A Characterization of the Finite Multiplicity
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1. Introduction

In this paper we give a characterization of the finite multiplicity of a CR map-
ping between real analytic hypersurfaces. The finite multiplicity of a CR mapping
was defined algebraically by Baouendi and Rothschild in [BR2] (see the definition
below). We will prove that, under certain conditions on hypersurfaces, the finite
multiplicity of a CR mapping is equivalent to the finiteness of the map’s preimage.
More precisely, we prove the following.

THEOREM 1. Suppose that M|, M, are real analytic hypersurfaces of essential
finite type in C", and that M, contains no complex variety of positive dimension.
Then a smooth CR mapping f. My, — M, is of finite multiplicity at zo € M, if
and only if f~1(f(z0)) is finite.

The proof of Theorem 1 relies on the real analyticity result of [BR2] and the fol-
lowing Theorem 2, which we shall prove. In [BR2], Baouendi and Rothschild
proved that a smooth CR mapping of finite multiplicity from a real analytic hyper-
surface to a real analytic hypersurface of essential finite type is real analytic. This
result with the proof of Theorem 1 implies the following.

COROLLARY 1. A smooth CR mapping of finite multiplicity between real ana-
lytic hypersurfaces of essential finite type is the restriction of a locally proper
holomorphic mapping in C".

THEOREM 2. Suppose that f: Mi — M, is a smooth CR mapping between real
analytic hypersurfaces in C". Suppose further that M, is essentially finite and that
M, contains no complex variety of positive dimension. If f~1(f(20)) \ {zo} is dis-
crete for a point 7o € M\, then f extends holomorphically to a neighborhood of
20 in C",

A simple example shows that the condition that M, contains no complex variety
of positive dimension is necessary in Theorems 1 and 2.
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COROLLARY 2. Suppose that f: My — M, is a smooth CR mapping between
real analytic hypersurfaces of finite type of D’Angelo in C". If f~1(f(z0)) \ {zo}
is discrete for a point 7o € My, then f extends holomorphically to a neighborhood
of zo in C".

A well-known problem in the study of real analyticity of CR mappings is whether
every smooth CR mapping between real analytic hypersurfaces of finite type of
D’Angelo in C” is real analytic.

COROLLARY 3. Let f: My — M; be a smooth CR mapping between real analytic
hypersurfaces of finite type of D’Angelo in C". If f is real analytic on My \ {p),
then f is also real analytic at p.

This can be viewed as a “removable singularity theorem” for real analyticity of CR
mappings. As another corollary of the proof of Theorem 2, one has the following.

COROLLARY 4. A finite-to-one smooth CR mapping from a real analytic hyper-
surface of essential finite type to another real analytic hypersurface is real anc-
Iytic.

Here a map f: M; — M, is said to be finite-to-one if f~1(g) is finite for any
q € M;. The proofs of these results depend on the work of Baouendi and Roth-
schild [BR2] and Diederich and Fornaess [DF] on real analyticity; the Hopf lemma
of [BR4]; and the work of Tumonov [T] on holomorphic extension of CR func-
tions. However, we will directly prove the holomorphic extension of CR map-
pings whenever their works do not apply. For earlier results, see [BBR; BJT; BB;
B; DW; L; Pil; Pi2]. Theorem 1 will be proved in Section 2; Theorem 2, along
with its corollaries, will be proved in Section 3. The work of this paper is in part
inspired by a paper of Pinchuk [Pi2].

ACKNOWLEDGMENT. The author thanks the referee for very helpful suggestions.

2. Proof of Theorem 1

To prove Theorem 1, we first recall some basic definitions. Let M be a real ana-
lytic hypersurface in C” containing the origin and defined locally by p(z, z) =0,
Vp # 0, z € C", where p is a real-valued analytic function, p(0) = 0. As intro-
duced in [BJT], M is said to be essentially finite at O if for any sufficiently small
z € C" \ {0} there exists an arbitrarily small ¢ € C”" satisfying p(z, ¢) # 0 and
p(0, £) = 0. We point out that if M does not contain any complex variety of pos-
itive dimension through 0, then M is essentially finite at 0. Consequently, a real
analytic hypersurface of finite type of D’Angelo is essentially finite. The finite
multiplicity of a CR mapping is introduced by Baouendi and Rothschild in [BR2]
as follows. If f: M; — M, is a smooth CR mapping between two smooth real
analytic hypersurfaces in C”, then there exist n CR functions fi, ..., f, defined
on M; such that f = (f1,..., fr). On the other hand, if j is a smooth CR func-
tion defined on M, near 0, and if there exists a formal holomorphic power series
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J(Z) =) a,Z* in n indeterminates such that U € u — Z(u) € C" (U an open
neighborhood of 0 in R?"*~!, Z(0) = 0) is a parameterization of M, then the Tay-
lor series of j(Z(u)) at O is given by J(Z(u)). We can choose holomorphic co-
ordinates Z such that p(Z,0) = a(Z2)Z,, x(0) # 0. With Z = (7', z,) and 7’ =
(z15 ... » Zn—1), the mapping f is said to be of finite multiplicity at 0 if

dimc O[[']1/(F (Z', 0)) < oo, (M

where F(Z/, 0) is the ideal generated by F; (7', 0), ..., F,(/, 0), the power series
associated to the CR functions fi, ..., fn; O[[z']] is the ring of formal power se-
ries in n — 1 indeterminates; and the dimension is taken in the sense of vector
spaces.

After another holomorphic change of coordinates near 0, we may further assume
that M, is given by the equations

Sza = ¥ (Z, 7, Rza), ¥(0) =dy(0) =¥(z,0,0) =%(0,¢,0) =0,

with (', z,) € C"~! x C. We assume that M, is another real analytic hypersurfacz
defined by

Szu = ¢(Z, 7, Rza), $(0) =d¢(0) = ¢(2,0,0) = ¢(0,¢,0) =0,

with (', z,) € C*! x C. Let f = (f’, f,) be a CR map from M, to M, with
f(0) = 0. We say that f,, is the normal component of f, and call z, the normal
direction at 0.

Proof of Theorem 1. We actually prove that if f: M| — M, is a smooth CR map-
ping of finite multiplicity between real analytic hypersurfaces of essential finite
type, then £ ~!(0) is finite. By Theorem 1 of [BR1], f is real analyticat0. Let F =
(F1(2), ... , F,(2)) be the holomorphic extension of f to C” near 0. If £~1(0) is
not finite, then S = F~!(0) must be a complex variety of positive dimension. By
Theorem 4 of [BR3], we have

o 0) # 0. @)
0Zn

We claim that S lies in M;. Indeed, by (2),
SFu(2) — ¢ (F'(2), F'(2), RF,(2)) = 0

defines a real analytic hypersurface in C” that clearly coincides with M| near the
origin where F’ = (Fy, ..., F,_1). This proves the claim.
Now we let §’ be any complex curve in S parameterized by

(&) = (z1(¢), ... , za(2))

passing through 0. We claim that z,,(¢) = 0. Indeed, in the coordinates chosen
above, by Lemma 3.7 of [BR2] we have

Fn(z) = ZnG(Z)-

By (2), we see G(0) £ 0. On &', it follows that F, (z(¢)) = z,(¢)G(z(¢)) = 0,
which implies z,,(¢) = 0. Therefore, F(z’,0), ..., F,(z’, 0) have common zeros
near 0 and hence the dimension
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dimc O[[z'11/(F1(Z', 0), ... , Fu(Z', 0))

is infinite, a contradiction to the finite multiplicity of f at 0.

As proved above, S lies in M, and hence f~1(0) = F~1(0). This means that
F is a locally proper holomorphic mapping, which gives a proof of Corollary 1.

Now we prove that, under the conditions in Theorem 1, if £~1(0) is finite then
f is of finite multiplicity. Indeed, by Theorem 2 (whose proof will not depend on
Theorem 1), f is real analytic at 0. As before, let F be the holomorphic extension
of f. We notice that F,(z) £ 0 since M, contains no complex variety of posi-
tive dimension and since, by Theorem 4 of [BR3], f is of finite multiplicity at 0.
This could also be proved directly. Indeed, by Theorem 4 of [BR3], (2) holds. As
above, this implies that F~1(0) is finite; therefore F is locally proper, which im-
plies the finite multiplicity of f. (]

We close this section with an example. Let M| = {Sz3 = |z1|> +1z2)*} and M, =

{Sz3 = |z1)*> —|z2)?}. Consider f = (g, g, 0) where g is the restriction ofe_l/ziliﬂ,
which is holomorphic in Jz3 > 0 and smooth up to the boundary. It is easy 0
see that £~1(0) = O but f is not of finite multiplicity. Note that M, contains a
complex curve and that M, M, are both of essential finite type.

3. Proof of Theorem 2

Following Tumanov [T], we say that a real hypersurface M, is minimal at zy if
there is no germ of complex holomorphic hypersurface contained in M, and pass-
ing through zo. By a theorem of Trepreau [Tr], f extends holomorphically to one
side of M. The main result of [BBR; BR2; DF] can be stated as follows.

THEOREM. Let M| be a real analytic hypersurface that is essentially finite at 0 €
M,. If M, is another real analytic hypersurface and f: M, — M, is a smooth
CR mapping with f(0) = 0 and % (0) # 0, then f extends holomorphically to a
neighborhood of 0 in C".

This theorem has many important applications to global proper holomorphic map-
pings. For example, it was proved in [BR2; DF] that every proper holomorphic
mapping between bounded pseudoconvex domains with real analytic boundaries
extends holomorphically across the boundary. In [BR3] it was shown that, if the
normal component of f is not flat (i.e., if there exists a number k£ > O such that

ﬁ’%"—(O) # 0 ) in the normal direction at O, then the condition g-fﬁ(O) # 0 holds

dz,
automatically. Asan application of this result, it was proved in [HP] that the unique

continuation property holds for proper holomorphic mappings between bounded
domains with real analytic boundaries. This result in turn proves that every proper
holomorphic mapping between bounded real analytic domains that is smooth up
to the boundary extends holomorphically across the boundary.

In order to prove Theorem 2, we need the following lemmas. First we recall the
definition of a correspondence. Let €2 be a domain in C”, and let f: 2 — C" be
a holomorphic mapping. Denote the graph of f by
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Ir={zw):w= f),z€Q}.
Let
B((zg, wg), &) ={(z,w) e C" xC" : |z —z0|l < &, |w—wp| < e}

We say that f extends as a correspondence to a neighborhood of (zg, wy) if there
exists € > 0 and a pure n-dimensional subvariety V C B((zg, wo), &) such that

I'r N B((zo, wo), &) C V N B((z0, wo), €).

Now we state a lemma due to Bedford and Bell [BB].

LEMMA 1. Let 2 be a bounded domain in C" with smooth boundary near zgy €
082, and let f:S2 — C" be a holomorphic mapping that is C*° smooth up to the
boundary of 2 near zy. If f extends as a correspondence at zy,, then f extends
holomorphically to a neighborhood of zy in C".

Let M, and M; be smooth real hypersurfaces in C”, and let 2, 2; be two do-
mains in C” with defining functions r; for i = 1, 2 such that Vr; £ 0 on Q; for
i=12.8etQf ={z€ Qi :r(k@ >0}and Q] = {z € Q; : r;(z) <0}
fori =1,2.If F: Q] — C” is a holomorphic mapping, we denote by Jac F the
determinant of the Jacobian matrix of F.

As will become clear, in order to prove Theorem 2 one need only consider the
case when wy is a minimal, but not minimally convex, point in the sense of [BR4].
For this matter, we prove the following result.

LEMMA 2. Let f: M| — M, be a smooth CR mapping between smooth real hy-
persurfaces My, M, in C". Suppose that f extends holomorphically to an one-
sided neighborhood of My, say F and Q2| . Given a point zo € M, if M, contains
no nontrivial complex variety through f(zo) and if f~(f(z0)) \ {20} is discrete,
then Jac F £ 0. Furthermore, if f(zg) is not minimally convex then f extends
holomorphically to a neighborhood of zy in C".

We remark that no real analyticity on hypersurfaces has been assumed.

Proof. Let F(z): Q] — C” be the extension of f. First we prove two facts to be
used later.

We notice that F(2]) ¢ M,, since M, contains no complex variety of positive
dimension. Now we claim that Jac F'(z) 0. Indeed, if Jac F'(z) = 0 in ] then
we let o be the maximal rank of the Jacobian matrix of F in ;. We have 0 <
u < n, and the set

{ze Q] :Rank F = u}

is an open dense subset of £2;. By the rank theorem and the fact F(Q) ¢ M,,
we may find a sequence of points z; € 2] converging to zo such that F (zx) ¢ M,
and, for each k&, the analytic set

{z€eQ] : F(z) = F(zy) )
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has an irreducible component Vi C 2] of dimension n — . > 0 passing through
Zx. Since F(z;) € M, it follows that, for each k, V; does not have limit points on

M,. Therefore V is a closed analytic variety in ;. Now let z’ € U Vi \ U Vi
we see that

f(@) = F() =1lim F(zx) = F(z0) = wo.

This implies that 2/ € f~1(wg). But f~1(wp) \ {zo0} is discrete, and we see that
the sequence of the sets V clusters on M; only at discrete points near zo. Thus, by
the generalized continuity principle [S], we conclude that F(z) extends holomor-
phically to a neighborhood of zg in C”. As before, this implies that Jac F(z) £ 0
since F is locally proper.

Using these facts, we will prove that F extends holomorphically to a neighbor-
hood of zg in C”.

When wy € M, is not a minimally convex point, an important fact is that every
holomorphic function defined on one side of M that admits a distribution limit up
to M, extends holomorphically to a small open neighborhood of wy. (See [BRI,
Thm. 7; BR4, Thm. 1; T]; this fact has been used in [HP; P].)

To prove that F is a holomorphic extension when wy is not minimally convex, we
will construct pieces of proper holomorphic mappings near zg. Since £~ (wg)\{zo}
is discrete and f~!(wp) is closed, we may choose an open neighborhood £, of z,
such that

0% N {f ! (wo)) = 0.

Thus we have that dist(d2;, {f~!(wg)}) =6 > 0.
Now consider
V={z€Q], F(z) = wp).

Then V is an analytic variety in ]. If dim V > 1, let V' be an irreducible com-
ponent of V. Since V only has limit points £~!(wg) on M;, we see that V is also
an analytic variety in €1 \ f~!(wy), and by a theorem of Remmert and Stein [RS],
V' is an analytic variety in ©;. The continuity principle implies that F extends
holomorphically to a neighborhood of zg. There is nothing to prove in this case.

Now we may assume that dim V = 0. This means V is a discrete set in £2; .
We may shrink €2; slightly so that 32; NV = @. We therefore have

dist(wg, F (02, \ My)) > 0.
We can then choose a very small open neighborhood €2, of wg such that
dist(9€2,, F(352] \ My)) > 0. (3)

Since F(2]7) ¢ M,, F(2]) intersects at least one side of M;; there are two
possibilities as follows.

(I) For any small neighborhood €2, of wg, we have
FQNKQ, #0 and F(Q)NQS #0.
(IT1) There is an arbitrarily small neighborhood €2, of wg such that
FQ)CQ;, o F ) CQl.

We consider case (I); case (II) can be dealt with similarly.
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Consider two nonempty open sets in Q7 ,
Ut=F'(Qf) and U™ =F}Q).

We claim that the restriction of F to U™ (resp. U ™) is a proper map from U™ to 5
(resp. U™ to ). Indeed, let F* = F|y+ and let K CC Q7 be a compact sub-
set; we want to prove that (F+)~!(K) is a compact subset in U*. If (Ft)~1(K)
is not compact in U™, then there exists a point p € dU* such that F*(p) € K.
Since K N M, = @ we have p ¢ M, and, by (3), p € ;. Therefore, there exists
a neighborhood O of p such that F(O) C Qj . Hence p cannot be a boundary
point of U™, a contradiction.

Now we observe that the open set Ut U U™ is, in general, not connected. We

make some simple observations that are crucial to what follows in the proof of
Lemma 2.

Claim 1: The set UT U U~ is an open dense set near zg in ] along Mj.

Indeed, if this is not the case then, for any small neighborhood of zg, there exists
apoint p € ; in that neighborhood, and there exists a small neighborhood O of
p contained in Q] so that F(O) C 982, U M, (since by continuity F(O) C Q).
This is impossible since Jac F(z) # 0 in 2.

Claim 2: The open set Ut U U™ has finitely many connected components.
Indeed, if this is not the case then we may assume that U has infinitely many

components. We let U; be connected components of U™ for j = 1,2, ... . There-
fore F:U; — Q2 is proper for each j. Let py € Q7 fixed. By the propemess of
F|y;, there exists a point z; € U; such that F(z;) = po for j = 1,2,... . We no-

tice that z; are different points. On the other hand, F is proper from U™ to €
and therefore F~!(py) is finite, a contradiction to F~1(pg) = {zj}.

Now let {UJ.+ };‘21 be connected components of U™, and similarly {U i }5'=1 for
U~. Let g; be the restriction of F on Uj+, and hj on U;. It follows that g;: U j+ —
QF and h;: U i — §2; are proper holomorphic mappings.

We then consider a proper mapping g from D to G, where the pairing (D, G)
is either (Uj+, Q'{ Yor (U R 2,) and g is either g; or h;. The graph of g is defined
to be

e ={(z,w) e D x G, w=g(2)}.
By the proper mapping theorem, g is a covering from D\ g~} (g(Ve)) to G\ g(Vy)
of multiplicity m, where

Ve={ze D:Jacg =0}.

Let Gy, Ga, ... , G, bethelocal inverses defined on G\ g(Vy). On D x G\ g(V)
define

H;(z, w) = [ [z — (G (w))y).
j=1

By the removable singularity result of bounded holomorphic functions, H; extends
to be holomorphic on D x G. Let

Ag={z,w)e DxG - H=H=---=H,=0}.
It is easy to check that 'y = A,.
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Let 'y, I'n; be the graphs of g;, ; (respectively), and let Ag;, Ap; be associ-
ated with g;, h; as defined above. We see that the graph of F over Ut U U™ is

given by
k !
U Lg; U U Lhy»
j=1 Jj=1

which is equal to
k I
U Agj U U Ahj .
j=1 =1

J‘=

As we have observed, the open set U U U~ is an open dense set along M near 7o
(Claim 1). By continuity, we conclude that the graph of F over a small one-sided
neighborhood of M near z, is contained in

k l
U4, vl 4.
j=1 j=1

Now we want to show that

k I
U Ag U U Ap;
j=1 j=1

extends to be an analytic variety of pure dimension n in C" x C" near (zg, wg).
Indeed, we notice that for each g (either g; or h;),

Hi(z,w)=2z"+§ _1(w)z}"“1 + - 4 So(w),

where S;j(w) is the jth symmetric function of (G;(w))i for j = 1,... , m. Since
Sj(w) are bounded, and since wo is not minimally convex, it follows that S;(w)
extends to be holomorphic in a neighborhood of wq in C” from either side wher-
ever applicable. Therefore H;(z, w) extends to be holomorphic in a neighborhood
of (zg, wp) in C" x C", and this in turn implies that

k i
U Ag U U A,
j=1 j=1

is an analytic variety of pure dimension » in a neighborhood of (zo, wo), which
implies that F extends to be a correspondence to a neighborhood of zp. Lemma
1 then gives the holomorphic extension of F at zg. This completes the proof of
ELemma 2 for case (1); case (II) can be proved similarly. !

Proof of Theorem 2. Let zo € M| and wy = f(z0) € M,. Since M is minimal
at zo, by Trepreau’s theorem f extends holomorphically to a one-sided neighbor-
hood of M, say 2], whose extension is denoted by F (z). Therefore F(z): Q] —
C” is a holomorphic mapping such that F = f on M. If wg is minimally convex,
then the complex Hopf lemma of [BR4] (since Jac F = 0 by Lemma 2) and [DF]
imply that f extends holomorphically to a neighborhood of zg. If wy is not mini-
mally convex then Lemma 2 applies again. This completes the proof. O
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Corollary 2 is a special case of Theorem 2, since a real analytic hypersurface of
finite type of D’ Angelo is essentially finite and contains no nontrivial complex
varieties.

Proof of Corollary 3. It suffices to prove that £ ~1(f(p)) \ {p} is discrete. Letq €
F U F(P)\ {p}butg # p. We want to prove that ¢ is an isolated point. Since f
is real analytic at g by assumption, f extends holomorphically to a neighborhood
of g with extension (say) F. By a result of [BR3], the Hopf lemma holds at g for
the normal component of F. Let p be a real analytic defining function of M, near
wyp. By the Hopf lemma just mentioned, at q it is easy to see, by changes of coor-
dinates at both g and f(gq), that p o F is again a defining function of M; near q.

Therefore the equation
{zeC" :poF(z) =0}

defines a real analytic hypersurface near g that is identical to M) near g. This im-
plies that F “I(f (g)) is contained in M. Since M, is of finite type of D’ Angelo
and F~'(f(q)) is a complex analytic variety, we conclude that g is an isolated
point in M. Theorem 2 then applies at p since f~'(f(p)) \ {p} is discrete. [J

In order to prove Corollary 4, we need to prove a version of Lemma 2 under the
conditions of Corollary 4.

LEMMA 3. Let f: My — M, be a finite-to-one smooth CR mapping between
smooth real hypersurfaces that extends holomorphically to 2] as F. Let zg € M;
and f(z0) = wg € My. If M, is minimal but not minimally convex at wq, then f
extends holomorphically to a neighborhood of 7o in C".

Proof. By the proof of Lemma 2, it suffices to prove the following: (a) F(£2;) ¢
M3, and (b) Jac f(z) £ 0.

Indeed, if F(2]) C M, then Jac F(z) = 0 in £2, . This implies that the Jaco-
bian matrix of the map f: M, — M, considered as a real map of the real mani-
folds is of maximal rank u such that 0 < p < 2n — 1. Therefore, by the rank the-
orem there exists a point w’ near wg such that f~!(w’) is a manifold of dimension
n — u, a contradiction to f being finite-to-one; (b) follows as well.

Proof of Corollary 4. First we observe that F(§2]) ¢ M, by the proof of Lemma
3. If wy is not minimal then, by a unique continuation result for holomorphic
mappings [P, Thm. 2], F does not vanish to infinite order at zo in the normal com-
ponent. Therefore [BR3] implies that the normal derivative of F is nonzero at
0, and hence F extends holomorphically to a neighborhood of zo. When wy is
minimal, the proof follows as in that of Theorem 2 by using Lemma 3 instead of
Lemma 2. O
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