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Introduction

Let G be a connected Lie group, and K a closed subgroup. Let W be a nice topo-
logical space. The Lie group G acts on the space G x W by g(x, w) = (gx, w).
Let TOP¢ (G x W) be the group of self-homeomorphisms of G x W that are weakly
G-equivariant (see below for an exact description). Consider the product space
G/K x W of the space of left cosets {x K} with W, and let TOP; x (G/K x W)
be the group of self-homeomorphisms of G/K x W induced from weakly G-
equivariant self-homeomorphisms of G x W.
The aim of this paper is to study Seifert fiber spaces modeled on

(G/K x W, TOPg x(G/K x W)).

Such a space will have a double coset space I'\G/K as a typical fiber. We shall
pay special attention to the case where G is a semisimple Lie group in its adjoint
form, and K is a maximal compact subgroup.

One of the important geometric problems that has motivated the development of
Seifert fiberings has been the construction of closed aspherical manifolds realizing
Poincaré duality groups [T of the form1 — I' - IT — Q — 1, where I is a co-
compact torsion-free lattice in a noncompact Lie group. In [CR2], [LR1], [KLR],
and [LR2], closed aspherical manifolds were found for commutative, nilpotent,
and solvable G provided Q could be made to act properly on some contractible
manifold with compact quotient. In these cases, the Seifert construction enables
one also to deduce interesting and relevant geometric information. The reason for
this is that the Seifert construction, which is a special embedding (i.e., an injective
homomorphism) of the group I1 into TOPg (G x W) such that 11 acts properly on
G x W, preserves some of the properties of both G and W on IT\(G x W). Fur-
thermore, the action of Il on G x W “twists” the topology and geometry of G and
W to create the orbit space I1\(G x W) in the same way that the group structures
of I and Q “twist” to create the group Il. In other words, this algebraic twisting
of IT makes the geometric twisting of the “bundle with singularities”

I'\G — M\(G x W) > Q\W,

where the homogeneous space I'\ G is a typical fiber.
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In the references cited, G is a simply connected Lie group diffeomorphic to a
Euclidean space. Hence it seems advantageous to enlarge the concept of Seifert
constructions to include Seifert fiber spaces modeled on G/K x W as well, where
G is an arbitrary Lie group and X is a closed subgroup. Then a Seifert construc-
tion would yield a “bundle with singularities”, I'\G/K — TI\G/K x W —
O\W, where the double coset space is a typical fiber. In particular, if G is an
arbitrary noncompact Lie group with a finite number of connected components
and X is a maximal compact subgroup of G, then G/K is diffeomorphic to a Eu-
clidean space. An earlier paper of Raymond and Wigner [RW] dealt with the con-
struction of closed aspherical manifolds M = K(I1, 1), where I" was a lattice
in a noncompact semisimple Lie group G in adjoint form. The method, which
was rather ad hoc, yielded the desired manifolds. The groups I' and G had to
be replaced by the isomorphic groups Inn(I') and Inn(G) respectively. However,
it has not been clear just how that construction fitted into the general theory of
Seifert constructions. Also, the geometry of the spaces obtained could not be eas-
ily explained in terms of geometries of G and W. In this paper, we explain how
one goes about creating a general theory for Seifert constructions on G/K x W,
where G is a connected Lie group and K is a closed subgroup. As a conse-
quence, the main result of [RW] is recaptured in Theorem 4.6. An advantage
of the present approach over the earlier one is Corollary 4.7, where it is easily
shown that the constructed manifold M (IT) inherits the product geometry from
G/K and W.

Section 1 describes the general set-up culminating in a complete description of
the universal uniformizing group TOPg ¢ (G/K x W) into which discrete groups
IT need to be mapped to create Seifert fiberings modeled on G/K x W. Section
2 calculates TOPg x (G/K x W) when Ng(K) = K and Aut’(G, K) = 1. The
main result is Theorem 2.2, which is crucial for Sections 4 and 5.

Section 3 is a technical section that will allow us to assert uniqueness of our
construction when G is specialized as in Sections 4 and 5. It is, however, phrased
in the general context of classifying all the homomorphisms of one short exact
sequence into another short exact sequence.

Section 4 then solves the embedding and uniqueness problem for 1 — I' —
1 — @ — linto TOPg; ¢ (G/K x W) when (G, K) is a Riemannian symmetric
pair of noncompact type.

Section 5 is concerned with solvable G. If G is solvable, not all the nice fea-
tures of the theory of Seifert constructions that work so well in the nilpotent or
semisimple cases remain valid. With the aid of the earlier sections, we show that
under certain conditions the usual embedding and uniqueness theorems are valid
if we enlarge G to G’ by extending it by a compact abelian group K. Then, us-
ing the pair (G’, K) and the technique of the earlier sections, we obtain the de-
sired solution. This explains the geometry of the infra-solvmanifolds constructed
by Auslander and Johnson [AJ] as Seifert manifolds.

Applications and specific examples illustrating how the theory works in practice
are given.
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1. General

Let W be a completely regular space admitting covering space theory. Therefore,
W is locally path-connected, semilocally-1-connected, and path-connected.

We denote by M(W, G) the group of all continuous maps from W into G with
multiplication

(A - v} (w) = A(w) - v(w).

TOP(W) denotes the group of all homeomorphisms of W, and Aut(G) denotes
the Lie group of all continuous automorphisms of G. Then Aut(G) x TOP(W)
acts on M(W, G) via

-1
@h) —goroh ' W2 WA GSG

for (a, h) € Aut(G) x TOP(W) and A € M(W, G). The group TOP(G x W) of
weakly G-equivariant self-homeomorphisms of G x W is defined as follows: A
homeomorphism f of G x W onto itself belongs to TOPs (G x W) if and only if
there exists a continuous automorphism ay of G such that

fla-x,w) =as@)f(x,w)
foralla €e Gand (x,w) € G x W.

LeEmMA 1.1 [LR1]. TOPg(G x W) = M(W, G) x (Aut(G) x TOP(W)).
The group law is
(A1, @1, 1) - (g, @2, 1) = (M1 - @i odgohy, @i o, hiohy),
and the action of TOPs(G x W) on G x W is given by
(A, e, B) - (x, w) = (a(x) - A(hw) ™!, hw).

Then M(W, G) x Aut(G) is the group of all weakly G-equivariant self-homeomor-
phisms of G x W that move only along the fibers.

For a € G, the constant map W — G sending W to a is denoted by r(a).
Clearly,

r(a) =(a, 1,1) e M(W, G) x (Aut(G) x TOP(W)).

This is a right translation by a~! on the first factor of G x W so that r (a)(x, w) =
(x -a~!, w), and the subgroup of all such right translations is denoted by r(G) C
M(W, G). Let [(G) denote the group of left translations on the first factor so that
I(a)(x, w) = (a - x, w). Then elements of /(G) are of the form

I(a) = (@™}, u@), 1) e M(W, G) x (Aut(G) x TOP(W));

p(a) € Inn(G) is conjugation by a. Note that [(G) is normal in TOP;(G x W).
In fact, TOPg(G x W) is the largest subgroup of TOP(G x W) in which I(G) is
normal.
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NOTATION.

Ng(K) = normalizer of K in G, K a closed subgroup of G,
Cg(K) = centralizer of X in G,
Aut(G, K) = {a € Aut(G) : a|g € Aut(K) },
Inn(G, K) = Inn(G) N Aut(G, K),
Out(G, K) = Aut(G, K)/Inn(G, K),
Aut’(G, K) = {a € Aut(G) : x 'a(x) € K forall x € G },
u(a) = conjugation by a; so, u(a)(x) = axa~! forx € G.
Let TOPg, x (G x W) be the subgroup of TOPg(G x W) consisting of elements
that induce maps on G/K x W (i.e., mapping left K-cosets to left K-cosets); and
TOPg x (G/K x W) the image of TOPg x (G x W) in TOP(G/K x W). There-

fore, TOPg x (G/K x W) is the group of homeomorphisms on G/K x W that are
induced from the weakly G-equivariant homeomorphisms on G x W:

TOPg x (G x W) C TOPg(GxW) C TOP(G xW)

!

TOPg x(G/K xW) C TOP(G/K x W).
We need to study these groups, TOPg x (G x W) and TOPg x(G/K x W), in
detail.

PrROPOSITION 1.2. TOPg (G x W) = I(G)-[M(W, Ng(K)) x Aut(G, K)]
TOP(W).

Proof. We need to prove that f € TOPg(G x W) belongs to TOP¢ x (G x W) if
and only if f is of the form I(a) - (A, &, h) = (Aa™!, pu(a), h), where a € G and

(1) « € Aut(G, K), and
(2) A € M(W, Ng(K)).

Suppose
f = (1, 01,h) € TOPG g (G x W).

Let (M1, a1, H)(xK, w) = (x'K, h(w)) for some x’ € G. Then
* lay()a (KA (hw)™ ! = K. (1.2.1)
In particular, we must have
x oy () r(rw) ! = ' ey () e (DA (rw) ! € K. (1.2.2)
The two equalities (1.2.1) and (1.2.2) yield
a1(K) = A (hw) ' KA (hw).

Notice that the left-hand side is independent of w. Fix wy € W, and let a !l =
A(hwg), A = Ma, and o = pu(@a™!) o a;. Since a(K) = a~'oy(K)a = K, we
have
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o € Aut(G, K).

Also A(hw)-K -A(hw) ™! = A(hw)-a(K)-A(hw) ™! = Ay (hw) -0y (K)-A (hw) ! =
K for all w € W shows that A(w) € Ng(K) for all w € W. Thus,

A € M(W, Ng(K)).

Consequently, f = (Aa~!, u(@a,h) = l(a) - (A,a,h), where a € G, a €
Aut(G, K), and A € M(W, Ng(K)).

Conversely, let @ € Aut(G, K) and A € M(W, Ng(K)). Then it is easy to see
that (A, o, H(xK, w) = (e(x)A(hw) 'K, hw) so that (A, &, k) maps K-cosets
to K-cosets. It is clear that /(G) preserves K-cosets also. This completes the
proof. O

LEMMA 1.3 (Ineffective part of TOPg x (G x W)). An element
(Aa~!, w(a)x, h) € TOPG x (G x W)

acts trivially on G/K x W if and only if

(1) h=idon W,
(2) ra~!' e M(W, K), and
3) x7 1. (@ae(x)a™!) € K forall x € G.

Consequently, the kernel of TOPg k(G x W) — TOPg x (G/K x W) is exactly
M(W, K) x Aut’(G, K).

Proof. Suppose (Aa™!, u(a)a, h) € TOPg k(G x W) acts triviallyon G/K x W.
Two points (Aa~!, u(a)e, h)(x, w) = (aa(x)A(hw)~!, hw) and (x, w) represent
the same point in G/K x W if and only if hw = w and xlaa(x)A(w)~! € K.
These should hold for all x € G and all w € W. For x = 1, the latter reduces
to ar(w)~! € K so that ar~! € M(W, K). Now, x lac(x)a"!(ar(w)™) =
x laa(@)AM(w)~! € K andar(w)~! € K yield x~! (u(a)x)(x) =x"laa(x)a=! e
K for all x € G, so that u(a)a € Aut’(G, K). Thus (ha™!, u(a)a, 1) €
M(W, K) x Aut’(G, K). Conversely, for (A, a;) € M(W, K) x Aut’(G, K), we
have (A1, o)) (xK, w) = (xK, w). U

CoroLLARY 1.4 (Ineffective part of [I(G) - M(W, Ng(K))] % Inn(G, K)). The
part of the kernel of TOPg k(G x W) — TOPg x(G/K x W) in M(W, G) x
Inn(G) is exactly M(W, K) x Inn°(G, K).

COROLLARY 1.5.

I(G) - [M(W, Ng(K)) x Aut(G, K)]
MW, K) x Aut’(G, K)

Also, since [[(G) -M(W, Ng(K))] xInn(G, K) = I[(G)-M(W, Ng(K)), because

p(a) = l(a)r(a),

1 - I(G) - M(W, Ng(K)) - TOPg x (G x W) — Out(G, K) x TOP(W) — 1

TOPg x (G/K x W) =

x TOP(W).

is exact. Hence we have the following.
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COROLLARY 1.6. There exists a commuting “9-diagram” (with exact rows and
columns) as shown on page 442.

The group TOPg x(G/K x W) is the group of homeomorphisms on G/K x W
that are induced from the weakly (left) G-equivariant homeomorphisms on G x W.
If we were to require the stronger condition that TOPg x (G/K x W) consist of
the homeomorphisms of G/K x W induced from weakly (left) G x K -equivariant
homeomorphisms (with K acting by kx = xk~!), we would then need to replace
Ng(K) by C(K) in the formulation of Corollaries 1.4, 1.5, and 1.6. In Section 3,
where G is semisimple in adjoint form, we have Ng(K) = K but Cg(K) is triv-
ial. On the other hand, in Section 4, where G = S x K with suitable conditions,
we have Ng(K) = Cg(K) = K and so there will be no difference in this case.

PROPOSITION 1.7.  Suppose H is a closed subgroup of K, and is normal in G. Let
G/H =G and K/H = K. Then TOPg g (G/K x W) = TOP¢ x(G/K x W).

Proof. Since H is normal in G, [G, H] C H C K. This implies that u(H) C
Aut®(G, K). Therefore,

I(H) = {(h7', u(h)) : h € HY C M(W, H) x u(H) C M(W, K) x Aut’(G, K).

Also,_Nq(K)/H = N(-;(IE). Finally, Aut(G, K)/(Aut(H) N Aut(G, X)) =
Aut(G, K), so that

Aut(G,K)  Aut(G, K)/(Aut(H) N Aut(G,K))  Aut(G, K)
Aut®(G, K)  Aut®(G, K)/(Aut(H) N Aut’(G, K))  Aut’(G, K)’

Consequently, we get TOPg ¢ (G/K x W) = TOPg 2(G/K xW). O

In particular, suppose X itself is normal in G (i.e., H = K in Proposition 1.7).
With G = G/K (and K = K/K = 1), we have

TOPG x(G/K x W) = M(W, G) x (Aut(G) x TOP(W))

which is exactly the same as TOP3(G x W).

Let H be a subgroup of G, and let « € Aut(G). Even though a(H) C H,
«|y: H — H may not be an automorphism of H in general. For example, let
G = GL(@3, R) and let H be the subgroup generated by x = I + e, where [ is
the 3 x 3 identity matrix and e;; is the matrix whose (i, j)-entry is 1, and O else-
where. Then H is a closed subgroup of G. Consider a = ey + (1/p)exn + €33 €
G, where p is an integer greater than 1. Let o be the automorphism of G, which
is conjugation by a. Then a(x) = x”. Even though « maps H into H itself, it
does not induce an automorphism of H. Even though aHa™! C H,a ¢ Ng(H).
The following lemma provides a sufficient condition, which will be used in the
subsequent sections.

LEMMA 1.8. Let H be a closed subgroup of G with finitely many connected com-
ponents, and let ¢ € Aut(G) so thatx(H) C H. Thena(H) = H.
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Proof. Let Hp be the connected component of the identity of H. Then Hj is
closed in G. Since « is a global homeomorphism, a(Hp) is closed in G and,
hence, closed in Hy. Because o(Hp) is a connected manifold having the same di-
mension as Hy and is embedded in Hy as a closed subset, invariance of domain
implies that o (Hp) = Hp.

Now, Hj is normal in H, and « induces a homomorphism & of H/Hj into it-
self. It is enough to show that & is onto; it is, because H/H) is a finite group. [1

If we wish to find all Seifert fiberings over the space Q\W with typical fiber

I'\G/K, we must do the following:

(A) Finda proper action of Q on W, thatis, find arepresentation p: Q — TOP(W)
such that Q acts properly on W. This ensures that Q\W is Hausdorff and in-
herits some of the geometry of W.

(B) For each group extension

1->T->0IT—- 0 —1,

find all homomorphisms 8: [T — TOPg x (G/K x W) such that 8|: " —
I(G) restricts to an injective homomorphism onto a lattice of G = I(G) and
such that the diagram

1 — r — I1 —

1 | |

1 — JE&?%%:E‘&&‘.’;) — TOP; ¢ (G/K x W) — Out(G, K) x TOP(W) — 1

is commutative. Since IT acts on I' by conjugation, the action of 8 (IT) extends
to an action on the kernel of TOPg x (G/K x W) — Out(G, K) x TOP(W).
Induced will be the homomorphism ¢: Q0 — Out(G, K). Because 8(I') is
a lattice and Q acts properly on W, it can be seen that Il acts properly on
G/K x W via @(Il).

We call the homomorphism 8 a Seifert construction. If 0 is injective, we call 6 an
embedding (into TOPg x (G/K x W)). The space X = 0(II)\(G/K x W) is a
Seifert fiber space and the induced mapping 6(IT)\(G/K x W) — Q\W is called
a Seifert fibering (or Seifert bundle) with typical fiber T'\G /K over the base Q\W.

We also say that the fibering is modeled on G/ K xW. If G/K x W is a manifold
and 6 (I1) acts freely, we call X a Seifert manifold. Sometimes we abuse the tech-
nical meaning of “orbifold” and call X an orbifold. The constructions are done
smoothly if we replace TOP(W) by diffeomorphisms of W when W is a smooth
manifold.

For a fixed 8y, a conjugation of 8y by an element of TOPg; x (G/K x W) is
called an automorphism of the Seifert construction 69. Running through all con-
jugacy classes (conjugating by elements of TOPg x (G/K x W) and varying i and
p) yields all the constructions modeled on G/K x W for the group I1. The group
TOPg, x(G/K x W) is called the universal uniformizing group. A construction
6 into a subgroup of TOP¢ ¢ (G/K x W) is called a reduction of the universal
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uniformizing group. Because TOPg x (G/K x W) contains many geometrically
interesting subgroups, a reduction to one of these groups will induce the interest-
ing geometric structure on X. In practice, we shall begin with a fixed p: 0 —
TOP(W) and a fixed i: I" — I(G). Then we find all &s so that 8 induces i and p.

If XK = {1} C G, then TOPg x(G/K x W) becomes TOPg(G x W) =
M(W, G) x (Aut(G) x TOP(W)) (cf. [LL1] or [LL2)).

2. When Ng(K) =K and Aut®(G,K) =1

Most of the Lie groups treated in Sections 4 and 5 satisfy the two conditions of this
section’s title. Consequently, as we shall see, the kernel of TOPg x (G/K x W) —
TOP(W) becomes a Lie group. This has the tendency to make Seifert construc-
tions, if they exist, more rigid. On the other hand, being able to work with kernels
that are Lie groups (instead of much larger kernels) enables us to prove the strong
existence and uniqueness theorems for the Seifert constructions investigated in
Sections 4 and 5.

Throughout this section, G is a connected Lie group and K is a closed subgroup
of G. The main result is Theorem 2.2. We begin with a sufficient condition for
Aut’(G, K) = 1.

LEMMA 2.1. Let G be a connected Lie group and K a closed subgroup of G. Sup-
pose the largest normal subgroup of G contained in K is trivial. Then Aut’(G, K)
is trivial.

Proof. Suppose o € Aut®(G, K). By the definition of Aut’(G, K), x~la(x) €
K forevery x € G. Let
K’ = the subgroup of K generated by {xla(x): x € G}.
For any b € G,
b7l (xla(x) - b = (xb) la(xb) - B ra ()7,

which is an element of K’. Thus K’ is a subgroup of K that is normal in G. How-
ever, the largest normal subgroup of G contained in X is trivial. Therefore K’ is
trivial. This implies & = id. Consequently, Aut’(G, K) is a trivial group. O

For simplicity, we fix some notation:

Aff (G, K) = I(G) x Aut(G, K).
Since r(K) is normal in Aff (G, K), we define
1(G) 1 Aut(G, K)

Aff(G, K) = 5 ,
Affo(G, K) = L&) Xr?;‘)(G’ K.

Then Affy(G, K) is the connected component of Aff(G, K) that contains the
identity.
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THEOREM 2.2. Let G be a connected Lie group and K a closed subgroup of G.
Suppose

(1) Ng(K) = K, and
(2) Aut’(G, K) is trivial.

Then, TOPg x (G/K x W) = Aff(G, K) x TOP(W).

Proof. From Corollary 1.5, we have

I(G) - IM(W, Ng(K)) x Aut(G, K)]
M(W, K) x Aut’(G, K)

_I(G) - [M(W, K) x Aut(G, K)]
- MW, K)

TOPg x(G/K x W) = x TOP(W)

x TOP(W)

from the two conditions given in the statement. Now the factors M(W, K) drop
out. However, notice that [/(G) % Aut(G, K)]NM(W, K) = r(K). Therefore,
[(G) x Aut(G, K
TOPg x(G/K x W) = XD X AWMG. K)  opawy.
r(K)
This is a direct product rather than a semidirect product, since (1, 1, ) € TOP(W)
commutes with (a, «, 1) € Aff(G, K) because a is a constant map. Of course,
the group /(G) % Aut(G, K) actson G/K by (a,a) - xK = aa(x)X. O

PROPOSITION 2.3. Let G be a connected Lie group and K a closed subgroup of
G. Suppose that Ng(K) = K and that every closed subgroup of G isomorphic
to K is a conjugate of K. Then there exists an isomorphism W: Aff(G, K) —
Aut(G) making the square

G 5 AuG)

| =]w

1(G) — Aff(G, K)

commutative.

Proof. Since G is normal in G x Aut(G, K), conjugation by elements (a, @) €
G x Aut(G,K)on (x,1) € G,

(@, a)(x, )(a,0) "' = (a-ax)-a', 1),
yields a homomorphism ¥: G x Aut(G, K) — Aut(G) given by
V(a, x) = u(a).

Fork € K, (k, u(k™1)) € G x Aut(G, K) and ¥(k, u(k™ 1)) = 1. Conversely,
suppose W(a,o) = 1. Thena = w(a™1) so that (@) € Aut(G, K). There-
fore, a € Ng(K). However, Ng(K) = K so that a € K. We have shown that the
kernel of W is exactly

K2{(tk,nk™)):keK}.
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To show W is surjective, let B € Aut(G). Since B(K) is isomorphic to K, there
exists a € G for which B(K) = aKa~!. Then u(a@)"'B € Aut(G, K). This
shows that (a, u(a)~'B) € G x Aut(G, K) maps to « by W.
Since K is closed and W is continuous and surjective, ¥ induces an isomorphism
of groups
G x Aut(G, K)
K

which is a diffeomorphism, so they are isomorphic as Lie groups.

The group G x Aut(G, K) acts on G by (a, &) - x = aa(x). In other words,
G » Aut(G, K) is naturally identified with [ (G) % Aut(G, K). Under this identifi-
cation, the kernel of W is exactly (K) since (k, u(k™ ' Nx =k -k~ xk =xk. O

> Aut(G)

COROLLARY 2.4. With the same conditions as in Proposition 2.3, the following
diagram is commutative:

1 - Inmm(G) — Auw(G) — Out(G) — 1

E o = I-

1 — Affo(G, K) — Aff(G,K) — Out(G) — 1.

3. Classification up to Conjugation

This section will be used later to show that the Seifert constructions with typical
fiber a locally symmetric space of noncompact type are necessarily unique. The
general question of classification of Seifert constructions reduces to the classifica-
tion of mappings of one short exact sequence into another. We address this general
problem now.

Consider a commutative diagram of group homomorphisms with exact rows:

l>A—>I-> 00— 1

l,- le lp (3.0.1)

1l - A > U —- T — 1,

where i is injective. With the homomorphisms i and p fixed, how many 8s are
there, keeping the diagram commutative? In the following, for brevity we identify
a € A with i(a) € 2. We fix such a homomorphism 6y once and for all and use

the action of IT on I obtained from I1 o, UL Aut(lf). Therefore, for o € I,
“u =0o() - u - Oo(a)™"

foranyu e Y.
Let 8: 1 — U be such a homomorphism fitting the diagram. This 6 will be
expressed via the fixed 6. Then 8 must be of the form

() = Ala)fo(a)

for some map A: IT — 2. It is easy to verify that A satisfies
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AMep) = (@) - Go(@)A(B)fo(e) ™
= Ma) - “A(B). (3.0.2)

Since O|p = i = Op|a, we have A(a) = 1 foralla € A. Foranya € A
and a € II, AMaa) = A(x). Moreover, Ala) = AMe - (@ lax)) = Aaw) =
Aa) - Op(@A(@)bp(@)™! = 1-i(a)A(@)i(a)™! = i(a)r(a)i(a)~'. This shows
that A has values in the centralizer Cy(A). Furthermore, (3.0.2) shows that
Bo(e)A(B)Op(a)~! € Cy(A). Therefore,
Oo(@A(B)0o(@) ™" = i(a)Bo(e)A(B)bo(@) " i(a)™

= Go(ax)L(B)0p(ac) L. (3.0.3)
By (3.0.3), the actions of IT induced by u o 8g on Cy(A) factor through Q so that
the following diagram is commutative:

m 2% L@,() C Aut)
projectionl lresﬁction

Q0 —> Aut(Cy(A)).

With the homomorphism Q — Aut(Cg(A)), we may consider Z1(Q; Cy(A))
and H1(Q; Cy(A)). The equality (3.0.2) shows that A € Z1(Q; Cy(A)). There-
fore, Z1(Q; Cy(A)) represents the set of all homomorphisms 6 fitting the commu-
tative diagram (3.0.1). In fact, A <> 6 = A - 6 gives the one—one correspondence

Z'(Q; Ca(A)) = {A: @ = Cou(A) | MaB) = Me) - “A(B)}
S {6: 11 — U inducing i and p on A and on Q}.

The group Cg(A) acts on Z'(Q; Cy(A)) as follows: Let ¢ € Cy(A) and A €
Z'(Q; Ca(A)). Then A is given by
CD@)=c-Ar- %!
=c-A-0p()-c o).

It is easy to see that (‘A)(«) € Cy(A), and that A satisfies the cocycle condition.
After the abelian case, we denote the orbit spaces of these actions by

HY(Q; Cy(A)) = Z1(Q; Cu(A))/ Cau(A).

Proofs of the following two statements can be found in [LLR].

LEMMA 3.1. 6, = A, - 8¢ and 62 = Ay - g are conjugate by an element of U if
and only if Ay and A, belong to the same orbit of the Cy(A)-action.

THEOREM 3.2. The set of all homomorphisms 0 fitting the commutative diagram
(3.0.1) with the fixed i and p are classified, up to conjugation by elements of U,

by H'(Q; Ca(A)).
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Theorem 3.2 will be used in Theorem 4.6 to prove uniqueness of the Seifert con-
structions modeled on G/K x W, where G is semisimple and K is a maximal
compact subgroup, and in Theorem 5.6 for a special type of solvable pair (G, K).
These will be done by applying Theorem 3.2 to the diagram from Section 1:

1 — r — I1 — 0 — 1

| o e

1 — Lﬁ@g‘)‘:’l"’g(‘?}o — TOPg x(G/K x W) — Out(G, K) x TOP(W) — 1.

Conjugation of 6y by any element u € TOPg x(G/K x W) gives rise to a new
homomorphism 6:I1 — TOPg x(G/K x W). This induces a homeomorphism
of Go(ID\(G x W) to 6(IT)\(G x W) that respects the Seifert structure. The
conjugation may change p or the embedding of I' into /(G). This is called
a Seifert automorphism. If conjugation by u# induces the identity on /(G) and
p(Q), we say u induces a strict Seifert automorphism between Seifert fiber spaces
Oo(TD\(G x W) and 9(TD\(G x W). Ifu € [I(G)-M(W, Ng(K))]1/IM(W, K) »
Inn®(G, K)], then the Seifert automorphism is called a strict Seifert automor-
phism moving only along the fibers. Therefore, H!(Q; Co(I")), where 2 =
[1(G)-M(W, Ng(K))]/IM(W, K) Inn® (G, K)], classifies all strict Seifert auto-
morphism moving only along the fibers. For more details, readers are referred to
[LLR].

4. Symmetric Spaces of Noncompact Type

A symmetric space is a triple (G, K, o) consisting of a connected Lie group G,
a closed subgroup K of G, and an involutive automorphism ¢ of G such that
(G%)o C K C G?, where G°? is the fixed-point set of 0. (G, K, o) is (almost) ef-
Sective if the largest normal subgroup N of G contained in K is trivial (discrete). If
(G, K, 0) is a symmetric space then (G/N, K/N, %) is an effective symmetric
space, where o * is the automorphism of G/N induced from o. If, in addition, the
group Adg(K) is compact then (G, K, o) is said to be a Riemannian symmetric
space.

Throughout this section, (G, K, o) will be an effective Riemannian symmet-
ric space of noncompact type. Therefore G is a connected, semisimple Lie group
in its adjoint form with no compact normal factors, and K is a closed maximal
compact subgroup of G. We collect some facts for such groups.

LEMMA 4.1. Let G be a connected, centerless, semisimple Lie group without any
normal compact factors. Let K be a maximal compact subgroup of G. Then:

(1) Ng(K) =K, and K is connected,

(2) every closed subgroup of G isomorphic to K is a conjugate of K ; and

(3) Out(G) is finite.

For (1), see [Hel, p. 275, A3(i)]. For (2), see [Hel; VIThm. 2.1]. (3) is well known.
Now Theorem 2.2 characterizes our universal uniformizing group completely.
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COROLLARY 4.2. Let G be a connected, centerless, semisimple Lie group with-
out any normal compact factors. Let K be a maximal compact subgroup of G.
Then

TOPg x(G/K x W) = Aff(G, K) x TOP(W).

LEMMA 4.3. Let G = Aut(G) and let K be its maximal compact subgroup con-
taining u(K) = Adg(K). Then K = Aut(G, K) and K /K = Out(G).

Proof. Since Out(G) is finite, K /K is discrete. Hence Ky = u(K) C G is the
connected component of K containing the identity element. Thus, ©(K) is nor-
malin K. Leta € K be any element. We claim that a(K) =K. Pick any k € K.
We shall show (k) € K. Since u(K) is normalin K, o - u(k) - o~ = p(k’) for
some k' € K. Note that these are equal as elements of K (and hence as elemens
of G = Aut(G)). Since « - (k) - «~! = p(a(k)), we have

pk’) = pla)).

That is, conjugations by k” and «(k) produce the same automorphisms of G. Con-
sequently, (k) - k'~! € Z(G), the center of G, which is trivial. We have shown
that o (k) - k'~! = 1,soa(k) =k’ € K. Hence «(K) C K. Since K is compact,
one can apply Lemma 1.8 to get «(K) C K implies that o induces an automor-
phism of K so that @ € Aut(G, K). Thus K C Aut(G, K).

Since Ng(K) = K, we have Inn(G, K) = Adg(K) = K. Thus, Aut(G, K}/
Inn(G, K) C Out(G), a finite group. However, all maximal compact subgroups
of G are conjugate to each other. Therefore, for every B8 € Aut(G) there exists
a € G for which 8(K) = aKa~!. Then u(a)~!8 € Aut(G, K). This implies
that Aut(G, K)/Inn(G, K) — Out(G) is surjective. Thus we have a short exact
sequence

1 > K — Aut(G, K) - Out(G) — 1.

Since K and Out(G) are compact, so is Aut(G, K). By maximality of K, we have
K = Aut(G, K). O

REMARK 4.4. The action of Aut(G) on G/K can also be interpreted as follows:
By Lemma 4.3, the conjugation map induces an identification

a:G/K > G/K.
In fact, i is bijective because Ng(K) = K and K = Aut(G, K). We claim that:
With respect to the action of Aut(G) on G /K via ¥~ L and the action of Aut(G) =

G on G/K as left multiplications, the diffeomorphism ji is Aut(G)-equivariant.
In other words, the following diagram is commutative:

Aut(G) x G/K — G/K

id x /._Ll ﬁlN

Aut(G) x G/K — G/K.
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Let B € Aut(G), and let (a, @) € I(G) x Aut(G, K) be a representative of
U—1(B). Thena = u(@ 1B € Aut(G, K) and

B-xK = (a,a)xK
=aa(x)X.

On the other hand,

B- @)K = pu(x)K.

To see that ax(x) K € G/K corresponds to Bu(x)K € G/IE' via 1, it is enough
to have

plac(x)) "' Bu(x) € K.

However, a calculation shows that u(ac(x))"1u(x) = o € Aut(G, K) = K.
Pictorially,
B,xK) — ac(x)K

id xﬁl ﬁlm
(B, n()K) — Bu)K.
This verifies the commutativity of the above square.

PROPOSITION 4.5.  With the G-invariant Riemannian metric on G /K induced by
the Killing—Cartan form of g, Aff(G, K) = Isom(G/K).

Proof. Recall the Killing—Cartan form is defined by
B(X,Y) =Trace(ad X -ad Y).

Let o € Aut(G, K) and o, = da € Aut(g). Then ad(o,X) = @, oad X o o]},
Applying Trace(A B) = Trace(BA) twice, we get

B(a.X,a,Y) = B(X, Y).

Therefore, «, leaves the quadratic form B on g invariant. Let g = £ @ p be the or-
thogonal decomposition, where ¢ is the Lie algebra of K. Since a, maps ¢ ontc
itself and B is invariant under «,, o, leaves the orthogonal complement p invari-
ant. Thus, o, maps p to itself and preserves the quadratic form B on p. The metric
on G/K is just a scalar multiple of the restriction of the Killing—Cartan form B
on p. We have shown that ¢, is an isometry on G/K. Since [(G) C Isom(G/K),
clearly we have

1(G) x Aut(G, K) — Isom(G/K).

We show this homomorphism to be surjective. It is well known that [(G) =
Isomg(G/K). Suppose f € Isom(G/K). By transitivity of the action of /(G) on
G/K, we may assume that f fixes the point K = eK € G/K. Since I(G) is nor-
mal in Isom(G/K), conjugation by f defines an automorphism of [(G). Let f =
I=V o u(f) ol € Aut(G). Then
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¢ - ¢

L
16) 2 16)

commutes and

I(f@)=foll@of.
With f(eK) = eK, an easy calculation shows that

f@kK) = f ol(a)(eK) =I(f(@)) o f(eK) = I(f(@)(eK) = f(a)K

foralla € G. Thus, fork € K, f(k)K = f(kK) = f(K) = K so that f(k) €
K. We have shown that the automorphism f of G maps K to itself. This proves
the surjectivity of /(G) x Aut(G, K) — Isom(G/K). Since the kernel of this
homomorphism is 7 (K), we have completed the proof. O

THEOREM 4.6 (cf. [RW, Thm. 2]). Let G be a connected, centerless, semisimple
Lie group without any normal compact factors or 3-dimensional factors. Let K be
a maximal compact subgroup of G. Let T be a lattice of G, let p: @ — TOP(W)
be a proper action of a discrete group Q (i.e., a properly discontinuous action),
andletl - T' — I1 - Q — 1 be an exact sequence. Then there exists a ho-
momorphism 0:I1 — TOPg ¢ (G/K x W) = Aff(G, K) x TOP(W) so that the
diagram with exact rows

1 — r — IT — 0 — 1

il f)l gaxpl
1 — Affo(G, K) — TOPg x(G/K x W) — Out(G) x TOP(W) — 1

is commutative, yielding a Seifert fiber space with typical fiber the double coset
space I'\G /K. Such a homomorphism 6 with fixed i and ¢ x p is unique. The
action is free if and only if the preimage of each stabilizer Q,, in Il is torsion-free.

Proof. (Existence) Since I' is normal in IT, there is a natural homomorphism
p:IT — Aut(I'). Under the conditions on G stated, Mostow’s rigidity theorem
ensures that the pair (I', G) has the UAEP (unique automorphism extension prop-
erty). The UAEP gives rise to a homomorphism Aut(I') — Aut(G). Conse-
quently, we have a homomorphism [T — Aut(G) so that the following diagram
with exact rows is commutative:

1 — r — I — 0 — 1

l l !

1 - Inn(G) — Aut(G) — Out(G) — 1.

Composing IT — Aut(G) with ¥~!: Aut(G) — Aff(G, K) in Corollary 2.4, we
get a homomorphism IT — Aut(G) — Aff(G, K) under which I" is mapped into
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Affo(G, K). This, together with the action IT — Q — TOP(W), gives rise to a
homomorphism IT — Aff(G, K) x TOP(W) = TOPg x(G/K x W).

(Uniqueness) We apply Theorem 3.2 to the commuting diagram in the state-
ment of the theorem (with 2 = Affo(G, K) and A = TI'). To this end, we need
to calculate the centralizer of I' in Affy(G, K) = ((G) x Inn(G, K))/r(K). An
element (a, u(b)) € I(G) % Inn(G, K) represents an element in the centralizer if
and only if

[(a, u(B)), (x, D1 = (abxb~'a™'x71, 1) = (u(ab)(x) - x71, 1) € r(K)

forevery x € I'. Recall that elements of 7 (K) in /(G) x Aut(G, K) are of the form
k™!, n(k)) with k € K. Therefore, it happens if and only if u(ab)(x) - x~ ! =1
forevery x € I'. By the UAEP, this should happen forevery x € G. Then u(ab) €
Inn®(G, K). But Inn®(G, K) is trivial by Lemma 2.1. Therefore, u(ab) = 1 so
that ab = 1. Since pu(d) € Inn(G, K), (a, u(b)) = (b1, (b)) € r(K), which
represents the identity element of Affy(G, K). We have shown CEO(G, K)(I‘) is
trivial so that Z1(Q; CKEO @, K)(l"‘)) = 0. (Note that we do not need conjugation
for the uniqueness here.) Finally, since G/K is diffeomorphic to R”, the action of
I is free if and only if the preimage of each stabilizer Q,, in IT is torsion-free. [

In [LLR] we discussed a situation where G is semisimple and X is trivial. When
G is in adjoint form, then Aut(G) = G x Out(G), and the main Lemma 2.2
in [LLR] describes a necessary and sufficient condition for an extension IT to be
mapped into TOPg (G x W). In the applications there, G was of compact type and
the lattice I' was assumed to go into /(G) x r(G). Section 5 of [LLR] discusses
uniqueness for that situation.

When W is a Riemannian manifold, the space G/K x W acquires the natural
product metric. Then,

Aff(G, K) x Isom(W) = Isom(G/K) x Isom(W) C Isom(G/K x W).

COROLLARY 4.7. Suppose W is a Riemannian manifold, and Q acts on W as
isometries (i.e., p maps Q into Isom(W)). Then the construction yields a repre-
sentation

IT — Isom(G/K) x Isom(W) C Isom(G/K x W),
yielding a Riemannian orbifold TI\(G/K x W). O

The space IT\ (G x W) has a Seifert fiber structure
I'\G/K — II\(G/K x W) - Q\W,

where I'\G /K, the typical fiber, is a Riemannian symmetric space. Singular fibers
are finite quotients of the typical fiber, where the finite actions are via isometries
of G/K.

Here is a more precise account. Let Qg be the kernel of ¢: @ — Out(I"). Then
the preimage of Qg in IT splits as a direct product I' x Qg because I" has triv-
ial center. Since Aut(G) = Inn(G) x Out(G), Qp maps trivially into Aff(G, K).



454 KYyuNG BA1 LEE & FRANK RAYMOND

Consequently, the normal subgroup I' x Qg of Il acts on G/K x W in such a
way that I' acts only on the G/K-factor as left translations and Qg acts only on
the W-factor via p, yielding (I'\G/K) x (Qo\W). Because Out(T") is finite,
Q/Qy is finite. The finite quotient group F = I1/(I" x Qp) acts diagonally on
(P\G/K) x (Qo\W):

G/KxW 2% G/K x 0o\W

F\J« F\l
T\G/K xW 2% (I'\G/K) x (Qo\W)

n

(T\G/K) xr (Qo\W) — TI\(G/K x W).

ExampPLES 4.8. Let G = SOg(1, 3) and W = R”. Let I" be a (resp. torsion-free)
lattice of G, and let @ C E (n) be a crystallographic group. Then K = SO(3) and
SOo(1, 3)/ SO(3) = H3, the 3-dimensional hyperbolic space. For any extension
ITof I" by Q, there exists a Seifert fibering (resp. an aspherical manifold)

MH — M@ x R") - O\R”"
with typical fiber the hyperbolic spaceform I"\H? and base orbifold Q\R”.

REMARK 4.9. Seifert constructions for G = R” are more numerous and more
twisted than constructions with G semisimple or G/K as above. For example, for
Q take the Fuchsian group whose orbit space Q\H? is the 2-sphere with multi-
plicities 2, 3, and 7. For Seifert fiberings modeled on R3 x H? and I" = Z3, we
obtain an infinite number of different fiberings parameterized by Z> when Q —
Aut(Z3) is trivial. If we take just those constructions that yield K (I1, 1)s, we
obtain an infinite number of distinct 5-manifolds that fiber over the 2-torus with
finite abelian structure group; see [CR3, 2.2]. The infinite number of distinct ex-
tensions follows from H?(Q; Z) = Z. These aspherical 5-manifolds all exhibit

R? x PSL(2, R) geometry. (From [CR3, 2.2] we can view IT as having a finite in-
dexed normal subgroup Z? x (the fundamental group of a closed Seifert 3-manifcld
M) with a cyclic quotient. The aspherical 5-manifold is then “diagonally” cav-
eredby 72 x M.) In other/viczﬁis, the universal uniformiii_llg/group can be reduczd
to Isom(R?) x Isomg(PSL(2, R)) = E(2) x (R xz PSL(2, R)).

On the other hand, take G/K x H?, where G = SOq(1, 3) = PSL(2,C) =
Isomg(H?) and K = SO(3). For any lattice I' C G and homomorphism ¢: @ —
Aut(I'), there exists just one extension 1 - I' - IT — Q — 1, because the
center of I" is trivial. Furthermore, IT contains a finite indexed normal subgroup
I" x Qgp, where Qg is the kernel of O — Out(I") (Out(I") is finite). The Seifert con-
struction M (IT) = (IM\(G/K x H?) is regularly covered (possibly branched)
by the product space (I'\G/K) x (Qo\W), where Q/ QO acts diagonally and iso-
metrically as in Theorem 4.6. This means that M (IT) has (H? x H?)-geometry as
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an orbifold. If Q — Out(I) is trivial, then I1 cannot be torsion-free even if I is
torsion-free. Consequently, M (IT) is not aspherical (the underlying space of this
orbifold is T'\H3 x $?).

If we want M (IT) to be a closed aspherical 5-manifold, then I'T must be torsion-
free. This means that I1,in1 — I' — II,, — @, — 1 must be torsion-free
for each O, = Z,, Z3, and Z;. Moreover, the image of Q in Out(I"), which is
isomorphic to O/ Qy, can have no abelian quotient other than 1 because Q is per-
fect. In addition, I" must be normally contained in other torsion-free lattices in
PSL(2, C) with quotients Z,, Z3, or Z;. This is of course difficult to achieve in
general. (We may easily find I" so that Out(I") does not contain each of Q,, =
Z:, Z3 and Z as subgroups.) The point here is that the possible group extensions
IT of T" by Q and the structure of IT severely restrict the possible Seifert construc-
tiogls that yield torsion-free IT, and hence, aspherical manifolds when compared
with extensions of Z> by Q. One caveat, though, is that there are far more noniso-
morphic lattices in SOg(1, 3) than in R3, which leads to a rich supply of Seifert
fiberings despite the finiteness of each Out(I").

ExAMPLES 4.10. In this example, let us choose I' = (Z x Z) x Z, where the gen-
erator of Z acts on Z x Z by a — ab, b — a. This group embeds in SOp(1, 3)
as a noncocompact lattice. In fact, I'' = (Z * Z) x 2Z is a subgroup of index 2
and "\ H3 is the well-known complement of the (hyperbolic) figure-eight knot.
M = I'\H? is a nonorientable finite-volume hyperbolic manifold doubly covered
by the complement of the figure-eight knot. Now, Out(T") is precisely Z, [CR4,
6.8 & 7.2]. The generator of Z, lifts to a hyperbolic involution on M and has a
circle of fixed points.

Let¢: O — Out(I") = Z; be a homomorphism and Qg be the kernel. Let1 —
I' > IT — QO — 1 be the extension induced by ¢.

Case 1 (O = Qp): Then the Seifert construction is the embedding of IT =
I' x @ into (SOy(1, 3) X Z,) x TOP(W) and the action of IT on H? x W is just
the product action. The action will be free if and only if the Q action on W is free.

Case 2 (the index [Q; Qo] is 2): The Seifert construction again leads to an em-
bedding in the above group. The action of IT on H3 x W factors through H3 x W —
M\H3 x Qo\W — (T'\H3) Xz, (Qo\W). Clearly this action is free if and only if
the action of Q on W is free. In the free case, IT\(H? x W) is a '\ H? bundle over
O\W with structure group Z,. Since these are the only possible group extensions,
there are no other Seifert constructions with this lattice.

REMARK 4.11. Let us now explain more carefully the connection with [RW]. Let
Qo be the kemnel of Q — Out(I"). Then I' x @y is a normal subgroup of I'T with
quotient isomorphic to the finite group Q/Qp. The exact sequence 1 — I' —
M/Q¢ — Q/Q¢ — 1 injects into 1 — Inn(I") - Aut(I") — Out(l") — 1.
Since every automorphism of i(I') C G = I(G) extends uniquely to an auto-
morphism of G, T1/Qy is mapped into Aut(G) = G carrying I' to u(i(I")) = T
in Inn(I") C Inn(G). The action, in [RW], of IT on G/K x W is given by the
composite
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G/RExW 28 G/R x(0o\W) 5> (T\G/K) x (Qo\W) 228 I\(G /R x W).
Specifically, the action of 8 € ITon @K x w is givenby @K x w — BaK x w/,
where § is the automorphism of G induced by conjugation by 8 € IT, and w’ =
p(j(B))(w), where j: T — Q. L

Remark 4.4 tells us that the action of (1) C Aff(G, K) x TOP(W) on
G/K x W is equivalent to the action of IT on G/K x W via the isomorphism
W1 and the diffeomorphism G/K — G/K.

If p: @ — TOP(W), where W is a contractible manifold, and if IT is torsion
free, then the space M (IT) = O(IT)\(G/K x W) is the K (I1, 1)-manifold con-
structed in [RW] as mentioned in the Introduction, and M (IT) will be smooth if p
is smooth.

Mostow’s rigidity theorem does not apply to G = PSL(2, R). However, by chang-
ing the embedding of T, one can still embed the group I1 into TOPg x (G x W)
provided that the image of the abstract kernel in Out(I") of the given extension is
finite.

THEOREM 4.12. Let G = PSL(2,R), and let K = S' ¢ PSL(2, R) be a maxi-
mal compact subgroup. Let I" be a lattice of G. Let p: Q — TOP(W) be a prop-
erly discontinuous action, andlet 1 - I' — Il - Q — 1 be an exact sequence.
Assume that the abstract kernel ¢: Q — Out(I") associated with this extension
has finite image. Then there exists a homomorphism 0:T1 — TOP¢ x (G/K x W)
so that the diagram with exact rows

1 —> I — I1 — 0 — 1

il al wxpl
1 — PSL(2,R) — TOP; x(G/K x W) — Out(G) x TOP(W) — 1

is commutative (wWhere i:I" — 1(G) may be different from the original T C 1(G))
This yields a Seifert fiber space with the surface orbifold T \G/K = I"'\H? as typ-
ical fiber. The action is free if and only if the preimage of each stabilizer Q,, in Tl
is torsion-free and, in particular, T is a surface group.

Proof. First we need to calculate TOPg ¢ (G/K x W). Since Ng(K) = K, the
general case still applies. We have

1(G) x Aut(G, K)
r(K) x Aut’(G, K)

Let Qo be the kernel of p: @ — Out(I"). Then Q = Q/Qy is finite. Consider the
extension

TOPg x (G/K x W) = x TOP(W).

l1->T—>II—->0—1,

where IT = II /Qo. By Nielsen’s theorem, as completed by S. Kerkhoff, there
exists a homomorphism IT — PSL(2, R) x Z, realizing this extension as a group
action. This, together with the action Q — TOP(W), gives rise to a desired ho-
momorphism 8. If the abstract kernel of @ into Out(I") is not finite, then we
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cannot apply Nielsen’s theorem and a Seifert construction is not possible by this
method. N

Theorem 4.6 still holds if G contains 3-dimensional factors (i.e., PSL(2, R)-
factors), provided that the projection of I' to each of these factors is dense, be-
cause the lattice will still satisfy the UAEP condition [Mos; Pra]. The other ex-
treme case will be generalization of Theorem 4.12. Suppose G = PSL(2, R) x
PSL(2, R) x --- x PSL(2, R), and assume I' is a lattice in G such that none of the
images of I" by the projection onto each factor is dense. Then I' lies in a group of
the form A =T'; x I'; x - -« x I’y (simply take the images of projections). The ar-
gument of Theorem 4.12 goes through, and the statement holds true in this more
general setting.

ExaMpPLE 4.13. LetI" C PSL(2, R) be a compact surface group of genus 9, and
let Q = 7% C E(2). A finite group F = Z, acts on the surface as a covering
transformation yielding a surface of genus 5. It also acts on Q by sending the gen-
erators f; > f; Vand 1, > ty ! so that it has four fixed points on the 2-torus. Let
I1be an extensionof I' x Z2 by F = Zjysothat] - I'xZ? —» 1 — Zy — 1is
exact. WeviewITas1 > TI' > IT - Q — 1, where Q = Q % Z». Then IT acts
freely on (PSL(2, R)/S!) x R? = H x R2. The resulting space IT\(H x R?) is an
aspherical Seifert manifold over a flat orbifold (topologically the 2-sphere) with
typical fiber the surface of genus 9. There are four singular fibers, all of which are
surfaces of genus 5.

5. Solvmanifolds

A solvmanifold X is a space on which a solvable Lie group acts transitively. This is
equivalent to saying X = G/H where G is a solvable Lie group and H is a closed
subgroup. An infra-solvmanifold is a quotient space of a solvable Lie group G by
a closed subgroup H’ of G x Aut(G) which is finitely covered by a solvmanifold.
Therefore, H' N G must have finite index in H'.

We shall work with a special kind of solvable Lie group: The split Lie hull of
a predivisible group (definitions to follow). This is not very restrictive, because
every poly{cyclic or finite} group contains a characteristic predivisible group. The
following definition can be found in [AJ].

DEFINITION 5.1. A torsion-free group I' is called a predivisible group if it fits

the short exact sequence 1 - A — I' - Z* — 1 and satisfies the following

conditions.

(1) A is nilpotent.

(2) For y € T, let u(y) be the automorphism of Ag (the Malcev completion of
A). Then, for each eigenvalue 8 of w(y),

0160|"! = cos2mp +i sin 2xp

with p = 0 or irrational.
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For a predivisible group I', there exists a connected solvable Lie group G = §
K, called the split Lie hull of T', satisfying:

(P1) T is alattice of S;

(P2) (T, G) has the UAEP;

(P3) S is a closed normal subgroup of G; and

(P4) K is a maximal compact subgroup of G which is a torus.

LeEMMA 5.2. With G as above, let N be the largest normal subgroup of G con-
tained in K. Then N is fully invariant in G.

Proof. Since S is normal in G, [S, N] C [S, G] C S. Similarly, since N is nor-
mal in G, [S, N] C N. Consequently, [S, N] C SN N = {1}. Since K is abelian,
this implies that N C Z(G). In fact, N = Z(G) N K.

We claim that N is fully invariant. Since N is closed, it is compact. Therefore,
either N is finite or the set of elements of finite order is dense in N. Let f: G —
G be an automorphism. Assume f(N) ¢ N. If f(n) € N for every element n
of finite order, then f(N) C N. Therefore, there exists n € N of finite order, say
of order p, such that f(1,n) = (a, @) witha £ 1. Since (a,a) € Z2(G), ¢ =
n(a~!) so that ¢(a) = a. Thus,

(1, 1) = f((1,m?P) =(fA,n)? = (a,a)? = (@, aP).

However, since S is torsion-free, a? = 1 is not possible. This proves f (1, n) is of
the form (1, @), which implies f(N) C K. However, Z(G) is fully invariant so
that a central element maps to a central element. Thus ¢ € N again. Since N is
compact, one can apply Lemma 1.8 so that «(N) C N implies that ¢ induces an
automorphism of N. We have proved that N is fully invariant. O

When we divide out G by this group N, properties (P1)—(P4) are preserved (with
K replaced by K /N). We lose nothing by dividing out by N, since G /K is diffeo-
morphic to (G/N)/(K /N) and the universal uniformizing groups are the same; see
Proposition 1.7. Therefore, we may assume that N is trivial from the beginning.
So we add one more property to the list:

(P5) the largest normal subgroup of G contained in X is trivial.

An MW (Mostow—Wang) group T is one occurring in an exact sequence 1 —
A - T' - Z°F — 1, where A is a torsion-free, finitely generated nilpotent group.
It is known that an MW group contains a characteristic predivisible polycyclic
group of finite index. From now on, T is a lattice of G = S X K satisfying
conditions (P1)—(P5).

LEMMA 5.3. Every compact subgroup of G isomorphic to K is conjugate to K.

Proof. Let K’ C G be a torus. It acts on the coset space G/K = S smoothly, as
left translations. It is well known that a torus action on a Euclidean space has a
fixed point, say pK. Now K’ - pK = pK implies p~!K’p C K. If K’ = K, then
clearly p~!K'p = K. In fact, the statement is true in more generality: Let G be
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a Lie group with a finite number of components and let X be a maximal compact
subgroup. Then every compact subgroup of G can be conjugated into K. O

Let
SK ={seS:[k,s]=1forallk € K}

be the fixed point set of the K-action on S. Since [(1, k), (a, )] = (k(a) -. a 1,1
and K is abelian, we have the following lemma.

LEMMA 5.4. Ng(K) = Cg(K) = S¥ x K. 0]

PROPOSITION 5.5.  Suppose SX is trivial. Then:

(1) there exists an isomorphis_m W: Aff(G, K) — Aut(G) _;ﬂ*zd
(2) TOPg xk(G/K x W) = Aff(G, K) xTOP(W), where Aff(G, K) = (I(G) %
Aut(G, K)/r(K).

Proof. Lemma 5.4 implies Ng(K) = K in our case. (1) Lemma 2.3 applies be-
cause of Lemma 5.3. (2) Lemma 2.1 together with the condition (P5) implies that
Aut’(G, K) is trivial. Now one applies Theorem 2.2. ]

THEOREM 5.6. Let I" be a predivisible group, and let G = S X K be a solvable Lie
group satisfying (P1)—(P5). Also assume that SX is trivial. Let p: Q — TOP(W)
be a properly discontinuous action, and let 1 - I' — Il — Q — 1 be an ex-
act sequence. Then there exists a homomorphism 6:I1 — TOPg x(G/K x W) =
Aff(G, K) x TOP(W) so that the diagram with exact rows

1 — r — I1 — [0 — 1

il ol pxp l
1 — Aff(G,K) — TOPg x(G/K x W) — Out(G) x TOP(W) — 1
is commutative, yielding a Seifert fiber space with typical fiber the double coset
space '\G /K, a solvmanifold. Such a homomorphism 0 with fixed i and ¢ X p

is unique. The action is free if and only if the preimage of each stabilizer Q,, in
I1 is torsion-free.

Proof. (Existence) Since I' is normal in I, there is a natural homomorphism w :
IT — Aut(I'). The UAEP, by (P2), gives rise to a homomorphism Aut(I') —
Aut(G). Consequently, we have a homomorphism IT — Aut(G). Compos-
ing T — Aut(G) with W~! : Aut(G) — Aff(G, K) in Proposition 5.5, we
get a homomorphism 1 — Aut(G) — Aff(G, K). Under this homomor-
phism, T' is mapped into Affo(G, K). This, together with the action IT —
Q — TOP(W), gives rise to a homomorphism IT — Aff(G, K) x TOP(W) =
TOPs x (G/K x W).

(Uniqueness) Same as the proof of Theorem 4.6. (|

In the previous theorem we assumed that SX is trivial. When SX is nontrivial, the
universal uniformizing group is pretty big and is not so easy to handle. However,
when Q is finite (as in [AJ]), a Seifert construction can be made.
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THEOREM 5.7 (when Q is finite; cf. [AJ]). Let I" be a predivisible group, and let
G = § X K be a solvable Lie group satisfying (P1)—(P5). Let 1 - T' - I1 —
Q — 1 be an exact sequence, with Q finite. Then there exists a homomorphism
6 : 1 — Aff(G, K) so that the diagram with exact rows

1 — r — I1 — 0 — 1

| g |
1 — Affo(G,K) — Aff(G,K) — Out(G) — 1
is commutative. Such a homomorphism 0 with fixed i and ¢ is unique. The action
is free if and only if 11 is torsion-free, in which case 0(I1)\G /K will be an infra-
solvmanifold.

Proof. We choose W to be a point. Since Q is finite, the trivial action of Q on W
is proper. By Corollary 1.5, the universal uniformizing group TOPg x (G/K x W)

is th
o e I(G) - [r (N6 (K)) % Aut(G, K)]
r(K) x Aut’(G, K) '
We can still apply Lemma 2.1 to yield Aut’(G, K) = 1. Thus,
1(G) - [r(Ng(K)) % Aut(G, K)]
r(K) '
gigce r(Ng(K)) Cl(G)xAut(G, K), thisisequal to ((G) xAut(G, K))/r(K) =
Aff(G, K).

(Existence) We shall first map Il into Aff(G, K) = I(G) x Aut(G, K). The
UAEP, by (P2), gives rise to an extension | - G — I[1-G — @ — 1. How-
ever, it is known that every finite extension of G splits (see [Aus, p. 251]). There-
fore the group IT- G = G x Q@ = (S % K) x Q. Let K’ be a maximal compact
subgroup of (S @ K) x Q containing K. Then, clearly, (S x K) x Q = § x K’,
where K’ = K x Q. Inotherwords, [1-G =G x @ = § x (K x Q). Then the
conjugation map sends Q into Aut(G, K). Consequently, we have mapped I - G
into /(G) x Aut(G, K) via

IMI—=I1-G—>Gx Q0 — Sx (K xQ)— I(G) ¥ Aut(G, K).

This, together with the projection /(G) x Aut(G, K) — Aff(G, K), gives a de-
sired homomorphism IT — Aff(G, K).

(Uniqueness) Again, we apply Theorem 3.2 to the commuting diagram in the
statement of the theorem (with %A = Affy(G, K) and A = I'). We need to cal-
culate the centralizer of I" in Affo(G, K) = (I(G) x Inn(G, K))/r(K). An ele-
ment (a, u(b)) € I(G) x Inn(G, K) represents an element in the centralizer if and
only if

[(a, u(®)), (x, D] = (abxb~lax™', 1) = (u@@b)(x) - x~1, 1) € r(K)

forevery x € I'. Recall that elements of 7 (K) in /(G) x Aut(G, K) are of the form
(k~!, w(k)) with k € K. Therefore, it happens if and only if u(ab)(x) - x~! €

TOPg x (G/K) =

TOPg x(G/K) =
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Z(G) N K. However, Z(G) N K is trivial so that pu(ab)(x) - x~! = 1 for every
x € I'. By the UAEP, this should happen for every x € G. Then u(ab) €
Inn®(G, K). But Inn°(G, K) is trivial by Lemma 2.1. Therefore, u(ab) =
1, so that ab € Z(G). Let a = zb~! for some z € Z(G). Since u) €
Inn(G, K),

(@, n®) = b7, u®) = (z, VG, 1n®)),

which represents the element (z, 1) € I(Z(G)) of Affo(G, K). We have shown
CXfE,(G, K)(I‘) = [(Z(G)). Since Q is a finite group and Z(G) is isomorphic to
R* for some %,

H'(Q; Cz. 6.1, = H(Q; RY) = 0.

By Theorem 3.2, such a homomorphism 6 with fixed / and ¢ is unique, up to con-
jugation by elements of Aff(G, K). Finally, since G/K is diffeomorphic to R",
the action is free if and only if IT is torsion-free. J

The Seifert construction in Theorem 5.7 for I'l, when Q is finite, gives us detailed
knowledge of the geometric structure of the spaces constructed earlier by Auslan-
der and Johnson [AJ]. For example, if G has a left invariant metric that is also
right K-invariant, then the resulting space G/K will inherit the metric.

More generally, we shall take the case where ¢: Q — Out(G) has a finite image.

COROLLARY 5.8 (Z(I') trivial and ¢: Q@ — Out(G) has a finite image). Let I' be
a predivisible group without center, and let G = S X K be a solvable Lie group
satisfying (P1)—(PS). Let p: @ — TOP(W) be a properly discontinuous action,
andlet 1 - I' - I1 - Q — 1 be an exact sequence. Assume that the abstract
kernel ¢: Q — Out(G) associated to this extension has a finite image. Then there
exists a homomorphism 0: 11 — TOPg x (G/K x W) = Aff(G, K) x TOP(W)
so that the diagram with exact rows

1 —» r — IT — o — 1

il Bl ‘PXPl
1 — AM(G, K) — TOPg x(G/K x W) — Out(G) x TOP(W) —> 1

is commutative, yielding a Seifert fiber space with typical fiber the solvmanifold
I'\G/K. Such a homomorphism 6 with fixed i and ¢ X p is unique. The action is
free if and only if the preimage of each stabilizer Q,, in Il is torsion-free.

Proof. Let Qg be the kernel of ¢: 0 — Out(G). Then, since I'" is centerless, Oy
lifts to a normal subgroup of Il. Now consider the exact sequence 1 — I' —
I/Qo - Q@/Q¢ — 1. Since Q/Qy is finite, Theorem 5.7 applies to obtain
a homomorphism I[1/Q¢ — Aff(G, K). Now the two homomorphisms IT —
I/Qo — Aff(G, K) and [T »> Q — TOP(W) give the desired homomorphism.

|



462 KYyUNG BA1 LEE & FRANK RAYMOND

The structure of the space 8(IT)\(G/K x W) is similar to the symmetric space
case. That is, it has a Seifert fiber structure

T\G/K — 0(ID\(G/K x W) — Q\W,

where the typical fiber I'\G/K is a solvmanifold. Singular fibers are finite quo-
tients of the typical fiber, where the finite actions are via elements of —A_ff_(G, K).
Let Qg be the kemel of ¢: 0 — Out(I"). Then the preimage of Qy in IT splits
as a direct product I' x Q¢ because I' has trivial center. Since Aut(G) =
Inn(G) x Out(G), Qp maps trivially into Aff(G, K). Consequently, the nor-
mal subgroup I'' x Q¢ of IT acts on G/K x W in such a way that I" acts only on the
G/ K-factor as left translations and Qg acts only on the W-factor via p, yielding
(IM\G/K) x (Q\W). Because ¢: Q — Out(TI") has a finite image, Q/Qy is finite.
The finite quotient group F = I1/(I" x Qg) acts diagonally on (I'\G/K) x (Q\W).

Recalling that F acts on a space X, let F be the group of all lifts of elements of
F to the universal covering X of X. Then F acts on X and normalizes the covering
transformations IT = m; (X). The exact sequence

1> —>F—>F-—>1

is called the lifting sequence for F, and F is effective if and only if F is effective.
In particular, if X is a closed aspherical manifold then F is effective if and only if
the centralizer Cz(I1) is torsion-free [LR3].

As mentioned at the beginning of this section, for a torsion-free poly{cyclic or
finite} group IT we can always find a (characteristic) predivisible subgroup I" of fi-
nite index in I'1. Let Q be the finite quotient IT/ I, and choose W = point. Then the
Seifert construction of Theorem 5.7 produces an embedding 6 (IT) C Aff(G, K)
and the Seifert manifold M (IT) = 6(IT)\G/K is a closed smooth K (IT, 1) mani-
fold. Suppose now ¢: F — Out(IT) = 7o & (M (I1)) is a homomorphism of a fi-
nite group F into the homotopy classes of self-homotopy equivalences of M (IT).
We then have the following.

CoRrROLLARY 5.9 (Geometric realization of group actions from homotopy data).
F acts on M (1) if and only if there exists an extension

l->IM—>E—F—>1

realizing the abstract kernel r. Moreover, the action can be chosen to be smooth,
induced from smooth Seifert automorphisms contained in Aff (G, K). The action
of F is effective if and only if Cg(I1) is torsion-free.

Proof. In order to have an action, we must have a lifting sequence and hence an
extension, 1 - I1 — E — F — 1, that realizes the abstract kernel . Since
I is characteristic in I1, itisnormalin E andand 1 - Q@ =I1/T — E/T —
F — 1 is exact. Because of the commutative diagram
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l T —->IT—> 0 —1

L

l—-T—E — E/T —> 1

L

F 5> F,

we can find a Seifert construction 8’: E — _A_f_f(G, K) that extends 6:I1 —
Aff(G, K). Therefore the group F acts on M (I1) smoothly as diffeomorphisms
preserving the Seifert structure. The action of F, as mentioned above, is effective
if and only if Cg(I) is torsion-free. In any case, we have a lift 1/7,

F % pigeuan)

a i|
Oout(Il) > E(MI1)),

where j sends a self-diffeomorphism to its homotopy class. In case there exists one
extension realizing the abstract kernel v, then for each element of H2(F, Z(I1))
there is a congruence class of extensions E realizing the abstract kernel ¢. Each
of these extensions gives rise to a (not necessarily effective) action of F on M (I1).

O
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