r) and Ny = N(R).

Given K > 1, a value of r for which (5) and (6) hold will be referred to here as
normal with respect K and «, all other values being exceptional.

Theorem 4 provides estimates for the terms of the Taylor series without the need
for assumptions concerning the growth of f. It is true that the estimates are useful
only when « is related to the growth of f, for otherwise the exceptional set may
be too large, but there is a gain in that it is possible to proceed with an analysis of
f even though nothing may be known about its growth.

To prove the results leading to Theorem 3, it is necessary to make further re-
strictions on «(f). In all subsequent discussion, a(¢) will be called a comparison

Sfunction if it is decreasing and negative on [0, 0o) and satisfies in addition the
following conditions:

a(t) is differentiable for all large ¢, and |a’(¢)| is nonincreasing to zero;  (8)

and
'™ = 0@t?/logt) as t — oo. )

Since Hayman’s three comparison functions—chosen to suit the categories of ar-
bitrary growth, finite order, and zero order—satisfy (8) and (9), the effect is to



478 C. C. Davis & P. C. FENTON

broaden somewhat the scope of his results. Let us note here a trivial but useful
consequence of (9):

' ()12 /t = o(l&’(t)]) as t — oo. (10)

The initial steps in the proof of Theorem 3, up to certain fundamental inequal-
ities for A(r) and B(r), follow those of Theorem 1, and a significant part of the
work here is to adapt Hayman’s results to the new (i.e., growth-restriction—free)
circumstances. This is of some intrinsic interest. The proofs are abbreviated wher-
ever possible with references to Hayman’s work, but paradoxically the increased
generality in « tends to simplify the considerations. The main novelty of the paper
lies in the analysis of the inequalities for A(r) and B(r), where an iterative pro-
cedure exploits the advantages of the new comparison method. A scheme of the
proof was presented at a conference at the Nankai Institute of Mathematics, Tianjin
[9]. A complete proof is contained in the first author’s thesis [4].

3. Preparatory Results

The first of these involves estimating the contribution made by terms in the Tay-
lor series that are far from the maximum term. Earlier variants are due to Kovari
[11], Clunie [3], and others.

THEOREM 5 (cf. [10, Lemma 2]). Suppose that f(z) = Y _ anz" is a transcen-
dental entire function. Suppose also that K > 1, that a(t) is a comparison func-
tion, and that rq is normal with respect to K and «. Given a positive constant y,

define s
k=m4——1——4%(——1——)}/, 1)
o/ (K No)| o’ (K'No)|
where No = N(rg) and int denotes integral part. For r satisfying
roe 2% <r < roe**, (12)
write

po(r) = lay, |r™.

Then, for any fixed real numbers q and y, < y,
D" nflanlr” = o{uo(r)Ndla' (K No)| "1 ~1/2) (13)

In—N|=k

uniformly as r and ry tend to infinity, subject to (12).
As a corollary we have the following theorem.

THEOREM 6. Suppose that f(z) = ) _a,z" is a transcendental entire function.
Suppose also that K > 1, that a(t) is a comparison function, and that rg is normal
with respect to K and a. Given a positive constant A, define

, 2042 1 1/2
k= "“{ &’ (KNo)| log(la’(KNo)l )} ! %)
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where No = N(rp). Then, for all 7 satisfying

roe * < z] < rge®¥, (15)
we have
r\ o
f@=7""*P@)+ 0{(;) M(ro)la’(KNo)l"} : (16)
0
where r = |z| and
2k
P()=) aning4Z" an
0

uniformly as r and ry tend to infinity, subject to (15).

The next theorem, due essentially to Barry [1], is of the same kind as Theorem 5
but applies to functions that are small at certain points.

THEOREM 7 (cf. [10, Lemma 4]). Suppose that f(z) = )_a,z" is a transcen-
dental entire function. Suppose also that, for some R > 1, N(R) < (log R)?~!,
where 1 < p <2.Given0 < n <2 — p, we have

> lanlr™ < 4u(r) exp{—(log V/r)"} (18)

n#N
for all r in [1, R outside a set of logarithmic measure < 5(log R)P~1+" 42,

Finally, we shall prove a result on the local behavior of entire functions near points
at which the modulus is relatively large.

THEOREM 8 (cf. [10, Thm. 10]). Suppose that f(z) is a transcendental entire
Jfunction. Suppose also that K > 1, that a(t) is a comparison function, and that
ro is normal with respect to K and a. Given a positive constant X, define

[ 2a+2 ( 1 )}‘/2
k=int{ ——— log{ ——— ) (19)
{ o/ (KNo)| >\ [’ (K No)|
where Ny = N (rg), and let n be a number satisfying
127> |a(KNo)*. (20)
If z¢ is such that |zo| = ro and
| f(zo)| = nM (ro), (21)
then for all z of the form
z =zpe' where |t| < n/(100k) 22)
we have
@ 2
log = (No + @1 + ¢2t° + (7)), (23)
f(zo)

where, if rg is large,

lg;] < 2(60k/n)! (j =1,2) and |8(z)| < 5(60k|z|/n)>. (24)
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4. Proof of Theorems 5 and 6
We need a technical lemma, which Hayman uses implicitly.

LEMMA 9. Given a real number q and a positive integer N, let

Sng(®) =) _nit". (25)
n=N

Then, for any t satisfying 0 <t < 1,

1-1)7"}, (26)
wherek =intq + 1 and C depends only ongq.

(Throughout the paper, C is used for a generic constant, not necessarily the same
at each occurrence.)

To prove the lemma, suppose first that g < 0. Then

Swa(t) = ant <N‘12t v @7

so that (26) holds with C = 1. Otherwise g > 0, in which case

(1 — t)SN,q(t) = N9V -+ an{(l + l/n)q _ l}tn+l
n=N

o0
=NV +¢ ) 017 1+ 6, /n) !

n=N
>
< NN _|_q2|q—1| nd—1gn
n=N
Thus, with C; = g2~ 1,
NN SN a—1
Sn.q(t) < C,—
ve) = T G
NN NI~V SN a—k
< v (Cyo . Cypy) =
_ NV Cq L (Cq . Cq_k+1)SN,q_k
C1—t N1 —1) NN (1 — k-1 ’
where k = int g + 1. Using (27) to estimate Sy ,_x, we have
N Cy...Cyhi
S t q - g—k+l
g S 77 { +N(1—t) Tt Na )

.

where C depends only on q. O
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Turning now to the proof of Theorem 5, we consider the terms of the series in
three blocks: those for which n > KN, those for which n < K~! Ny, and those
between. Here Ny = N (rg), the central index at the normal value ryg.

Consider first the terms satisfying n > KNy. From (6) we have

lanlry _ ( PN )“‘K"’"
n(ro) — \ PN,
= exp{n(l — K~")(«(KNp) — a(No))}
< exp{nNoK (1 — K 1)%a’ (K Ny)}, (28)

using (8). Thus, taking account of (10), (11), and (12),
laalr" _ laalrg (r )"""0
o () n(ro) \ 7o
< exp{nNoK (1 — K~"Y2a/(KNo) + (n — No) log(r/ro)}
< exp{nNoK (1 — K~H2%a’(KNp) + 2nk™1)

= exp{nNo[K (1 — K~1)?a'(KNp) + o(la’ (K No)|'/* / No)1}
< exp{inNoK (1 — K~ 1)%a’(KNp)}, (29)

provided that Ny is large enough. SetT = exp{3NoK (1— K ~!)?a’(K No)}. Given
any (small) positive number v,

log Ny
VN?

o' (K No)| = (30)

for all large Ny, from (9),s0 T < N, K(1=K~1?/QvNo) and, moreover,
1-T>K(Q-KH? ==

for all large Ny. From this together with (29) and the preceding lemma,

o0
> nflaglr” < po(r) Y niT"

n>KNp n=Ng

NZTNe
=0
(ILO(F) 1_7T )

Mo(r)Ng-i-lNd—-K(l-—K”l)z/(Zv)
=0
log Ny

= o(1o(r)Ny*) (31)

for any positive B, since v > 0 is arbitrary.
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Next, if n < K1 Ny then, from (5) and (8),

anlrg _ @ o
= N
n(ro) — an

No
= exp{f (t — n)a’(t) dt}

< exp{3(n — NoY*a'(K No)}
< exp{3N§(1 — K~))%a’(KNo)};
therefore, using (10), (11), and (12),
lanlr" _ laalrg (L)"‘”‘)
o (r) n(ro) \ 7o
< exp{INJ(1 — K™)%a’(KNo) + (n — No) log(r/ro)}

< exp{3 N5 (1 — K™))%a'(KNo) +2Nok ™"}
= exp{3 N3 (1 — K~")*[e’ (K No) + (e’ (K No)|"/* / No)1}
< exp{zNg(1 — K~/ (KNo)}

if Ny is large. From this and (30),

Y nilanlr” < po(r)NG'™ exp{3Ng(1 — K™'Ya! (K No)}
n<K-1Ny
< po(r)NG™H exp(—1(1 — K71)2v ™" log No}

= o(1o(r)Ng *) (33)

for any positive 8, since v > 0 is arbitrary.
For the remaining terms, write n = Ny + p, where k < p < (K — )Ny or
—(1 — K YNy < p < —k. As before,

nflas|r" _ laalrg ( r )""""
—_— p— J—
Mo (r) wn(ro) \ro
< n?exp{3a’(No + |p)p* + 2k7'|pl}
< KN exp{ia/(KNo)p* + 2k pl}
= K9N{ exp{—bp* +2k™" | pl}, (34)

where b = |a/(KNp)|/2. The contribution of these terms to the sum is thus no
more than

[e,0]
2K9uo(r)Ng > " exp(—bp* + 2k~ p). (35)
p=k

Now —bp? + 2k~ ! p is decreasing for p > k~1b~! and so certainly (when Nj is
large) for p > k — 1, since k2b ~ log(1/|a(KNp)|) — oo as Ng — oo. Hence
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[¢.%] o0
Z exp(—bp* +2k7p) < [ exp(—bx? + 2k 'x) dx
-1

p=k
(o9}
-2 -1 —ve
= p1/2k70 / e dy
Yo

< b—1/2y0—-le(k"2b— —yo) (36)

1
2
where yg = (k — 1)b'/2 — k~1p~1/2, since

o —y2 00 —y? —2
/ e“yzdy = e —f ——-e 5 dy < ¢ .
Yo 20 w 4y 2y0

Now kb — oo as Ny — 00, S0

0o 2
2 ~1 e
> exp(—bp* +2k7'p) =0 7y |- (37)

=k

Further, as is easily checked,

1 1/2
yo—(1+0(1))[ ylog(——Ia’(KNg)l)} ,

and thus
e |’ (K Np)|(1/2+o D)y
b2y, { (I’ (KNo)| log(1/le’ (K No)D}I72 ]
= o(Joe' (K No)|/21=Dy x (38)

as Nop — oo, for any y; < y. From this, (35), and (37), the sum of the terms in
the thlrd block is of o (r) N la’ (K No) | 1/2@1=D}  Further, |a’ (K No)|V/201-D >
Ny =1 for all large Ny, from (9). Theorem 5 follows, taking account of (31)
and (33). u

To prove Theorem 6, apply Theorem 5 withy =2A 4+ 2, y; =2A+ 1, and g =
0. For z satisfying (15),
No+k

@ =) anz" + ofuo(r)|e’ (K No)|*}

No—k
= 2% P(2) + of{ o)’ (K No)|*}, (39)

where P(z) = ng Ant-Ny—k2". Thus

P
L2 = T2 v o( MR mor ) = 22 e (KNo)I*)
S Y e R ST (40)
Z ro

and the result follows. O
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5. Proof of Theorem 7

If a nonnegative integer # is a value of the central index, let r, be the smallest value
of r at which N(r) = n. Otherwise let r, = ry, where N is the first value of the
central index greater than n. (Thus, if 0 <r < r, then N(r) < n.)

Given 7 satisfying 0 < n < 2 — p, define

kn = exp{(log*r,)"},
where log* = max{1, log}. For the purpose of the proof, a value r for which
rn/kn <r < kury

for some n will be called exceptional. It will be shown that the set of exceptional
r in [1, R] has logarithmic measure at most 5(log R)?~1*+7 for any R > e.

Suppose first that
YNo+1

—_— b}

kN[) kN()+1

where N9 = N (R). The logarithmic measure of the exceptional r in [1, R] is then
at most

No
> 2logky <2(No + 1) logky, < 4(log R)”™ (log* ry,)" < 4(log R)P~'*".

n=0

Otherwise,
Yng+1

< R < rnyg+1
kng+1

and, in addition to the set already identified, the interval [ry,+1/kng+1, R] 1S 2X-

ceptional. Since 0 < n < 1, so that t exp(—(log* ¢)") is increasing for ¢t > 0, the

additional exceptional interval lies in [ R exp(—(log R)"), R] and has logarithmic

measure at most (log R)”. Thus the exceptional set has logarithmic measure no

more than 5(log R) P~ 1+7,

Now suppose that r is a nonexceptional point in [1, R], so that

rN+1
N+1

I’NkN <r<

for some N. Necessarily, N = N(r). Define r’ and r” by the equations
r =r’exp{(log* r")"}, r =r" exp{—og* r")"}.
Since ¢ exp{(log* t)"} and ¢ exp{—(log* £)"} are increasing for ¢t > 0,
ry<r <r<r’ <rygr
and thus N(r') = N(r") = N.Forn < N,
lanir™ <lanlr'™,
so that -\ neN A\ noN
lanlr™ < lanlr¥(5)" T = pe)(5)

and therefore
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p(r)
> lanlr” <u(r)Z( )" = i =T 1)

n<N

Similarly, forn > N,

lanlr”n < Ia Ir”N

r N—n r N—n
N
lan|r" < lanlr (7) = M(l’)("‘;‘)

S laalr® <,u(r)Z( ) = T @)

so that

and therefore

Hence

1
D lanlr" < ”(r)(( =17 n = 1)

n#N
2p(r)
~ exp((logr’)") — 1

Now if r > €2, then 7’ > e and logr = logr’ + (logr’)? < 2logr’, so

R p—cp

= exp((log v/F)7) — 1
< Cu(r) exp(—(log /7)"), (43)
where C = 2¢/(e — 1) < 4. Thus (43) holds for all » € [1, R] outside a set of
logarithmic measure at most 5(log R)?~!+7 + 2. O

6. Proof of Theorem 8

For all z such that |z| = ry, by (16) it follows that

f@ =27 P(2) + o(M(ro)|a’ (K No)|*), (44)
so that
IP(2)| < (1 +o(M)re M M(ry). (45)

In particular, if z = zg then from (20) and (21) we have
IP(zo)] = (14 o()re ™| £ zo)l = (1 + o)™ yM ).  (46)

Thus,
1P| < 3ry ™™M(ro), |zl = ro, (47)

and
|P(zo)| = 1rg™nM (r0) (48)

if rg 1s large. It follows [10, Lemma 8] that
31P o)l < |P(D)| < 3|P(z0)l (49)
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for [z — zo| < nro/(48k). For large ry, this latter inequality is satisfied by z =

zoe' if |t] < n/(60k), since |1 — (z/z0)| = |1 — €*| = (1 + o(1))|7|. Returning
to (16), for these z we have

k
f(z) = zNo* [P(Z) +0 ((;ra) ré‘—N"M(ro)Ia’(KNo)I’“)]

k
= gNo-k {P(z) + o((—r—) P(zo))}
rg

= (1+0(1))z"*P(2), (50)
using (48), (49), (20), and (22). Now consider
f(zoe®)
=1 — (Np —
¢(r) =log Fzo) (No — K)7 (51)

in the disk |7| < 19 = n/(60k). From (50) we have
Re ¢ =log|(1 + o(1)) P(2)/ P (z0)|
and thus, from (49), |Re ¢| < log(5/2) < 1 for all large ry. With

$(r) =) ¢at" for || < 10,
1

we deduce, following Hayman, that |¢,| < 27,” forn > 1. The cases n = 1,2
establish the first half of (24). Further, if |7] < %rg = n/(100k) then

00 i o0 n |_L_I 3
D ur"| 22> 55(—); (52)
3 3 o

given the definition of ¢ (7), this proves the theorem. O

T
To

7. Derivatives of log M (r)
As Hayman has shown, the first two logarithmic derivatives of log M (r),
d d
a(r)=r—logM(r) and b(r) =r—a(r), (53)
dr dr

are closely related to the corresponding derivatives of log f(z) at points of maxi-
mum modulus. In fact [10, Lemma 6], except perhaps for isolated values of r,

2
(z —gz-) log f(2)

where the expressions on the left are evaluated at a point at which M (r) is attained.
Comparing this with Theorem 8, we conclude that

N@)+¢1=a@) and @] < 3b(r) (55)

< b(r), (54)

zﬁlog f(z) =a@) and
dz
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for all but isolated normal values of r. It follows from (24) that
N(r) ~ a(r) (56)

as r — oo through all but certain isolated normal r. With the comparison function

t
oz(t)=/ a’'(r)dr,
0
where

1
- 29 T Z 23
Ci’(T) _ t(log 1) (57)
__1 T <2
2(log2)?’ —

the exceptional values occupy a set of finite logarithmic measure, from (7). Thus
(56) holds as r — oo outside a set of finite logarithmic measure.

8. Inequalities for the Real Part

Given a normal value r and a point z, |z| = r, at which the maximum modulus is
attained, write f(z) = M (r) exp(iA), where |A| < . Suppose that r is not one of
the isolated normal values at which (55) may fail. Applying Theorem 8 with n =
1, and with g, zo, and Ny = N (rp) replaced throughout by r, z, and N = N(r),
we conclude that

log f(ze'®) = log f(z) + (N + ¢1)if — ¢26% + 8(16))
=log M(r) + (A + 0a(r))i — ¢26% + O(K*161°)

for & < 1/(100k). Set &6 = —A/a(r). This is permissible because then |68| =
O(N~1) = o(k™1), from (19) and (9). We have

2

log F(z¢'®) = log M(r) — $2——s + O(K%a(r)?). (58)

a(r)?
The estimate (24) for ¢, ensures that

2

a4+ 0(Pa(r)™) = o(V);

a(r)?

therefore, exponentiating (58), taking the real part, and using (55),

(1 + o(1))72b(r)
2a(r)?

The same inequality holds with —A(r) instead of B(r), with the argument un-
changed except for the choice of 8, whichis 8 = & — A or —m — A depending
on whether A is positive or negative. Two cases of this result are useful in the se-
quel. With the comparison function (57), when k = O(N1/?(log N)*/?) and the
exceptional set has finite logarithmic measure, we have the following result.

B(@) > M(r){l — + 0(k3a(r)-3)}. (59)
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THEOREM 10. Suppose that f(z) is a transcendental entire function and that § >
0. Then

(14 0(1))72b(r)
2a(r)?

B(r) > M(r){l - + o(a(r)—<3’2’+5)} (60)

and
(1 4+ o(1))72b(r)

2a(r)?

asr — oo outside an exceptional set of finite logarithmic measure.

—A(r) > M(i‘){l - + O(a(r)"@m”)] (61)

Choosing instead
a(t) = —t/P-D

where p > 2, we have k = O (N (P=2/2r=D (jog N)1/2) and the exceptional set E
is such that logmeas E(; gy = O(N(R)/P=D), from (7). It is convenient to have
this estimate in terms of a(R). Toward this end note that, from the comment at the
end of Section 7, given any large R we can find Ry < R such that log(R/Ry) is
bounded and a(Ry) ~ N(Rp) as R — oo. It follows that

logmeas E,r) < logmeas E,g) + O(1)
= O(N(Rp) "Dy = 0(a(Rp) /PPy = O(a(R)/ P~ D),

Thus we have our next theorem.

THEOREM 11. Suppose that f(z) is a transcendental entire function, and that
p>2andé$ > 0. Then

(14 o())?b(r)
2a(r)?

B(r) > M(r){l — + o(a(r)‘“’”z“’“”“)} (62)

and

(1 +o(D)72b(r)
2a(r)?

as r — oo outside an exceptional set E such that

logmeas Eq gy = O(a(R)/(P~D)

—A@) > M(r){l — + o(a(r)_(3”/2(‘”_l))+‘s)} (63)

as R — oo.

Stronger inequalities for B(r) and A(r) may be obtained using different methods
if the central index is known to be small at certain points.

THEOREM 12. Suppose that f(z) is a transcendental entire function. Suppose
that, for some R > e°, N(R) < (log R)P~!, where 1 < p < 2. Givene > 0,

&

and
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>
—A(r) > M(r)(l -~ W) . (65)

forallr in [1, R] outside a set of logarithmic measure no greater than
5(log R)?/? +log R/loglog R + C,

where C depends only on € and p.

Proof. From Theorem 7 with 5 = 3(2 — p),

M(r) < u(){1 + 4exp(—(log /r)")} (66)

for all r in [1, R] outside a set Ex of logarithmic measure at most 5(log R)?/? +
2. On the other hand, choosing 6 so that, for z = re®, ayz" is real and positive,
we have, again from Theorem 7,

B(r) = ayz" — ) lanz"| > p(r){l — 4exp(—(log/r)N} (67
n#N

forr ¢ Eg. Thus

M(r) — B(r) < 8u(r) exp(—(log /r)") < 8M(r) exp(—(log /1)"),
SO
B(r) > M(r){1 — 8exp(—(log +/r)")}

forr € [1, R]\ Eg. Sincelog u(r) < N(r)logr+ O(1) and since M (r) < 5u(r)
forr € [1, R] \ Eg, we have

log M(r) < log u(r) + 0(1) < N(r)logr + O(1) < (log R)? + O(1)
forr € [1, R]\ Eg. Thus, given ¢ > 0 and r € [R!/1°8102 R R\ Ep,

log M(r) ) )
o((og /7 = cxPllog(log B)” + O(1)) — (log vF")
(log R)" ]

< exp{2p loglog R — @loglog R)7

<¢€/8
for R > Ry = Ry(e, p). Hence
€

forall r € [R!/108log R R\ Eg, provided that R > Ry, and therefore for all R >
e®, outside an exceptional set of logarithmic measure at most

log R
loglog R
The result for B(r) follows with C = log Ry + 2, and the case of —A(r) is similar.
]

5(log R)?* + + log Ry + 2.
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9. Estimating the Error Term
The intention here is to prove the following lemma.

LEMMA 13. Suppose that f(2) is a transcendental entire function. Given € > 0,

1+ 0(1))712b(r) £
B(@r) > M(r){l — 2a(r)2 — og M(r)} (69)
and (1 + o(1))72b(r)
+ o0 T r &
—A() > M(r){l e lOgM(r)l (70)

as r — 00 outside a set of upper logarithmic density zero.

Proof. We consider only (69), since (70) is similar. From Theorem 10 with § =
1/4,
(1 +o(1))m%b(r)
2a(r)?

B(r) > M(r){l + el(r)} (71)

for all r outside a set of finite logarithmic measure C, where £, (r) = o(a(r)~>/%).
Given € > 0, let r’ > 1 be such that both a(#’) > 1 and, forr > r’,
le1(r)] < ea(r)™>/*.

Given any R > r’, consider the set of r in [r’, R] at which

R A e— 72
a(r) ~ logM(r) (72)
There are two possibilities.
(i) The set of such r is empty. In this case,
1+ o(1))72b(r) &
M 1-— - 73
Br) > (r){ 2a(r)? log M(r) (7)

for all » < R outside a set of logarithmic measure at most C + logr’, and the
procedure terminates.

(ii) Otherwise, the set of » in [r’, R] at which (72) holds is not empty. Let R’
be an element of the set that is large enough that the logarithmic measure of the
part of the setin [R’, R] is less than 1. Then (73) holds for r € (R’, R] outside a
set of logarithmic measure at most C + 1. Further, (72) holds at R’, and since

logM(R') <a(R)logR' + C
for some constant C, we have
a(R") < (logR' + C)*. (74)

Here we have used the fact that a(R’) > a(r’) > 1.
From Theorem 11 with p = 7 and § = 1/20, we conclude that
(1 + o(1))%b(r)

2a(r)?

B(r) > M(r){ 1 + sz(r)} (75)
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for all r in [1, R'] outside a set of logarithmic measure

O(a(R")% = 0((log R")*"?), (76)
where £,(r) = o(a(r)~17/19). Choose r” > r’ such that
le2 ()| < ea(r)~17/10 (Tn

for all r > r”. Since Lemma 13 follows at once if R’ remains bounded as R —
00, we may assume that R’ > r”. Now consider the set of r in [r”, R'] at which

a(r)~—l7/10 >

~logM@) 79

As before, there are two possibilities.

(iii) The set of such r is empty. In this case, from (75), (76), and (77), (73)
holds for all r € [1, R'] outside a set of logarithmic measure O ((log R)?/3), and
combining this with (ii) we conclude that (73) holds for all » € [1, R] outside a
set of logarithmic measure O ((log R)?/?). The procedure terminates.

(iv) Otherwise, the set of r in [r”, R’] at which (78) holds is not empty. Let R”
be an element of the set large enough that the logarithmic measure of the part of
the set in [R”, R’] is less than 1. Then, from (75), (76), and (77), (73) holds for
all r € (R”, R'] outside a set of logarithmic measure O ((log R’)?>/3), and com-
bining this with (ii) we have (73) for all r € (R”, R] outside a set of logarithmic
measure O ((log R)?/?). Further, (78) holds at R” and thus, arguing as before,

a(R") < (log R" + C)!9/7, (79)
From Theorem 11 with p = 18/7 and § = 1/11, we have

B(r) > M(r)[ - L ‘z’(al():)’;%(r) +e (r)} (80)
for all r in [1, R”) outside a set of logarithmic measure
O(@a(R")'y = O((log R")"*/M), @1)
where g3(r) = o(a(r)~2%/11). Choose r"”” > r" such that
le3 ()] < ea(r)~>%/! (82)

for all r > r’’; again, we may assume that R” > r”. Consider the set of r in
[r”’, R"] at which

a(r)—-26/ll >

= log M(r)’ (83)

As before, there are two possibilities.

(v) The set of such r is empty. In this case, from (80), (81), and (82), (73) holds
for all € [1, R”] outside a set of logarithmic measure O((log R”)!%/11), and
combining this with (iv) we conclude that (73) holds for all » € [1, R] outside a
set of logarithmic measure O ((log R)!%/!!). The procedure terminates.

(vi) Otherwise, the set of » in [»", R”] at which (83) holds is not empty. Let
R" be an element of the set large enough that the logarithmic measure of the part
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of the set in [R”’, R"] is less than 1. We have (73) for all » € (R"’, R"] outside a
set of logarithmic measure O ((log R”)'%/11), and combining this with (iv) we ob-
tain (73) forallr € (R", R] outside a set of logarithmic measure O ((log R)!%/11),
Further, (83) holds at R" and thus

a(R") < (log R" + C)'/, (84)

It is now possible to use Theorem 12 to halt what appears to be an interminable
progression. For if R is large enough then, from (56),

N(R/h') < (lOgR,H)4/5,
and thus from Theorem 12 with p = 9/5,

B(r) > M(r)(l — —8——)

log M (r)
1+ 0(1))7r2b(r) e
” M(r){l T T 2402 log M(r)}

for all r € [1, R"'] outside a set of logarithmic measure o(log R"”). Hence (73)
holds for all » € [1, R"'] outside a set of logarithmic measure o(log R”"). Com-
bining this with (iv) we obtain (73) for all r € [1, R] outside a set of logarithmic
measure o(log R).

Whatever the case, then, we have (73) for all € [1, R] outside a set of loga-
rithmic measure o(log R), and Lemma 13 is proved. O

10. Completing the Proof of Theorem 3

It remains to estimate b(r)/a(r)? in (69) and (70), which is done by means of the
following growth lemma.

THEOREM 14 [7]. Let ®(r) be a positive, increasing, and convex function of r
forr > ry, and write

log (R —_ log ®(R
g ®R)  pa P = Tim 2E2R) (85)

= i
p= - log R R—>oc logR

R—>oo
sothat 1 < p < P < oo. Suppose that K > 0 and that E is the set of r at which
Q(r)®"(r)
_TI)W_ > K. (86)
Then:
(1) ifK > 1,densE < 1/K;
(2) ifp<oocand K > o(p) =1—1/p, we have logdens E < o(p)/K;
3) if P < oo and K > o(P), we have logdens E < o (P)/K.

To prove Theorem 3, consider first the case 2 < P < oo. From Lemma 13 it
follows that, given R > 1 and &; > O,
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2
B(r) > M(r){l (A4 o())7"b(r) €1 } (87)

2a(r)? B log M(r)

for all r outside a set of upper logarithmic density zero, and hence of upper log log
density zero, from (3). Setr = ¢* and ®(x) = log M (e*), so that

®’'(x) =a(e®) and &"(x) = b(e*).
From part (3) of Theorem 14, given € > 0 we have
D (x)P"(x)  log M(r)b(r)

= <o(P 88
@' (x)? ary o) te (88)
for all x outside a set E such that
— o (P)
logdens £ < ————.
ogdens E < o(P) e
IfE' ={r:logr € E} then
Toglogdens E' = fogdens £ < — &)
ens E' = e —_
508 5 ~o(P)+e
combining this with (87), we obtain
1 D)x2(c(P
B(r) > M)l 1 — (I+oM)r*(@(P)+¢e) & (89)
2log M (r) log M(r)

for all r outside a set of upper log log density at most o (P) /(o (P) + ¢). Theorem
3 follows in this case since &) is arbitrary.

Suppose next that P = oco. The proof follows that for the case 2 < P <
oo, except that since o (P) 4+ & > 1 we may use part (1) of Theorem 14. Then
logdens E’ = dens E < o (P)/(c(P) + ¢) and the result follows.

Finally, if P < 2, we follow Hayman. Choose g so that 2 > g > P. For all
large r,

log u(r) < z(logr)?,
SO

2
r dt
N@r)logr < / N(t)—t— <log u(r®) < (logr*)? < (logr)?

and therefore
N(r) < (logr)?~!

for all large r. Part (iii) is then a consequence of Theorem 12. This proves the part
of Theorem 3 concerning P, and the part concerning p is proved similarly. [
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