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1. Introduction

Recall that the basic objects of study in the Conley index theory are isolating
neighborhoods and their associated isolated invariant sets. To be more pre-
cise, let ¢: R X X — X be a continuous flow on a locally compact Hausdorff
space. A compact set N is an isolating neighborhood if

Inv(N, ¢) :=={xe N|$p(RR,x) CN}Cint N.

In this case the maximal invariant set S := Inv(N, ¢) is called an isolated
invariant set. The importance of isolating neighborhoods comes from the
fact that they are robust under perturbation. In other words, if N is an iso-
lating neighborhood for the flow ¢, then N is an isolating neighborhood
for all nearby flows in the C? topology. However, it must be kept in mind
that from the point of view of dynamics it is the invariant set S which is
of interest. Obviously, if the dynamics on the set S has some complicated
internal structure, then we want to be able to decompose that structure into
simpler pieces. It is natural to expect that these simpler pieces should also
be isolated invariant sets and that the decomposition should, like the iso-
lating neighborhood, possess the feature of being robust with respect to per-
turbation. This led Conley to propose the following definition. A Morse
decomposition of § is a collection of mutually disjoint compact invariant
subsets of S,

NM(S) = {M(p)| pe P},

indexed by a finite set P, on which it is possible to impose a partial order <
such that, if xe S\U,cp M(p), then there exists p < g such that a(x) C
M(q) and w(x) C M(p). The individual sets M( p) are called Morse sets and
the collection of orbits S\U, p M(p) are referred to as the connecting or-
bits of the Morse decomposition. The set of connecting orbits with w(x) e
M(p) and a(x)e M(q) is denoted C(M(q), M(p)). Thus, given a Morse
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decomposition of S, every element of S can be assigned uniquely either to
a Morse set M(p) or to a connecting orbit set C(M(q), M(p)). Any par-
tial order on @ that satisfies the aforementioned properties is an admissible
order. Given a Morse decomposition of S, because of the existence of a
partial order, it is easy to see that any recurrent dynamics in S must be con-
tained within the Morse sets. Similarly, the dynamics off the Morse sets must
be gradient-like. For this reason we refer to the dynamics within the Morse
sets as local dynamics (though, of course, it may occur over a large region
in phase space) and the dynamics off the Morse sets as global dynamics.

Our interest begins with the question: Given a Morse decomposition, is it
possible to re-assemble the dynamics in order to understand the flow on all
of S? To obtain even a partial answer requires fairly sophisticated tools, in
particular the Conley index and Conley’s connection matrix. These topics
will be discussed in greater detail in Section 2. For the moment, recall that
the (homological) Conley index assigns to each isolated invariant set S a
graded module CH,(S). Since we shall use field coefficients throughout this
paper, these modules are, in fact, vector spaces. To each Morse decomposi-
tion MN(S) = {M(p)| pe (P, <)}, there is associated a family of connection
matrices CM(IM, <) which are linear maps

A: @ CH.(M(p))—~ @ CH.(M(p)).
pPeEP peP

Nonzero entries of these matrices imply the existence of connecting orbits,
hence connection matrices provide information concerning global dynamics.

The power of the Conley index theory is best realized in the context of
continuous families of dynamical systems. Let A be a locally contractible,
locally arcwise connected space that continuously parameterizes a family of
flows ¢,. This is equivalent to the existence of a continuous parameterized
flow

d: XXAXR-XXA

defined by ¢(x, A, t) = (d(x, ), A). We speak of ¢, as the A-flow on X, and
denote X with the A-flow as X.

For any U C A, there is a flow ¢ on X X U obtained by restricting ¢, so
we can consider isolated invariant sets in that flow. If S is an isolated invari-
ant set in X X U, then every S, = SN X, is isolated in X,. We then say that
the family of isolated invariant sets {S,} is related by continuation over U or
continues over U. If S is an isolated invariant set that continues over U C A,
then we will write Sy, := U,y Sa-

The two basic properties of continuation are:

(1) If S, is isolated in X, then there is a neighborhood of A in A such
that, for every p in that neighborhood, there is an S, related by con-
tinuation to S). Of course, that S, could be empty.

(2) If S, and S, are related by continuation, then they have the same
Conley index.
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Together, these properties imply that the index remains constant for suffi-
ciently small changes in parameters.

Similarly, we say that a Morse decomposition continues over U if there is an
isolated invariant set S in X X U with a Morse decomposition {M(p)| p € P}.
This definition of continuation is stronger than the standard definition of
continuation of Morse decompositions. Typically, one only assumes that for
each Ae U, the collection {M,(p)| pe P} is a Morse decomposition. (Ob-
serve that this does not imply that there exists a partial order < which is
valid over all of U, that is, that there is an admissible order for the decom-
position {M(p)| p€ P} on the level of the parameterized flow.) However,
throughout this paper we need to use the stronger concept of continuation
and hence, for ease of expression, we shall use our stronger definition.

It is worth making two observations at this point. First, that the Conley
index is robust leads to a similar result for connection matrices. Thus, in
some sense, connection matrices detect connecting orbits that persist over
open sets in parameter space. This, in turn, suggests that they should be
reasonably easy to compute; in fact, numerical techniques that rigorously
perform these computations are currently being developed [11; 2]. The sec-
ond observation is that if a Morse decomposition continues over A but the
sets of connection matrices CM(IM, <, , Ap) and CM(IM, <) , Ay) at differ-
ent parameter values differ, then some global bifurcation must occur at some
set of parameter values separating Ay from A;.

These comments are meant to suggest that Morse decompositions and con-
nection matrices provide a framework within which one can detect global bi-
furcations. What is needed is a technique for interpreting the implications of
differences in connection matrices. This is the purpose of transition matrices.
There are currently three different constructions of transition matrices, re-
ferred to as singular, topological, and algebraic {7]. The purpose of this
paper is to relate the first two. As we shall see, this is not a purely academic
quest. Singular and topological transition matrices are constructed in fun-
damentally different manners, and come equipped with different properties.
In particular, questions of dynamics are more easily approached from the
framework of the singular theory, while the algebraic properties of the topo-
logical matrices are transparent. The results of this paper allow one to con-
clude, for the first time, that in some instances the algebraic properties of
the topological matrices can be applied to singular matrices. To clarify these
comments, we shall briefly review these constructions. Again, these issues
will be taken up in considerable detail in the later sections of this paper.

The idea of constructing singular transition matrices was due to Conley
and carried out by Reineck [14]. It is most easily described in the context of
a parameterized family of ordinary differential equations defined on R",

x=f(x,A),

where the parameter space A is the real line R. Let ¢, denote the flow gen-
erated by this equation. Assume that the Morse decomposition IM(S,) =
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{M,(p)| pe P} continues over R and that connection matrices A, and A,
for the Morse decompositions IM(Sy) and M(S,), respectively, are known.
Also, for simplicity assume that there exists a set N C R" that acts as an iso-
lating neighborhood for S, for all A R.

Now consider the following family of differential equations,
x=f(x,A),
. 1.1)
A=eA(A—1),

where now the parameter is e = 0, and observe that as e — 0 the flow ¢, gen-
erated by this system converges to the parameterized flow ¢ for ¢,. Define

M(p*) = M,(p),
M(p~) = My(p).

For ¢ > 0 sufficiently small, Nx[—2,2] is an isolating neighborhood for
the flow generated by (1.1). Let S, := Inv(N X [-2, 2], ¢.). Now observe that
since A< 0, if Ae (0,1) and e > 0 then

NM(S,) = (M(p*)| pe®)
is a Morse decomposition, and furthermore there is an admissible ordering
given by
q~ <p*,
qg <p ©4g<yp,
gt <pt e qg<p,

where <, and <, are admissible orders for M(S,) and NU(S;), respectively.
Let A, denote a connection matrix for N(S,). Then, since the dynamics on
the subspaces R and Rf are given exactly by the flows generated by * =
f(x,0) and x = f(x, 1), it is not surprising that

A: @ CH.(M(p7)) @ CHAM(p*)) » @ CH.(M(p~)) @ CH.(M(p*))
pe@® pe@® pe@® PE®

A =|B0 T 1.2
E—[O A]:la (°)

takes the form

where

T.: ® CH.(M(p*))» @ CH.(M(p")).
pe@®@ pe®
Two comments need to be made at this point. The first is that the entries
Ag and A, in A, cannot be the connection matrices Ay and A; for NM(Sy)
and 9N(S,) since they are defined on different spaces. One of the contribu-
tions of [14] was to formalize the expression in (1.2). Second, it is possible to
make sense of the limit of 7T(e) as e — 0. The resulting matrices are referred
to as singular transition matrices and the set of singular transition matrices
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is denoted by 34 t. In [14] it is shown that a nonzero element of a singular
transition matrix implies the existence of connecting orbits between appro-
priate Morse sets for some parameter value A€ (0, 1). Thus, these transition
matrices can be used to detect global bifurcations.

This form of transition matrix is by far the most general. In fact, one need
only assume the existence of Morse decompositions at different parameter
values of isolated invariant sets that are related by continuation. There are
two ways to compute these matrices: they can be computed via the dynamics
of the slow system (1.1), or as indicated in [12]. However, in such a setting the
algebraic properties of 7, for ¢ small are a complete mystery. For example,
it seems reasonable to ask whether 7, = T.=). However, one quickly realizes
that the spaces on which 7; and 7_, are defined are different, and hence even
expressing the question poses some difficulty.

In [10], the authors considered a problem where it was natural to con-
sider the composition of transition matrices. Again, this operation makes
no sense in the setting of singular transition matrices, so it was necessary to
develop a new matrix,

Thon: @ My (D)~ @ My (p),
pe@® pe@®

called a topological transition matrix. Using the same setting that was used
to discuss the singular transition matrix, the idea behind topological transi-
tion matrices can be described as follows. Since each Morse set M(p) con-
tinues over A = R, there exist isomorphisms

Fo,1(p): CH.(M\(p)) = CH.(Mo(p)).
Similarly, since S continues over R, there is an isomorphism
Fo,1: CH(S) = CH.(Sp)-
An elementary fact from the Conley index theory states that if

Sy= U My(p)
pPeEP

(i.e., if the set of connecting orbits is empty), then there exists an isomorphism
®5: @ CH.(My(p)) — CH.(S)).
peP

Thus, if there are no connections at either Ay or A;, the following diagram
can be constructed:

Qpep Fo,1(P)

@peP CH*(Ml(p)) @peP CH*(MO(p))
{ |2
CH.(S,) Fo. CH..(S,).

This diagram is not, in general, commutative, and it is precisely its failure to
commute that gives information about connecting orbits. For the purpose
of applications it is useful to be able to express this last statement in the
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form of a matrix. Of course, this requires choices of basis on each of the
spaces. We do this as follows. Let (3, be a basis for (—Dpe p CH.(M;(p)), and
let

Bo= D Fo,1(p)(®))
peP

be a basis for ®PE p CH.(My( p)). Using these bases, define the topological
transition matrix by
To.¥ =®go @ Fo,1(p)o®r".
peP

Observe that this construction only makes sense when the Morse decompo-
sition continues over the entire parameter space, and when there are no con-
necting orbits with respect to the Morse decomposition at the parameter
values Ay and A,.

In this setting it is perfectly clear what is meant by the composition of two
transition matrices. It is equally obvious that

top to -1
Tot =(T10) .

Furthermore, Ty} shares many properties with elements of Ss'“g In particu-
lar, nonzero off-diagonal entries imply the existence of connecting orbits for
some parameter values between 0 and 1.

The content of this paper is the proof that when both singular and topo-
logical transition matrices are defined, they are “equal”. Equal needs to be
put in quotation marks because the maps are defined on different vector
spaces. However, in Section 7 we shall exhibit a canonical isomorphism be-
tween these spaces that justifies our claim.

Having presented this sketch of these two transition matrices, we are now
in a position to justify our interest in showing that they are equal. In [8],
H. Kokubu, H. Oka, and the second author considered a set of equations
that can be related to singular boundary-value problems of the form

x=f(x,A),
A=eg(M),

where g(—1) =g(1) =0 and g(A) > 0 for Ae (—1, 1). The problem was to prove
the existence of connecting orbits from a critical point (x,, —1) to a critical
point (xg, 1) for small e > 0. In this particular problem, the singular transi-
tion matrix 758 arising from e < 0 is easy to compute. However, it does not
appear possible to compute directly 758, the singular transition matrix aris-
ing from e > 0. Fortunately, in this problem the topological transition matrix
is defined. Thus we have the following sequence of identities that determines
TS"8 and allows one to conclude the existence of the desired connecting
orbits:
Tsmg — Tltopl
— (Ttop )—1
= (T5"g)~1,

The reader is referred to [8] for the details.
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This paper is organized as follows. We begin in Section 2 with a review of
the relevant aspects of the Conley index theory. While it is assumed that the
reader is familiar with the index, our intention is to provide sufficient back-
ground to make the paper accessible to readers unfamiliar with the tech-
nical aspects of Conley’s connection matrix. In Section 3 we define singular
connection matrices and in Section 4 show how they apply in the context
of parameterized families of flows. Finally, in Section 5 we obtain singular
transition matrices. In Section 6 topological transition matrices are reviewed.
The mathematics in Sections 3-5 is technically not new; what is different is
the framework in which the continuation theory for connection matrices
is presented. We construct an abstract framework for Conley’s ideas and
Reineck’s results. However, this is not abstractus gratia abstractum. The con-
structions of transition matrices contain some ambiguities, which we needed
to remove before we could understand the relationship between singular and
topological transition matrices. The framework developed in Sections 3-5
gives us the required precision. We then outline the construction of topolog-
ical transition matrices in Section 6, and conclude by proving the equivalence
between topological and singular transition matrices in Section 7.

2. Connection Matrices and Continuation

We assume that the reader is familiar with the basics of the Conley index
theory for flows, as developed in [1; 15; 16], and with Conley’s connection
matrix (see [3; 4; 5; 6]). However, to fix notation and terminology, we briefly
review the relevant aspects of the theory: Morse decompositions, connection
matrices, and continuation.

2.1. Morse Decompositions

The simplest example of a Morse decomposition is an attractor-repeller
decomposition. This is simply a Morse decomposition with two Morse sets,
an attractor A and a repeller R. The sets 4 and R are isolated invariant sets in
their own right, and S decomposes as the disjoint union S = RLIC(R, A) LI A.
Attractor-repeller decompositions are fairly easy to generate. If the flow on
S is not chain-recurrent, then there will be a proper nonempty subset A that
is an attractor in S (in the sense of Conley). Corresponding to every attrac-
tor in A is its dual repeller A*. The pairs (A, A*) are attractor-repeller pairs
for S.

In an attractor-repeller decomposition, the index set P is simply a two-
element set (without loss of generality, P = {0, 1}) with partial order 0 < 1.
However, when a more general Morse decomposition is considered, some
added complications surrounding the partial order are introduced. With a
larger index set, the number of different partial orders that can be assigned
to it grows. The two problems are to decide which partial orders on P are
acceptable for a given Morse decomposition, and to find the appropriate
mechanism for collating the information generated by the partial order.
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Given a Morse decomposition I indexed by P, there is an intrinsic partial
order, called the flow-defined order, that can be associated with the decompo-
sition. This order is generated by first declaring p <, q if C(M(q), M(p)) #
@, then taking the transitive closure of this relation. In this order, p <, q if
and only if there are elements p = py, py, ..., P, = q in P such that

CM(p)),M(p;—;)) #9 forall i=1,...,n.

While very natural to define, this partial order has one obvious disadvantage:
to identify completely this partial order, we must know exactly which con-
necting orbit sets are nonempty. But this sort of dynamic information is
usually the goal, not the starting point, of our study of Morse decomposi-
tion. In other words, if our goal is to determine the structure of the connect-
ing orbit set, we cannot start with tools that require knowledge of the flow-
defined order.

Although all of the connection matrix machinery depends on the existence
of a partial order, it has two features we can use to our advantage:

(1) Much of the machinery requires only that a partial order exist; it does
not require the partial order to be explicitly given.
(2) The machinery can be applied equally well with an admissible order.

An admissible order is any refinement of the flow-defined order: an order <
is admissible if p <;q implies p < q. That is, to establish that an order is
admissible, we need only to establish that if p « g then there exist no con-
necting orbits (or chains of connecting orbits) from M(q) to M(p). In prac-
tice, this can often be established by means of Lyapunov functions. Once an
admissible order is found, the goal is to extract the flow-defined order from
it. Much of the connection matrix theory can be viewed as machinery for
doing so.

Once an admissible partial order < has been fixed, a great deal of structure
for the Morse decomposition ensues. Given a partially ordered set (P, <),
we define an interval in P to be a subset 7 C P that is closed under the partial
order: if p,rel and p < g <r, then gel. An interval is attracting if gel
with p < g implies p € I; repelling if p € I with p < g implies g € 1. Disjoint
intervals 7, J are adjacent if IJ :=IUJ is also an interval.

Given an interval I C P, define the Morse interval

M) = ( U M(p))U( U C(M(q),M(p)))-
pel p,qel

That is, M(7) is the union of all of the Morse sets in 7 and all of the connect-

ing orbits between Morse sets in I. The significance of this construction is

that it nicely captures the relationship between the structure of the partial

order and dynamics on S as follows.

ProposiTiON 2.1. If M is a (P, <)-Morse decomposition of S and if I,]
are an adjacent pair of intervals in P, then:
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(1) M(I) is an isolated invariant set; and
Q) ifJ«I(ie.ifj+iforeveryieland jeJ), then (M(I),M(J)) is an
attractor-repeller pair in M(1J).

Thus, knowing an admissible partial order tells us all of the possible attractor-
repeller decompositions in S. To further develop that knowledge, we turn to
connection matrices.

2.2. Connection Matrices

Once we have a Morse decomposition 9 of an isolated invariant set S, we
have a Conley index CH,(M(I)) defined for every interval 7 C P. We now
look at how those indices are interrelated, and what those relations reveal
about the flow on S.

In the simplest case, an attractor-repeller decomposition, there are three
isolated invariant sets: S, 4, and R. The Conley indices of these three sets
are related by a long exact sequence, called the atfractor-repeller sequence:

++ — CH,(A) — CH,(S) — CH,(R) 2> CH,, _{(A) —> -

The map 4 is called the connection homomorphism. Its basic property is that
if @ # 0 then there exist connecting orbits from R to 4 in S. In some cases,
it can give more refined information about the set of connecting orbits. For
example, if A and R are hyperbolic fixed points of indices p and p —1 respec-
tively, then the only nontrivial portion of the attractor-repeller sequence is

0— CH,4(S)— Z 2> Z— CH,(S)— 0.

Then d can be thought of as an integer (without loss, a nonnegative integer).
If the flow has the additional property that W*(A4) and W*(R) intersect trans-
versely, then the connecting orbit set consists of a disjoint set of orbits. In
this setting, there are at least d connecting orbits, and the number of con-
necting orbits is equal to d mod 2 [9].

In general, if O is a Morse decomposition with an admissible order (P, <),
then there is an attractor-repeller sequence for every adjacent pair of inter-
vals in P. In [3; 4; 5], Franzosa introduced connection matrices as devices for
simultaneously encoding the information expressed in all of these sequences.
In brief, connection matrices are matrices defined on the sum of the homol-
ogy indices of the Morse sets; when treated as boundary maps, these matrices
allow all of the attractor-repeller sequences to be reconstructed.

More precisely, for every interval 7/ C P, let C,A(]) = (—Dpe 1 CH.(M(p)).
Suppose that A(P): CL,A(P)— C,A(P) is a degree-1 endomorphism such
that

(1) A(P)?=0; and
(2) if p « q, then A(p, q): CH,.(M(q)) —» CH.(M(p)) is zero.

Such a matrix is said to be an upper triangular boundary map. Given any
two intervals I, J C P, define A(1,J): C,A(J) - C,A(I) to be the obvious
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restriction of A(P) and denote A(Z, I') by A(J). Then the two conditions on
A(P) are inherited by A(Z). In particular, given an adjacent pair of intervals
1, J in P, there is a commutative diagram

0 — C.A(I) > C.AUT) 2> CLA(J) — 0
l A(l) l A(LT) l A(J)
0 — C.A(I) > C.AUT) 2> C.A(J) — O,

where i and p are (respectively) the inclusion and projection homomor-
phisms. This can be interpreted as a short exact sequence of chain complexes,
with the matrices A acting as boundary homomorphisms. If the homology
of the complex {C,A([), A([)} is denoted H,A([), then the preceding dia-
gram produces a long exact sequence

[A(J, )]
—_—

— H A(I) 2> H AUT) 25 H A(J) Hy_(I) — .

Hence, an upper triangular boundary map produces a long exact sequence
for every adjacent pair of intervals; A(P) is a connection matrix if all of these
sequences are canonically isomorphic to the attractor-repeller sequences.
That is, we require for every interval 7 that there be an isomorphism ¢(/):
H,A(I)—- CH,(M(I)) such that ¢(p) = id for every p € P, and for every ad-
jacent pair of intervals 7, J that there be a commutative diagram

— HAJ) = HAW) 2 HAJ) S He () —

| | } l | 2.)

— CH(M(I)) <> CH(M(IJ)) 2> H (M(J)) 2> Hy_(M(I)) — .

Connection matrices exist for all Morse decompositions, but are not nec-
essarily unique. In general, the set of connection matrices depends on the
indices of the Morse sets and the partial order on P. We therefore use the
notation CM(M, <) to denote the set of connection matrices for a given
partial order. If the partial order is the flow-defined order, we write simply
CM(M).

As noted in the introduction, the significance of connection matrices is
that nonzero entries detect connecting orbits: if A(p, g) # 0 for some Ae
CM(IM, <), then p < gq. In particular, if the partial order is the flow-defined
order <, then p <, g and there is a sequence of connecting orbits connect-
ing M, to M,,. Similarly, if A(p,r)A(r,q) #0 then p<r<gq. If <=<,
then there is a sequence of connecting orbits from M, to M, whose closure
intersects M,.

2.3. Parameterized Families of Flows

We want to make more precise the continuation invariance of the index re-
ferred to in Section 1. Suppose Sy and S; are isolated invariant sets in X, and
X), respectively, and are related by continuation. Then there is a path w in A
from Agto A;; that is, there exist both a continuous function w: [0, 1] — A such
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that w(0) = Ay and w(1) = A, and an isolated invariant set S over w(J) such
that Sy = §;. Then the inclusion f;: X),— X X w([) induces an isomorphism
CH.(S;) 2*> CH,(S), where CH,(S;) indicates the index of S; in Xj, and
CH,(S) indicates the index of § in X X w(/). Thus there is an isomorphism

. fl:lcht
Fw- CH*(SO) E— CH*(SI)-

This isomorphism depends on the endpoint-preserving homotopy class of w.
However, if m;(A) = 0 (which we will usually assume), then F,, is indepen-
dent of the path w. In this case we can speak of the unique continuation iso-
morphism F), , , though we will still write F,, when we wish to emphasize the
path chosen to carry out continuation.

The continuation isomorphism is well-behaved with respect to composi-
tion of paths: F) y=id and F) ,°F, ,=F) ,. Of course, it follows then that
Fy,=F}

Similarly, we say that a Morse decomposition continues over U if there is
an isolated invariant set S in X X U with a Morse decomposition {M(p)},cp
such that each M(p) continues over U. It follows then that every Morse
interval M(7) also continues over U. If V' C U and I is an interval in P, then
M, (I') will denote the Morse interval of 7 over V:

My (1) = U MyI).
AeV
We will denote the continuation isomorphism for a Morse interval M(7) by
F), (1), and will denote the direct sum @,,E, Fy, .(p): CiA\(T) - CiA (1)
by FA, ,(I). (Note: this map was denoted by E) ,(/) in [10].)

We now turn to the question of how the flow-defined partial order on P
behaves with respect to continuation. If 9 is a Morse decomposition that
continues over A, we want to understand the relation between subsets of A
and partial orders on the index set P. First, if U C A then {My,(p)} is a Morse
decomposition over U. Let <y denote the flow-defined partial order of this
decomposition. That is, p <y q if and only if there is a sequence py, ..., P,
in P and a sequence A, ..., A, in U such that p = py, g = p, and p;_, <,, p;
(without loss of generality, there is a connecting orbit from M, (p;) and
M, (p;-,)). Thus we can associate to each subset of A a partial order on P.

ProrosITION 2.2. For every K C A, there is an open neighborhood U of K
such that <y equals <.

Proof. First note that the statement is true when X is a point [4]. Then, for
general K, every point k € K has a neighborhood Uj with <y, equal to <.
The set U = Uk Uy is an open neighborhood of K, with < the common
refinement of the <y, s and <k the common refinement of the <;s. O

This property is usually referred to as lower semicontinuity.
Conversely, we can attempt to associate to every partial order on P a subset
of A. This will only be meaningful for partial orders that are refined by <,.
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Given such a partial order < on P, let A(<) be the maximal subset of A such
that < is the flow-defined order on {M,,(p)}. Of course, A(<) could be
empty. Another way of formulating lower semicontinuity is as follows.

ProrosiTION 2.3. For every partial order < that is refined by <,, A(<) is
an open set.

We have associated to every subset of A a partial order, and to every partial
order an open subset. These two processes are related, as the next proposi-
tion shows.

PropPoOSITION 2.4. Supose that M is a Morse decomposition which con-
tinues across A, and that <, is the minimal partial order on P which con-
tinues across A. Suppose K, L are subsets of A and <,, <, are partial orders
on P which are refined by <,.

(1) If KC L, then <; refines <g.

(2) If <, refines <,, then A(<;) C A(<3).
(3) A(<g) is an open neighborhood of K.
@ <a<p=<r-

We need this precision of language because we are interested in the continu-
ation properties of connection matrices across A, and connection matrices
are tied to partial orders on P. That is, it only makes sense to ask about con-
tinuation of CM (9N, <) over A(<). And, as we have just seen, all matrices
in CM(IM, <) do continue across A(<). Now, however, we want to express
this continuation property more explicitly.

ProposiTION 2.5. If M is a Morse decomposition that continues over A,
and if < is an admissible ordering that continues over U C A, then the con-
nection matrices over different points in U are conjugate via the continua-
tion isomorphisms. That is, if {A,(P), ¢,(I)} is a (P, <)-connection matrix
over u then

{FA) (P)eA (P)eFA, \(P), F), (I} (I)F, \(I)}
is a (P, <)-connection matrix over A.
COROLLARY 2.6. If (A, R) is an attractor-repeller decomposition that con-
tinues over A, then the attractor-repeller sequence commutes with the con-

tinuation isomorphisms. That is, for any A, p € A, there is a commutative
diagram

—» CH,(A)) — CH,(S)) — CH,(R)) 2> H,_(A)) —
L Fn | Fn L Far | Fun

— CH,(A,) — CH,(S,) — CH,(R,) 2> H,_1(4,) — .

This defines in a natural way a function &, ,: CM(IM,, <) - CM(M,, <),
which has the following properties.



Conley Index Theory 399

PROPOSITION 2.7. As a function on (P, <)-connection matrices:

(1) F) r=1id for every AeU;
(2) 5y, =9, ,°F,,, forevery A, n,veU; and
(3) forevery A, p,veU, 5, , is a bijection with inverse §, ).

Proof. These properties of &, , follow immediately from the analogous
properties of F) . O

We will say that (P, <)-connection matrices {A,(P), ¢,(I)} and {A)(P), dr({)}
are related by continuation if

T, n({AL(P), 0. (1)}) = {AN(P), (1)}
or, equivalently, if
AN(P)FA) (P) =FA, ,(P)°A,(P)
and
eA)oF) (1) =F) (I)¢,(])

for every I € 9(P, <). Clearly relation by continuation defines an equivalence
relation on the collection of (P, <)-connection matrices U,y CM(M,, <).
We will denote the set of equivalence classes by CM (M, <, U). If the partial
order is the flow-defined order <y, then the corresponding set of connection
matrices will be denoted CM(I, U). Note that, since x;(A) acts trivially on
8(A), every F, ,=id and no two elements of CM(IMN,, <) are identified in
CMIM, <, U). That is, CM(IM, <, U) is bijective with each CM (M, <).

While in some sense this is just bookkeeping, the notation is suggestive
of the point of view we wish to adopt. We want to think of a single set of
connection matrices which continues over U, and which yields CM(I,, <)
when restricted to Ae U. That is, each element of CM(MN, <, U) is a connec-
tion matrix which, via a canonical change of coordinates (i.e., the continua-
tion isomorphisms), defines a (P, <)-connection matrix at every point in U.

We now want to consider comparisons between sets of connection ma-
trices. We consider a fixed Morse decomposition I, and consider changes
in the parameter set U and the partial order <. That is, given U,, U, C A
and partial orders <;, <, such that <; continues over U;, how (if at all) arz
CM(IM, <, U;) and CM(M, <,, U,) related? Note that both the power set
24 and the set of all possible partial orders on P are themselves partially
ordered sets (ordered by inclusion and refinement, respectively).

ProrositiON 2.8. If U, C U, and <, refines <,, then there is an injection
(U, <43 U, <3): CM(IM, <4, U)) » CM(IN, <5, U,). This map is a bijec-
tion if <; and <, coincide.

If <; = <y, the flow-defined order on U}, and if U, C U,, then <, refines <;;
hence there is an injection «(U;, <;; U,, <), denoted «(U;; U,). The collec-
tion {CM (O, U), «(U;; U,)} is then a directed system, indexed by 24,
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ProposSITION 2.9. For every K C A, there is an open neighborhood U such
that CM(M,K) =CM(M, U).

The neighborhood U is of course A(<k).

CoroLLARY 2.10. For every KC A, CM(M,K) =1limCMON,U), as U
ranges over supersets of K.

These results are just a reformulation of the well-known' lower semiconti-
nuity property of connection matrices. This reformulation was carried out
not for its own sake, but in preparation for an extension of the existing
results. Up until now, we have considered Morse decompositions that con-
tinue across the entire parameter space. We now turn to Morse decompo-
sitions that continue across some subset A’ of a parameter space, and ask
what information about the flow at a parameter value in the closure of A’
can be extracted from the connection matrices defined on A'.

3. Singular Connection Matrices

Assume S is an isolated invariant set that continues over A, and M is a
Morse decomposition of S that continues over A’C A. In this setting, the
most we can hope for is information on the flow over parameter values in
cl,(A’). Consequently, we will assume that A’ is dense in A. Since a Morse
decomposition defined at any parameter value continues to an open neigh-
borhood of parameter values, we can assume without loss that A’ is open.

For any K C A, we want to define singular connection matrices on K by
taking neighborhoods U of K in A, taking the set of connection matrices
CM((IM, U’) defined for K’ = KN A, and then taking the inverse limit of this
collection as U nests down onto K. While this process is straightforward
enough, the important issue is its interpretation. If A is a singular connec-
tion matrix on K, what does that tell us about the dynamics on X? The inter-
pretation is basically the same as in [14]: the Morse sets limit to (not neces-
sarily isolated) invariant sets, and nonzero entries in singular connection
matrices indicate a chain of invariant sets connecting these “limiting Morse
sets”.

DEeriNITION 3.1.  Suppose that A’ is an open dense set in A, and that M is a
Morse decomposition which continues over A’. Then, for every K C A, the
set of singular connection matrices for I on K is

CM((M, K, A) =1im CM (I, U’),

the inverse limit of the directed system {(CM (I, U"), (U";V')|U'=UNKN
for some neighborhood U of K in A}.

As the above discussion shows, all that really changes as we take a sequence
««+ DU, DU, D - nesting onto K is the partial order <, associated to
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each U,;. We can then define a partial order < to be the maximal partial
order on P which is refined by < for all neighborhoods U of XK.

ProposiTioN 3.2. IfK'=KNAN #0, then CM(IM, K, A) = CM(9N, K').

ProprosiTION 3.3. For every KC A, there exists an open neighborhood U
of K in A such that CM(IM, K, A) = CM(I, U’), where U'=UNA.

Clearly, the neighborhood U in the proposition is U(<g), where <y is the
limiting partial order.

We now turn to the question of interpretation. In the usual (nonsingular)
setting, connection matrices provide information about connections between
Morse sets. In the singular setting, the Morse sets may not persist as isolated
invariant sets. They will, however, limit to closed invariant sets. That is, for
k € K, take a sequence A}, in A’ that converges to k. Consider the correspond-
ing sequence of compact subsets {M,(p)} in X. In the Hausdorff topology,
this sequence converges to some compact subset My (p) in X. Further, by
the continuity of the flow, M, (p) is invariant under the k-flow. However,
M, (p) is not necessarily isolated, and not necessarily nonempty. Further, if
we carry out the same process for M(q), the resulting M (q) may not be dis-
joint from M;(p). However, once the sets M;(p) are so understood, the
interpretation of connection matrix entries remains essentially unchanged.

ProposITION 3.4. If A is a singular connection matrix for M on K, and if
A, 4 is a nonzero entry between adjacent indices, then for every A€ K there is
a nonempty closed connected invariant set ¢,\( p, q) such that c\(p, )N\ M,(p)
and c\(p, q) N M,(q) are nonempty.

ProrosiTiON 3.5. If A is a singular connection matrix for W on K, and if
A, 4 is a nonzero entry, then there exists a sequence p = py, ..., p,=q in P,
a sequence Ay, ..., A, in K, and a nonempty closed connected set c; which
is invariant under the A;-flow and which has nonempty intersection with
M, (pi—1) and M) (D).

4. One-Parameter Families of Flows

The development of singular connection matrices presented in the last sec-
tion is essentially a generalization of Reineck’s construction of transition
matrices [14]. We now return to his original setting of one-parameter flows.
Here, too, we will generalize Reineck’s development. He considered a single
one-parameter family of flows—a flow on X X [0, 1]. Instead, we will con-
tinue to work over an arbitrary parameter space A, and obtain one-parameter
families by choosing paths in A. Most of the results stated in this section are
simply the obvious generalization to this new setting of results in [14].

One of the basic ingredients in Reineck’s development is the introduction
of a “drift flow” on the parameter space. The original one-parameter family
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is then recovered in the limit as the drift goes to zero. To capture this as a
limit in a parameter space, we must create a new parameter space that incor-
porates the drift flows and the one-parameter families in A. To do so, let
®(A) = {x:[0,1] = A} be the set of paths in A, and let

S=1(g:[-1,2]-R|g(-1,0)=0, g(0,1) <0, g(1,2) = 0,
g(iy=0fori=-1,0,1, 2}.
Let D=®(A)XxG.

We will use D as a parameter space for flows on X x[—1,2]. At first
glance, there are two things about the construction of this parameter space
that might seem unnatural: the paths are parameterized from —1 to 2, rather
than from O to 1; and there are sign restrictions on the functions in G. Both
of these arise for the following reason: we want to examine flows on X X [0, 1]
for which the drift flow § = g(s) on [0, 1] has 0 as a hyperbolic attractor and
1 as a hyperbolic repeller. To do so, we need to extend the flow to a neigh-
borhood of [0, 1], and for convenience we choose [—1, 2] as the neighbor-
hood. The sign conventions are likewise chosen so that g = 0 is included in
G, and so that drift flows with {0, 1} a hyperbolic attractor-repeller pair for
[0,1] are dense in G.

Having justified our choices for the parameter space, we now construct the
family of dynamical systems on X X [—1, 2] which they parameterize. First,
choose a function 7: [—1, 2] X [0, 1] with 7(¢ ;; = id. To be concrete, say,

) for —-1<s5s=<0,
7(8) =< s for 0=s=<1,
2—s forl=ss=<2.

Then, if («, g) € D, construct a flow on X X [—1, 2] over («, g) by
x = f(x, ar(s)),
s = g(s).
Note that if « is a constant path Aq, then we have a product flow
X = f(x,Ag),
§ = g(s),
while if g = 0, we have the original parameterized family of flows

x = f(x, a7(s))

restricted to the image of «.

We need to understand the relationship between continuation over O and
continuation over A. First, note that for every se [0, 1] the projection p:
D — A, defined by p (e, g) = a(s), is a homotopy equivalence. In particular,
if A is simply-connected, so is . More generally, if continuation across A is
path-independent, then the same is true for continuation over . Before
making further comparisons between continuations over D and A, we must
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understand what are the possible isolated invariant sets over a point (c«, g) in
D. Even in the comparatively simple structure we are dealing with, this is
not an easy question to answer. For a fixed («, g), the flow on X X [—1, 2]
fibers over the g-flow on [—1, 2]. Thus, invariant sets in X X [—1, 2] must
project to invariant sets in [—1,2]. However, simple examples show that
other, equally desirable correspondences do not hold:

(1) The projection 7: X X[—1,2]— [—1, 2] does not preserve isolation; if
S is an isolated invariant set in X X [—1, 2], then «(S) is invariant but
not necessarily isolated.

(2) If Z is an isolated invariant set for the g-flow on [—1, 2], there may be
no isolated invariant set in 7#(Z).

(3) If S is an isolated invariant set that continues over «(/) and Z is an
isolated invariant set for the g-flow on [—1, 2], then S(Z) = U,z S,
need not be an invariant set.

However, there is one important special case that is valid.

ProrosiTiON 4.1. Supose S is an isolated invariant set that continues across
a(l) for some o€ ®(A). Further, suppose that C C [—1,2] is a connected,
isolated set of zeros for g€ G. Then S, (C) = {(x,5)|s€C, xe Sy} is an
isolated invariant set for the flow over (a, g).

Proof. As aconnected, isolated set of zeros for g, C is an isolated invariant
set for the g-flow on [—1, 2] with isolating neighborhood M.

For every ce C, there is a neighborhood U, of a(c) in A and a compact
set N. C X such that N, is an isolating neighborhood of S, for every AeU..
Choose ¢y, ..., ¢,€ C and compact sets C;C M such that ¢c;e C;, CCUint C,,
and a(C)) CU,,. Let N=J; N; X C;. Then U C;is an isolating neighborhood
for Cin[—1,2] and N is an isolating neighborhood for S(C) in X x[—1, 2].

To see this, take a point (x, s) e N. If s¢ C then se M \C, and the drift flow
carries s out of M in either forward or backward time. Then (x, s) is simi-
larly carried out of #~!(M), and in particular out of N. If se C then g(x) =
0, and the solution through (x, s) is simply the solution to x = f(x, a(s)).
But then N;is an isolating neighborhood for S, so either xe S (and (x, 5) €
S.(C)) or the orbit through x leaves N,, and hence N. 0

This will suffice to establish the continuation results we require. For these,
we introduce some subsets of G and . Suppose C C [—1, 2] is a closed sub-
set with a finite number of components. Let G(C) denote the set of functions
in G such that C is an isolated set of zeros of g. Since C has a finite number
of components, it follows that C is also an isolated invariant set for the flow
s = g(s). For later use, we also define G* C G to be the set of functions with
g 1(0) = {-1,0, 1,2}, and let D(C) and D denote the products of these sets
with ®(A). Note that, in general, G(C) (and hence D(C)) is disconnected
with a finite number of components, while G7 is a contractible open dense
set in G. Thus D7 is a contractible open dense set in D.



404 CHRISTOPHER K. McCoRD & KONSTANTIN MISCHAIKOW

PROPOSITION 4.2. Suppose S is an isolated invariant set which continues
across A, and suppose that C is a closed subset of [—1, 2] with a finite num-
ber of components. Then, for every component C of G(C), there is a family
of isolated invariant sets 8§ in X X[—1,2] which are related by continua-
tion over a path-connected open neighborhood U of ®(A) X C in D. Over
®(A) X C, this family is 8, ¢ = S,(C).

Proof. Without loss, we may assume that C is connected. Given («, g) € G,
we must construct an isolating neighborhood N for S_(C) with the property
that, for o’ near « and g’ near g in C, N isolates S,-(C). This will give con-
tinuation over C. This continuation will then automatically extend to an
open neighborhood U of € in D.

Fix (o, g) € C, and construct an isolating neighborhood N for S_(C) as in
the previous proposition. Now consider the neighborhood U =M; S(C;, U)
of o in ®@(A). For every (o, g’) € U X G, the maximal invariant set in N is
contained in X X C, and consists of the union of the maximal invariant sets
in each X X 5. But since o’(C}) C U, if se CN C;then the maximal invariant
set in NV over s is the maximal invariant set in N, or Sy. O

Having established the necessary continuation properties, we now turn to
the question of computing Conley indices for isolated invariant sets over 2.

PRroposITION 4.3. If Cis a connected, isolated set of zeros of g, then h(C),
the Conley index of C in [—1,2], is either £°, L' or 0. Let C, denote the
component of G(C) that contains g. If S is an isolated invariant set that
continues over A then, over ®(A) X C,, the index of S,(C) in X x[—1,2] is
h(S)A h(C).

Proof. As noted previously, a connected isolated set of zeros is an isolated
invariant set. Its index is determined by the sign of g on either side of C, and
it is a simple matter to check that £ !, and 0 are the only possibilities. To
compute the index of S,(C), choose a constant path A. Then the flow on
X x[—1,2]is a product flow, and it is well-known that the index #(S;(C)) is
given by A(S)A h(C). But the index is continuation-invariant, and S5(C)
continues to S, (C) over ®(A) X C,, so the index is computed by 4(S) A ~(C)
over ®(A) X C,. O

Since the index of S,(C) is smash product of the indices of S in X and C in
[—1, 2], the homology index is just the tensor product:

CH,(S,(C)) = CH.(S)®CH.(C).

Of course, if A(C) =0 then CH,(S,(C)) = CH,(C) =0. If h(C) =", then
CHj. . ,(S(C)) = CHi(S). It will be important for our purposes to describe
this suspension isomorphism precisely. Choose a point ce C and a path a.
If we form the constant path a(c), then Sz(C) = Sy X C and there is a
suspension isomorphism



Conley Index Theory 405

CH(Suie) 22> CHy (Sie) ® CHy(C) 2 CHy 4 1(Suery X ©)
= CH,, 1(S25(C)),

where o, is the generator of CH,(C). Further, if we take any path in ®(A)
from the constant path A(c¢) to «, continuation along the corresponding path
from (A(c), g) to («, g) induces an isomorphism

Fo, 50t CHi(S50(C)) = CH(S,(C)).

We will denote the composition X(S): CH(S,) = CHy . ,(S,(C)) as the index
suspension isomorphism. (The various embellishments with parentheses and
subscripts will be omitted when clear from the context, or when their pres-
ence distracts more than it clarifies.) This isomorphism has the following
important continuation property.

COROLLARY 4.4. Suppose that S is an isolated invariant set which contin-
ues over A, and that C is a closed subset of [—1,2] with a finite number of
components. Further, suppose that C is a component of G(C) such that
h(C)=X"on C.

Then, for every ce C and every (a, g) e ®(A) X C, the index suspension
isomorphism

L(S): CHy(Sy()) = CHi n(So(C))

commutes with the continuation isomorphisms. That is, suppose that & is a
path in ®(A) X C such that &(s) = (a,, &) Let € ®(A) be the path defined
by B(s) = as(c). Then there is a commutative diagram

CH(S510)) =25 CHe 1 n(S5(0))

| Fats)y | Fat$)

(S
CHi(Spy) ——> CHiyn(Sp(1)).

Proof. First, suppose that each «;is a constant path. Then F(S)=F,(S) X id
and the commutativity is trivial. For a general &, note that & is homotopic
to the path (a,(c), g), with the homotopy running through the paths from
each a; to the constant paths ag(c). But this homotopy is exactly what is
used to define £(S), so the commutativity of the diagram for the family of
paths o (c) implies the commutativity for &. O

We will be particularly interested in studying the behavior on D([0,1]) and
D*. As noted before, D is a connected dense open subset of D; D([0, 1]) is
also connected, and has empty interior. Of course, on D([0, 1]), the flow on
X %x[0,1] over («, g) is simply the restriction of the flow on X X A to the
one-parameter family of flows picked out by «. That is, ([0, 1]) is our de-
vice for picking out one-parameter families of flows. The isolated invariant
sets of interest are S,([0,1]) = Up<s<1 Sa(s)- However, h([0,1]) =0 across
G([0, 11), so A(S([0, 1])) = 0 across D([0, 1]). Thus, applying the index the-
ory directly to the one-parameter families will tell us nothing.
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However, since D([0, 1]) lies in the closure of D, we can apply the sin-
gular theory of Section 3. If U is the maximal open set in ® over which
S,([0, 11) continues, let Ut =UND*. Then U* is open and dense in U.

LEMMA 4.5. U* is path-connected.

Proof. By construction, U is connected. It thus suffices to show that, if w
is a path in U with endpoints in U*, then there is a path wt in U that is
endpoint-homotopic to w.

Let 0 < f <1 be the least ¢ such that w(?) = («, g,) ¢ UT. Then there is a
neighborhood N C X x[—1, 2] that is isolating for all («, g) near (¢, g/). [n
particular, there is some g’e G* such that (o, (1—7)g, +7¢") €U for all ¢’
near ¢ and for all 0 < 7 < 1. Clearly, this allows us to construct an w’ = w so
that w’(¢) e U* for all ¢’ near ¢. By compactness, this procedure can be ap-
plied across the interval 0 < ¢ < 1 to construct the required path. O

Over (a, g) e U*, the maximal invariant set no longer possesses the form
Uo<s<1S4(s) (as the g-flow on [0, 1] is no longer trivial), and in general de-
pends on both « and g. We will denote the isolated invariant set over («, g)
by S(4, ([0, 1]), or more simply by S, ,). Since the flow on [0, 1] has 0 as an
attractor and 1 as a repeller, S, 4 ([0,1]) has S, as an attractor and S,
as a repeller. These features will be present for all ge G, but the structure
of the connecting orbit set will vary with g. Our goal is to glean information
about the one-parameter family S, ([0, 1]) from the behavior of the connect-
ing orbit set as ||g]|— 0.

5. Singular Transition Matrices

Transition matrices were introduced in [14] as a device for studying one-
parameter families of flows. The setting for this study is the existence of an
isolated invariant set that continues over the parameter space (without loss
of generality, the unit interval). It is (at least tacitly) assumed that the flows
at the two ends are well understood—in the sense of the existence of a Morse
decomposition and knowledge of the connection matrices at these parame-
ter values—and that we seek information about the parameter values in be-
tween. To obtain this information, a drift flow is put on the parameter space,
so that 0 is an attractor and 1 is a hyperbolic repeller (i.e. g G*). Then, for
small drift flows, the Morse decompositions My and I, together form a
Morse decomposition for the flow on X X [0,1]. Connection matrices for
this Morse decomposition are then computed. Such matrices have the form

Ay T

0 Al
with Ay and A, connection matrices for My and IM;. The “off-diagonal”
block T is a transition matrix. Nonzero entries in 7" detect connections from
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O, to ML,. As the drift flow is slowed to zero, these connections limit to a
sequence of connecting orbits for parameter values between 0 and 1.

We now revisit this development in our more general framework, deriving
transition matrices from singular connection matrices. To emphasize this
development, we will refer to these objects as singular transition matrices.
As in the previous section, most of these results are the obvious general-
ization of the corresponding results in [14]. The exception is Theorem 5.5,
which establishes the connection between transition matrices and continua-
tion, and which is the essential step in relating singular transition matrices
and topological transition matrices.

Given a Morse decomposition M that continues over «([0, 1]), the first
thing we must do is determine the structure of the corresponding Morse
decomposition in X X [0, 1] over some (a, g) € U™,

PROPOSITION 5.1.  Forevery (o, g) e U, ( S«(0)» Sa(1)) IS an attractor-repeller
pair for S, ([0, 1]). Moreover, these attractor-repeller decompositions are
related by continuation.

Clearly, if M is a Morse decomposition that continues over a(/), then 9,
and 91, are Morse decompositions of S,y and S,(;). If g€ G*, then the index
of 0in [—1, 2] is E? while the index of 1 is £'. Thus the indices of the elements
of O, in X X [—1, 2] are suspensions of their indices in X. We denote the
sum of these suspended indices by C,AE(P), or by C*AE(I)(P) when it is
necessary to display the path.

ProprosiTION 5.2. If M is a Morse decomposition of S that continues over
A, then for every (a, g) € D([0,1]), the collection {M, ,(p)} is a Morse
decomposition of S, g)-

Combining these propositions, we have the following corollary.

CoOROLLARY 5.3. If M is a Morse decomposition of S that continues over
A, then there is an open subset V™ C U*, whose closure contains D([0,1]),
such that MU I, continues as a Morse decomposition across V.

The next task is to understand the relationship between the partial order
<«(0,1)) ON P (i.e. the partial order, without the drift flow, that is valid
across «([0,1])) and the partial orders <, 4 on' P X (0,1} (i.e. the partial
orders that result when the drift flow is imposed). Actually, we want to com-
pare <g(jo,1j to the drift partial order <, , on P, which is derived from the
flow-defined orders <(, 4 on P x{0,1} in U*. The drift partial order is ob-
tained by first taking the inverse limit of the flow-defined orders, then pro-
jecting this onto a partial order on P. Namely, p <, , g if there exists an
i,je{0,1}, ageg([0,1]), and a sequence (o, g,) in Ut converging to («, g)
such that (p, ) <(4,,g,)(g,J) for every n. In other words, p < g in the drift
partial order if there is a connection (or sequence of connections) from a
g-Morse set to a p-Morse set in every open family of slow drift flows.
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LEMMA 5.4. Forany «, the flow-defined order on a([0,1]), <, refines the
drift partial order <, .

Singular transition matrices are defined in terms of <, ,-connection ma-
trices on MU M. If M is a Morse decomposition that continues over A,
then for every path a € ®(A) we have the set of singular connection matrices
CM(M UM, aXG([0,1]), V]). These are connection matrices with the
drift partial order. For each connection matrix

AP x{0,1}):
@ Cily(0)(P)® (+) Ci ALy (P) — @ Cily(0)(P)® @ C. ALy (P),

peP
there is an oﬂ’-dlagonal block

T = A(P x{0}, Px 1)) @P Cl5y(P) > @ CrAg0)(P).
DE

These are the singular transition matrices. The 1nterpretatlon of these ma-
trices is that, if T'(p,q) =T((p,0),(q,1)) #0, then p<, , g and so p <,q.
That is, somewhere along the path «, there is a connection from M(g) to
M(p). In this interpretation, it is clear that what singular transition matrices
are detecting is codimension-1 connections. (This should be contrasted with
the interpretation of connection matrices, which detect connections that per-
sist over an open set of parameter values.) This is the best that can reason-
ably be expected. If a connection occurs only for a set of parameter values
with codimension 2 or more, then an arbitrarily small perturbation will per-
turb any path in A off of that set.

We know a certain amount about the structure of 7. The crucial statement
about this structure is the following.

THEOREM 5.5. The connection homomorphism for the attractor-repelier
decomposition (S,0y, Sx(1)) Of S(a, g)([0, 11) is an isomorphism, which is com-
puted by continuation of S across A. That is, there is a commutative diagram

CH,,(S.q)) = CH ;' 1(Saqry)
F! 3

CH,(S(0))-
Proof. As before, we will first prove the result for a product flow. If a is a

constant path, then {a} XG* C U and S, ([0, 1]) = S4(0) X [0,1]. If (V, L)
is an index pair for S (), then

(NX[=3,31, (Nx([=3, 7JUGMUEL X[-3, 31D, (NX{FD UL X [~3, 3])
is an index triple for (Sy, S;). This triple can be simplified to
(Nx[0,1], (N x {0, 1}) U(L x[0,1]), (N x {1}) U(L X [0, 1])).

The boundary map is then a map of the form



Conley Index Theory 409

H,(N, L)® H,([0,1], {0,1}) » H,,(N, L)

with z®o0; ~ z, where 0, € H([0, 1], {0, 1}) is the generator. Further, in this
setting ¥ is X 0, so d-X =id. But in this setting, continuation along « is
trivial, so F, = id.

The general result then follows by continuation over U*. If («, g) € U™,
choose a path w = («,, g,) in (o, g) to (a(1), g). Without loss, we may assume
o, (1) = a(1) for all 7. Now consider continuation along w. From Corollary
2.6, 8, =F,10d5qy°F,. By construction, I, = F 1oL g oF,. Clearly, the
induced isomorphisms on CH,(S,()) and CH,(S,(,) are F, and id, respec-
tively. Thus

0,°L, =Fw"l°aa_(l—) °Fw°Fw"'°Ea(_l)°Fw
=Fa"’°aa_(l—) °Za(1)
= F,-1. 0

In particular, since ¥ and F,, are isomorphisms, so is 4. If we insert this iso-
morphism into the commutative diagram (2.1), we obtain

0 — HAUIx{1) L5 H,_ AUIX{0})) — 0

| etrxion | #trxon
0 — CHE(M(I) “2> Hy_((Mo(I)) — 0.
When we take I = { p}, this implies that 7(p, p) = d(p) = F,-1eL 7l is an iso-
morphism. Combining this with the upper triangularity of 7, we can codify
our knowledge of singular transition matrices as follows.

COROLLARY 5.6. A singular transition matrix T is an upper-triangular iso-
morphism with respect to the drift partial order <, . The diagonal entries

of T are given by T(p, p) = F,~(p)-L~(p).

That is, T has the form
Fa-loz—l *

0 F, 1oL

There are some important gaps in our understanding of singular transi-
tion matrices. First, there is the fundamental computational issue: How does
one ensure that all the singular transition matrices have been identified? Be-
yond this, there are questions about the relationship between the path o and
the set of matrices 3 over «. For example, what is the relationship between
3(c) and J(a™)? If oy and «, are paths with «;(1) = a,(0), what is the rela-
tionship between 3(«,), I(a3), and 3(«a; * a,)? Finally, the interpretation of
the results is slightly unsatisfactory in that the matrices give information
about <y ,, rather than about <, directly.
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6. Topological Transition Matrices

In [10], an object was constructed with many of the same features as singu-
lar transition matrices.

Suppose I is a Morse decomposition that continues over A. Let A’C A be
the set of parameter values for which there are no connecting orbits:

A= {/\EA'S,\= U M,\(p)}
pPEP
For A€ A, there is a canonical isomorphism ®,: C,A,(P) —» CH,.(S)). If
Aos A€ A, choose a path w from A, to A;. Then we can carry out continua-
tion along w in two ways: we can continue S along w; and we can continue
Upep M(p) along w. Since the connecting orbits are precisely the comple-
ment S\U, p M(p), the difference between these two continuations should
reveal something about the connecting orbit set. This is made precise as
follows. We can construct a diagram of isomorphisms

FAy,2,(P)
—_—

CuAy (P) C.4, (P)
l q’h] l (1)/\0
F
CH.(S),) 2t CHW(S),)-

This diagram is not commutative in general, and it is precisely this fail-
ure of commutativity that gives information about connecting orbits. To
reduce this to a more manageable form, fix a field of coefficients for the
homology groups, choose a basis on C,A, (P), and use the continuation
isomorphism FA Ao M (P) to carry this to a ba51s on C,A,(P). Then the com-
position &) (P)~ oF 2o, 2,2 P (P) can be represented as a matrix with respect
to these bases We denote this matrix T », and refer to it as the topological
transition matrix.

The relevant properties of topological transition matrices are:

(1) If continuation is path-independent (in particular, if 7;(A) = 0), then
T'°P is path-independent.

(2) If Ag, A, Az € A, then Tyohy, = Tah o Tah .

(3) The diagonal entries T ‘°p (D5 P): CHW(M, (p)) = CH.(M, (p)) are
represented by the identxty map If Agand A are in the same path com-
ponent of A, then Ty 5 =id (i.e., all off-diagonal entries are zero).

Thus, if Ty h, # id, then every path from A, to A; in A must pass through a
parameter value « such that S, # U ,cp M,(p), a parameter value such that
S, has connecting orbits. So essentially 7'°P detects codimension-1 families
of connecting orbits. This can be refined further to:

4) If ;ff%o(p, q) #0, then p < q. Further, if w is a path from A to A,
there is a sequence s; < --- < s, in [0, 1] and a sequence g = pg, Py, -
DPn—1>Pn = p in P such that the connecting orbit set C(M,,,(pi- 1),

M ,s,(p)) is nonempty.
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Thus topological transition matrices, like singular transition matrices, are
upper-triangular matrices with “id” down the diagonal and with off-diagonal
entries indicating the presence of connecting orbits. In comparison with sin-
gular transition matrices, topological transition matrices have the obvious
disadvantage that they can only be defined between parameter values with
no connecting orbits. However, when they are defined, they have several
useful properties. First, there is only a unique topological transition matrix
between any two parameter values in A’ (in fact, between any two path com-
ponents of A’). Second, since the product of topological transition matrices
is a transition matrix, it is easy to compute all possible matrices once a few
are known. In particular, 7. [0' A =T,

In simple examples, it is observed that topological transition matrices and
singular transition matrices have the same matrix representation. Given this,
together with the similarity in the properties of the two matrices, it is natural
to ask if the two definitions coincide. We now turn to this question.

7. Equivalence of Singular and Topological
Transition Matrices

Before discussing the relationship between topological transition matrices
and singular transition matrices, we must point out that the question “Is 7'
a singular transition matrix?” does not really make sense as stated. Singular
transition matrices are derived from drift flows, in which the index of the
repeller has been suspended. However, we are in a position to reconcile this
difference. We have established the existence of a canonical suspension iso-
morphism . Using this, we can canonically. relate indices in X,(;, to indices
in X X [—1, 2]. With that relation in place, we can now state our main result.

THEOREM 7.1.  Suppose M = {M)},p is a Morse decomposition that con-
tinues over A. If Ag, A € N, then for every (a,g) e U with a(i) = A, the
unique singular transition matrix is Tiyp° (G-)pE pI( pH~L

Proof. It suffices to show that, if T(c, g) is a singular transition matrix, then
T(a, g)o®p L, = T,op. This equality follows from the commutativity of the
following diagram:

®pe L T (e,

CiAy(p) —22225 Cp o AT(P) T8 1 A(P)

X0 | eF® | 2o(P)
r

CH(S)) — 22— CHj41(S)) —2— CH(So)

lid lid
Fo(S
CH,(S)) 0 () > CH(So).

The commutativity of the bottom square was established in Theorem 5.5.
The commutativity of the other two squares is established by the following
lemmas. O
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LemMmA 7.2. For every (o, g) such that «(1) e A, the suspension isomor-
phisms commute with the ®s. That is, there is a commutative diagram

Cea(P) 222, ¢, AT (P)

(X0 | eF@)
(P

CHi(S) ——— CHy11(Sy).

Proof. Once again, start with the case of the constant path «a(1). If (N(p),
L(p)) is a disjoint collection of index pairs for the sets M,(p) in X,, then
(Upep N(p), U, p L(p)) is an index pair for S,. Further,

(N(p), L(p)) X([1—¢,1+€], {1—¢€,1+¢})
is an index pair for M;(p) in X, and

(U N(p), U L(p))x([l—e,1+e], {1—¢,1+¢€))

peP peP
is an index pair for S,(1) in X X[—1,2]. If 0,€ H{([1—¢,1+€], {1—€,1+€})
is a generator, then all of the suspension isomorphisms are given by X 0,. It
is clear then that &' (P) (@, p L(p) = Lo )(P)).

In general, if a(1) € A, then there is an e such that o(s) € A’ for every1 —e <
s<1+4e.If A: a = &(1) is the straight-line homotopy then, for continuation
along A4, the maps ®, and F commute with the continuation isomorphisms.
The suspension isomorphisms have already been established to commute with
the continuation isomorphisms. Thus the equality ®F(P)o ((—DpE pL(p)) =
Yo®,(P) continues from &(1) to «. O

LemMmA 7.3.  For every (o, g), the boundary homomorphisms commute with
the ®s. That is, there is a commutative diagram

C11A7(P) 22 €, Ao(P)
| &Fp) | 2o(P)
CHE, (S)) —2— CH(Sy).

Proof. Since S; =U,cp M;(p), for any geU" we have

C(S1, So) = U C(M(q), My(p)).

p,geP

Since the sets C(M;(q), My(p)) form a separation of C(S;, Sy), the addi-
tivity of the connection homomorphism [9] implies that d =%, ,cp 3, 4 as
maps from CH,(S;) to CH,(S,). Since T(c, g) is the matrix with pg entry
0p,q» T(c, g) represents X, .. pd, , With respect to C,A(I). Thus $4(1)-
T(c, g) o ®F(P) ! represents the sum with respect to CH,(S), and the com-
mutativity of the diagram follows. O

As noted in the introduction, Theorem 7.1 has several consequences for our
interpretation and understanding of singular transition matrices. Foremost
among these is the uniqueness of the matrix, and the independence of the
construction that this implies.
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COROLLARY 7.4. If Ay, A€ A, then there is a unique transition matrix Ty  ,,,
Jrom A to Xy, that is independent of both the path o connecting Ay and A,
and of the drift flow g.

Next, since singular transition matrices can be defined in terms of topologi-
cal transition matrices, they inherit the composition formulas of topological
transition matrices.

COROLLARY 7.5. If Ag, A, AL €A, then:

(1) Ty, is a diagonal matrix if A, Ay are in the same path component
of N;

(2) Tayn, = Tagn,*(@pep Lr(p)) o Ty, and

(3) Tan, = Tioh,

Finally, this relation helps to bridge the gap between the drift partial or-
der <, , and the flow-defined partial order over «({0, 1]), <,. While it does
not guarantee that the two partial orders coincide, it does mean that they
are effectively equal. We already knew that if 7 , (p, @) # 0 then p <, . q.
Now we see that if T} , (p, g) # 0 then p <, g for every path a from A, to
A;. That is, the two partial orders may not coincide, but the portions of the
orders that are detectable by index techniques do coincide. In particular, if
there is a connection in the flow-defined order that is not the limit of drift-
flow connections, then it will be “invisible” to all index calculations.

Of course, all of these results depend on the corresponding results for
topological transition matrices, which in turn depended on the particular
structure assumed for the parameter space A. We do not expect these re-
sults to generalize verbatim to the general setting (i.e. to transition matrices
between parameter values where there are connecting orbits), because the
uniqueness statement is false in general. However, it seems likely that these
results are true in some form for all singular transition matrices. This is an
open question for future research.
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