An Isoperimetric-Type Inequality
for Integrals of Green’s Functions
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1. Introduction

Let D be a domain in R”, n>2, with finite volume. Let D* be the ball centered
at the origin and of the same volume as D. Denote by Gp(w, z) and Gp+(w, 2)
the Green’s functions for D and D*, respectively. The following isoperimet-
ric inequality is now a classical resuit (see [1, p. 61]):

sup | o(Gp(w,2))dz < f 0(Gp+(0,2)) dz (L.1)
.

weD YD

for all nonnegative nondecreasing functions ¢ defined on [0, o).

However, for a large class of domains D and functions ¢, what determines
the finiteness of the quantity on the left-hand side of (1.1) is not the volume
of the domain but rather its inner radius. This is true in particular for any
simply connected domain in the plane. More precisely, if D is a simply con-
nected domain in the complex plane we let Ry be the radius of the largest
disc contained in D (if such a disc exists) and the limit superior of the radii
of all discs contained in D otherwise. We call Rp the inner radius of D.
Assume ¢ satisfies

f re(log(coth(r)) dr < o,
0
(e.g., ¢(x) =x?, 0 < p < ), then by Baiiuelos and Carroll [2] we have

sup | ¢(Gp(w,2))dz< (1.2)

weD YD
if and only if R, < co. It is then natural to inquire about the following extre-
mal problem: Amongst all simply connected planar domains D with Rp =1,
find those that maximize the left-hand side of (1.2). This problem, which is
wide open even for ¢(x) = x, is closely related to an extremal problem for
the lowest Dirichlet eigenvalue of D and to the well-known problem in func-
tion theory concerning the schlicht Bloch-Landau constant. We refer the
reader to [2] for more on this connection. When we restrict ourselves to
convex domains, it has been proved by Sperb [9, p. 87] that
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sup | Gp(w,z)dz =< f Gs(0,w) dw, (1.3)
weD YD S
where

S=(z=x+iy:=-1<y<l1}

is the infinite strip of inner radius 1. Sperb’s proof, which is based on the
maximum principle for the torsion problem Au = —2 in D and u vanishing
on the boundary, does not seem to apply with other ¢s. In this paper we
prove the followoing theorem.

THEOREM 1. Let D be a convex domain in the complex plane of inner ra-
dius 1. Let ¢:[0,00) — [0, ) be nondecreasing. Then

272

r(1/3)3

2
sup w(GD(w,z))dzs( ) fs o(Gs(0,2)dz.  (L4)

weD vD

The constant 27%/T'(1/3)3 is approximately 1.0541, and we of course conjec-
ture that the inequality (1.4) holds with this constant replaced by 1.

For simply connected domains D in the plane, integrals involving the
Green’s function of D can be written in terms of the derivative of the confor-
mal mapping that sends the unit disc U onto D. More precisely, if F: U— D
is a conformal mapping with F(0) = w, then the conformal invariance of
the Green’s function gives

— _1_ _i_ ’ 2
fD o(Gp(w, 7)) dz = ff(zvr log lzl)IF (2)|? dz

- f 1 r,p(_L log l)( f 7 Fr(rei®)? de) dr. (1.5
0 27 r 0 ) )

Thus a more general extremal problem, which was first raised in [2], is the
following: Define

§ = [F univalent in U with Rg ) =1}.
Is there a Y € & with the property that, for all Fe F and all r € (0, 1),

2r . 27 .
f |F'(re®)> df < f V' (re®)2do? 1.6)
0 i 0

An extremal for this problem would also give an extremal for (1.2) and for
the schlicht Bloch-Landau constant problem, and also, quite likely, for the
extremal problem concerning the lowest Dirichlet eigenvalue for domains of
inner radius 1. We again refer the reader to Baiiuelos and Carroll [2] for
more information on these problems. As before, if we restrict the family & to

F. = {F univalent in U, F(U) convex, Rgy) =1},

it seems reasonable to conjecture, (see [2] for more motivation on this) that
(1.6) should hold with ¥(0) = 0 and ¢ ’(0) > 0, where ¢ is the map that takes
the unit disc onto the strip S. Here we prove the following result, which sug-
gests to us that this conjecture should be true.
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THEOREM 2. Let F be univalent in the unit disc U such that F(U) is con vex
and Rpyy=1. Then, forall 0<r=1/2,

A g iBN12 222 NV (2, e -
fo |F'(re®)] dﬁs(r(l/3)3)fo Vs(re®)? do, (1.7)

where
2 1+z2
Vs(z) = - 10g<—z>

is the conformal map from U onto S with y5(0) =0.

Theorems 1 and 2 will be consequences of domain monotonicity (subordina-
tion) and the following.

THEOREM 3. Let F be a conformal mapping of the unit disc U onto a tri-
angle T of inner radius Ry and inner angles ax, Bw, and y«. Then, for 0 <
r<l,

27 . 27 ,
f |F'(re®)[?d8 < C2 5 R} f Wi(re™)|? do, (1.8)
0 0

where

7‘_2

(4T () sin(aw/2)T(B) sin(B7/2)T'(y) sin(yw/2))

This inequality is sharp in the sense that C, g . — 1 as the triangle tends to a
strip.

Ca,fi.v =

Inequalities for integral means of univalent functions have been extensively
studied for many years using, among other methods, extreme point theory
and the powerful *-function of Baernstein (see Duren [4] for some of this
work). Most of this literature, however, deals with univalent functions F
and derivatives F’, under the normalization F’(0) =1, and in many of these
cases the Koebe function is shown to be the extremal. To the best of our
knowledge, integral means of derivatives of univalent functions F under the
normalization Rg(yy = 1 have not been studied before. We know of only one
result in the literature which, when properly interpreted, is related to this.
First, a univalent function F in the Hardy space H' of U is in BMOA if its
boundary function on the circle is in BMO, the space of functions of bounded
mean oscillation on the circle. It follows from Baifiuelos and @ksendal [3]
and Baifiuelos and Carroll {2] that a univalent function F is in BMOA if
and only if Rp(y) < o. Furthermore, there exist universal constants c; and ¢,
such that

c1Rrwy = || Fllemoa = €2 Rpw)-
(See also [8] for more on the BMO connection.) With this notation, the re-
sult of Nowak [7] (see also [5]) can be stated as follows.

THEOREM A. Let F be a univalent function in U with Rpyy=1and F(0) =
0. Then there exists a universal constant A such that



606 RoDRrRIGO BANUELOS & EL1ZABETH HOUSWORTH

2r . 27 .
f o(|F(re®)|)dé _<_f o(Alys(re®))ds, 0=r<1, (1.9)
0 0
Jor all nonnegative nondecreasing convex functions ¢ on [0, ).

One would hope that, when F(U) is convex, the constant A can be taken to
be 1. This is indeed the case in various special situations (such as equilateral
triangles), but we have not been able to prove this in general. The proof in
[7], via Baernstein’s *-function, relies on the decomposition of BMO func-
tions in terms of an L™-function plus the Hilbert transform of another L®-
function. Such a proof provides no information on the size of the constant 4.

2. Proofs

In this section we present the proofs of Theorems 1, 2, and 3. We shall first
prove Theorem 3 and then show how Theorems 1 and 2 follow from this.
We start by computing the inner radius of a triangle in terms of the con-
formal mapping from the disc to the triangle.

LEMMA 1. Let &), &5, &3 be three points on dU and «, 3,+ three nonnegative
numbers such that o+ 3+~ =1. Let

F'(z) = (z=§)* 1 (z—=£)P " Hz—&5) ! 2.1)

be the derivative of a conformal mapping from U onto a triangle T with
angles ar, 3w, yw and vertices at w, = F(§,), w, = F(§5), and wy = F(¢5),
respectively. Then

_ 2 T(a) sin(an/2)T(B) sin(Bw/2)T' () sin(yn/2)
w |2 — &3] (61— £3[P1E1 — &2 '
Proof. Let wy be the incenter of the triangle 7. That is, wq is the center

of the largest disc contained in 7. Then the segments from w; to wy and
from w, to wy bisect the angles at w; and w,. Thus

Ry (2.2)

Ro— length(w,w,)
T cot(an/2)+cot(Bn/2)

(2.3)
However,

£ .
length(W;w;) = f "|F(e™®)| db
£

and we need to compute this quantity. To do this let w: U — H, where H is
the upper half-space, be defined by

£3—& &~z
£g1—& &-z2
Then w(&,) = 0, w(£,) =1, and w(£;) = . Setting V(z) = w™'(z), we obtain

w(z) =

& . 1
fs |F'(e™®)| d§ = fo \F'Van||V'(0)| dt. 2.4)
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Let
_E5-&6
T E—&
A simple calculation gives
V(z)=£—32';-q£'- and |V'(1)|= alé: — £3|.
z—a |t—al?
Since
I S T 7
Y [ 2o R
|V(t) Sll lt—a|°‘"l ’
B-1 8—1
_ ;3—1___|52—E3| |t —1]
lV(t) EZI It__alﬁ__l ’
and
oy —gopr-t Ll b el

=&Y e—alr—t 7
we have, after noticing that 1 —a+1—8+1—+ = 2 and substituting in (2.4),
that
f£2|F'(e"")| do = 1 fl 27 Y1 =) lat
£, |&2—&3|%|&1— &[PlE1— &) Jo
_ T()T(8)
o+ B)|Er— &3] & — &3)B 61— &)

Thus
Ry — I()T(B)
[cot(an/2) +cot(Ba/2)IT(a+B) |2 — £3|*[E1— &3P €1 — £2|
_ sin{aw/2) () sin(B7/2)I'(B)
sin((a+B) 7/ 2)T(a+B) &, — £3]*|&1 — &38|, — &2
_ 2 (o) sin(an/2)I(B) sin(Bn/2)I(y) sin(yn/2)
K 62— &slol& - &:[PlE - & ’
where the last equality follows from the fact that o + 8+ =1 and the identity

1
sin(rt)

This completes the proof of the lemma. O

()T (1—1) =

REMARK. In(10], Szego presents a similar computation for the inner radius
of T in terms of the conformal mapping from the upper half-space to 7. His
formula is a little cleaner.

Next, for any £ € dU, we denote by

o
K (re") = -I'r—e—m——_—g—lg

the Poisson kernel for the unit disc.
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LEMMA 2. Let & and &, be any two points on the unit circle. Then, for any
o<r<li,
2 . . 4 27 . .
Ky (re®)Kg,(re®)yd0 < ———— | K_j(re®)Ky(re?®)df. (2.5)
|&1— &3] Jo
Proof. Let & = e and &, = e”2. By the semigroup property of the Poissan
kernel,

1 ZWK i6 i\ 0 _ 1-r*
py- | g (re”) K, (re”) do = [Fei— o? (2.6)
and
1 f ZWK(rei")K (re’®) do = 1-r? 2.7)
2r Jy - 14+r2° '
Thus (2.5) is equivalent to
A+rh JeB—e®P (2.8)
4 |r2e'92—e‘91|2
However,
(1+7r%)? |e®—e®)2  2(14r%)%(1—cos(6,—0,))
4 |rleif2—e®|2 " 4(1+4r4—2r2cos(6; —0,))
3 (1+r%)2(1—cos(6,—0,))
T 2[(1—r2)242r2(1—cos(6;— 0,1
Since 1 —cos(8,—0,) < 2, we have
(1—r2)2(1—cos(6,—0,)) < 2(1—-r?)
Thus,
(14 r3)2(1—cos(8;—0,)) < 2[(1 —=r»2+2r*(1 —cos(8, —0,))],
which by (2.8) proves the lemma. ]

REMARK. We notice that without the factor 4/|¢; — £,|% the inequality (2.5)
is in fact reversed. Also, it is easy to check, using the conformal invariance
of the Poisson kernel, that (2.5) is equivalent to

27 27
K_j(r(re"®) K (r(re")do < | K_,(re®)K (re?)ds  (2.9)
0 0
for all Mo6bius transformations 7 of the unit disc. The inequality (2.9) also
has an interesting application to conditioned Brownian motion. Multiplying
both sides of (2.9) by r and integrating in » from 0 to 1, we have that the life-
time of Brownian motion in U conditioned to go from £; to £, is maximized
when the points &, and &, are diametrically opposite, a result first proved
in [6] by a different argument.
We are now ready for the proof of Theorem 3. We need to show that

2w . 27 .
| 1o = €2 B3 [ lustre ™, (2.10)
]
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where
|F’(Z)|2 — IZ_Ellz(a—i)|z_£2|2(6—1)|z—53|2(7-1)

and Ry is as in (2.2). Since K; (z) = (1 —|z|*)/|z—¢;> and a+B+y =1, we
see that

IF@I = (1 —Izlz)(l—aLu—mHl—v) (K (2)' ™K y(2)' ™ Ky (2)' 7]
- a—_—llzlz—)il(gl(z)"“ng(z)l"ﬁKg3(z)l_7. (2.11)
Also,
D=2 o
and
[Ws(2))* = %IT——-I_ZZTE
=1 (l_llzlz)zKl(z)K_,(z). (2.12)

Substituting (2.11) and (2.12) in (2.10), we see that the inequality (1.8) is
equivalent to

27 . . .
Ksl(re’g)l“"‘Ksz(re’o)'"ﬁKES(re’e)l““’ do

16

27 . .
<-5C2;, R} f Ki(re®)K_,(re™®) db
0

4 27 . .
= K\(re®YK_i(e®)do (2.13)
E2— B l6 - &Pl — &P o T :
for any three points &;, &,, £;3 on the unit circle and any three nonnegative
integers «, 3,y with a+8+ v =1.
We now write the left-hand side of (2.13) as

27
f (K¢, (re”) K, (re))*(K; (re”) K (re”))P (K, (re”) K, (re”))" d6. (2.14)
0

Since a+ B3+ vy =1, we can apply Holders inequality to conclude that the
quantity in (2.14) is

27 . . o 27 ) . B
< ( K, (re®)K; (re”) aro) ( Kél(re’g)Kb(re’B)d())
0 0

2 . . Y
x( K; (re®)K; (re') dﬁ)
0

4

27
< K(re'yK_,(re") do,
|£2— &3228, — £3[2BE,— £,]27 Jo :
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where the last inequality follows from Lemma 2. This completes the proof
of (2:13) and hence of Theorem 3. 0

We next show how Theorems 1 and 2 follow from Theorem 3. First note that
if D is convex and Rp = 1, then either D € S, where S is the strip, or DS T,
where T is a triangle and Ry = 1. This can be seen in the following way: If
D contains a largest disc, then that disc is tangent to the boundary of D
somewhere. Divide the disc into quarters so that this tangent point is on the
boundary of two quarters. There must be another tangent point in each of
the opposite quarters or else one could move the center of the disc slightly
and replace this disc with a larger one. The extreme places for these addi-
tional tangent points both yield strips, and the others yield a triangle inside
which the domain D lies. Convexity allows the choice of any tangent point
in the opposite quarters. If the domain does not contain a largest disc, then
by convexity it must be contained in a strip of the same inner radius.

If the domain is contained in a strip, then the domain monotonicity of the
Green’s function gives (1.4) with 2%/ T'(1/3)? replaced by 1. If the domain is
contained in a triangle, then again domain monotonicity gives

sup | ¢(Gp(w,z))dz=sup | ¢(Gr(w,z))dz (2.15)
weD YD weT YT

_ ! 1 1 o2
ngo(GT(w,z))dz—L rqo(—z-; log;)(L |F'(re”)| de)dr,

where F is the conformal mapping from U onto 7 with F(0) = w. By Theo-
rem 3,

and

27w . 27 ]
f [F/(re®)2df < C2 4. f [Ws(re®) db (2.16)
0 0

and hence to finish the proof of Theorem 1 we need only show that

272

C <—— 2.17
*B1 = T(1/3)3 @17
for any positive o, 8,y with a+ 8+ vy = 1. To verify this, we set
l—a—
g(a, B) =T(a) sin(o‘—z’r—)r(ﬁ) sin<5—2“)r(1 —a—B) sin((—ﬁz—ﬁ)—”).
By differentiating log g(«, 8) we notice that, at the local extrema,
(@) oT I'(B) Bx
t = t{ — ). 2.18
Ta) 0 ( 2 ) @) ° ( 2 (2-16)

Since I'V(s)/T'(s) and cot(sw/2) are both increasing functions on (0, !],
(2.18) is only satisfied when a = 8 = ¢ = 1/3. It is then easy to see, by direct
calculation, that this gives a minimum for g. Thus,
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72 272

Ca B Y S . = ’
T 4T(1/3)3(sin(#/6))  T'(1/3)3

which is (2.17).

Next we recall that if D, C D,, where D; and D, are simply connected in
the plane, then F) is subordinate to F,, where F; and F, are the conformal
mappings from U onto D; and D, (respectively) with F;(0) = F,(0) (see [4,
Chap. 6]). If this is the case then ([4, p. 194]),

27 . 27 .
f |[Fitre™)| do < f |[Fire)?do, 0<r=1/2. (219
0 0

Now, if Fis as in Theorem 2 then F(U)< S or F(U) € T, where T is a tri-

angle with Ry = 1. Theorem 2 follows from this, (2.19), and Theorem 3.
O
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