A Rigidity Theorem for Composition
Operators on Certain Bergman Spaces

TaHOMAS L. KRIETE & BARBARA D. MACCLUER

Let ¢ be an analytic self-map of the open unit disk D in the complex plane.
We consider the composition operator Cg, defined by C, f = f< ¢, acting on
a weighted Bergman space A%. Here G(r), 0 < r < 1, is a positive continuous
function and A% consists of all f analytic on D with

||f||2d'—e'ffn|f(z)|26(|z|)dA < oo, )

where dA is area measure on D. We assume that G is non-increasing and
that G(|z|) is dA-integrable over D. It is well known that the norm ||- || de-
fined by (1) makes A% into a Hilbert space. The purpose of this note is to
locate a family of “critical weights” G, with the property that any A% de-
fined from a weight G which tends to zero more rapidly than G, admits only
compact and unitary composition operators.

It is known that if G(r) = (1—r)* with o = 0 (the standard weights), then
every C, defines a bounded operator on Ag. Moreover, C, is a compact
operator on these spaces exactly when ¢ has no finite angular derivative at
any point on dD. Recall that if { lies in the unit circle dD, ¢ is said to have a
(finite) angular derivative ¢’({) at ¢ if there exists w in dD such that

#(5) < tim LY
2=t Z2—¢
exists, where z — { nontangentially. This happens exactly when the quantity
1 —
lim inf —I?—(-ﬂ (2)
= 1|z

is finite, where here z — { unrestrictedly in D; in this case expression (2) coin-
cides with |¢’({)|. Let us write |¢/({)| for (2) even when the lim inf is infinite.
Note that when ¢’({) exists as a finite limit, the nontangential limit of ¢ at
¢, call it ¢(¢), exists and has modulus 1. Thus if the nontangential limit ¢ ()
fails to exist, or if it exists but |¢({)] # 1, then |¢'()| = 0. If ¢(¢) = ¢ and
@’({) exists, it is positive. For any ¢ and {, we have 0 < |¢’({)| < o. Thus com-
pactness of C, on the standard weight spaces is characterized by: lo’($)]| =
oo for all { in dD (see [6]).
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The situation is different for fast weights G, those for which
G(r)
(1-r)©

tends to zero as r — 1 for all & > 0. We call a fast weight regular if the ratio
(3) is actually decreasing for r near 1 for all « > 0. The following facts are
known [5].

(i) If G is a fast weight and Cy is bounded on A%, then |¢’(¢)| =1forall ¢
in aD.

(ii) If G is fast and regular, then C, is compact on A% if and only if
|¢’($)| > 1 for all ¢ in dD.

Given a fast regular G, it is reasonable to ask whether there exists any bounded
C, on A% that is not compact. The answer is always “yes”: The rotations
¢(z) = cz, with |c| =1, induce the entire collection of unitary composition
operators on any A%; the case ¢ =1 of course yields the identity operator.
Here we show that, for weights that decay to zero more rapidly than the
critical weights

(3)

1
(1-r)?
there are no other possibilities. In what follows we write G in the form

G(r) = e " and assume that /(r) is continuously differentiable and 4’(r)
is nondecreasing on (0, 1).

G.(r)= exp{—B }, B >0,

TueoreM 1. If (1—r)3h’(r) - o as r —1, then the only C, that act bound-
edly but not compactly on A% are those induced by the rotations ¢(z) = cz,
lc| =1.

THEOREM 2. If (1—r)3h'(r) remains bounded as r — 1, there exists a ¢,
not a rotation, such that C, is bounded but not compact on Ag.

These results depend on the following boundedness criteria, which can be
found in [5] and [4],_ respectively. We write M(r) for the maximum modulus
function maxg|¢p(re)|.

(1) If G(r)/G(M(r)) remains bounded as r — 1, then Cy is a bounded
operator on A%.
(2) If G(r)/G(M(r)) - as r — 1, then C, is not bounded on AZ.

We also need the following variant of a result of Burns and Krantz [1; 3].
It will be seen in the proof that the function «# defined in the statement satis-
fies Reu(r)=0,0<r<1.

ProposiTiION 1. Let ¢: D — D be analytic with radial limit ¢(1) =1 and
angular derivative ¢’(1) = 1. Define u by ¢(z) = z+u(z). If

Reu(r)

liminf — 2% =,
e a=r)3

then u =0 and ¢(2) = z.
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Proof. The function (1+¢)(1 —¢)~! has positive real part in D, and so has
a Herglotz integral representation. In particular,

1+¢(r) _ [e+r _
=60 —f Ty du(@)+ic, 0<r<l],

el

where p is a positive measure on dD and c is a real constant. This formula,
of course, holds on all of D, but we need it only for r in the unit interval. If
we multiply this equation by 1 —r and let r — 1, we see that the left side tends
to 2 because ¢(1) = ¢’(1) =1. The right side, on the other hand, tends to
2u({1}) by the dominated convergence theorem. It follows that u({1}) =1,
and so u = 6; + v where §; is a unit point mass at 1 and » is a positive measure
with »({1}) = 0. The preceding equation can thus be rewritten as

1+¢(r) 14r _ ei9+r )
1—¢(r) 1—r —f}e"@——rd”(e)'“c’ 0<r<i. 4)
Since ¢ (1) =1 = ¢’(1), we see that
u(r) =1__d>(r)—1 S0
1—r r—1

as r — 1. Let us write s and 7 for the real and imaginary parts of u(r)/(1—r).
Note that s—» 0 and f — 0 as r —» 1. According to Julia’s lemma [2], ¢ maps
every disk in D that is internally tangent to dD at 1 (a Julia disk at 1) into it-
self. Taking the disk whose boundary passes through », we see that Re u(r) =
0 for 0 = r <1, that is, s = 0. On taking real parts of both sides of (4), we

calculate
1 (2s(1—s)—2¢2 f
= | P.dv,
l—r{ (I=s)2+12 } ra

where P, is the Poisson kernel at 7. Note that the right side is bounded below

by (1—r)(1+4r)"'»(8D). Dividing the resulting inequality by 1—r and dis-
carding the —2¢2 term yields

s 2(1—y) - 1

(1-r)2 (1—s5)2+¢2 1+

v(dD).
r

Since

Reu(r) 0

S
liminf = lim inf
P (1—r)? P (1-r)3

we have v =0, and thus

1+¢(z) 14z

1-¢(z) 1-z2

Let us consider the possibility ¢ # 0. In this case we can solve the last
equation for ¢(z) to find

+ic.

¢(2) = —

al—-az’

where o = ic/(ic—2), a point in D satisfying Re o = |«|* > 0. From this we
compute
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(1-r)’Rew
|1—ar|?
It follows that (1 —r)~3 Re u(r) is bounded below, contradicting our hypoth-
sis on u(r). The only remaining possibility is ¢ = 0, that is, ¢(z) = z. O

Reu(r) = , O<r<l.

Note. In our original proof of Proposition 1 we had too hastily concluded
that ¢ = 0. We are grateful to the referee for pointing out that one really does
need to rule out the automorphisms of D described in the last paragraph.

Now suppose ¢ maps D to D and at some {; in 3D has angular derivative
satisfying |¢’({o)| = 1. By Julia’s lemma, M(r) = r. In fact, M(r) > r for all
r <1 unless ¢ is a rotation. To see this, suppose M(ry) = ry for some 7.
Choose ¢ with |c| =1 so that c¢({p) = {, and note that c¢’({,) = 1. Since c¢
maps the closed Julia disk at ¢, whose boundary contains ry ¢, into itself, the
assumption M(ry) = rq says that ry{, is a fixed point for c¢$. Moreover, if
ro<s <1, then c¢(s{p) must lie in the closed Julia disk J whose boundary
passes through {; and s{;. On the other hand, consider the pseudohyperbolic
metric on D defined by

Z—Ww
1—wz

d(z,w)=

Let a =d(ry$o, S{o) and put B ={ze D: d(ry{o,z) <a}. Then B is a closed
Euclidean disk containing rq{; with Euclidean center on the radius from 0
to ¢ and with s{; in its boundary. By the Schwartz-Pick lemma, c¢ maps B
into B. Since JNB = {s{,}, we see that c¢ fixes s¢, as well. Since s is arbi-
trary in the range ro <s <1, we have c¢(z) =z and ¢ is a rotation. This
raises the question: Since M(r)—r can never be zero for nonrotations, are
there also restrictions on how fast it can tend to zero? The following con-
sequence of Proposition 1 provides the answer; we will see below that it is
sharp.

COROLLARY. Suppose ¢: D — D is analytic with angular derivative satisfy-
ing |¢'($o)| =1 at some & in dD. If the maximum modulus function M(r)
of ¢ satisfies
liminf 2207 _
r—1- (1 =r )3 ’

then M(r) =r and ¢ is a rotation.

Proof. By pre- and post-composing with rotations, we can assume that { =
1, ¢(1) =1, and therefore ¢’(1) = 1. Then write ¢(z) = z+ u(z). We have

M(r)y—r=|¢(r)|—r = Reo(r)—r =Reu(r),
and so the corollary follows from Proposition 1. 0

Proof of Theorem 1. Let G satisfy the hypothesis of Theorem 1 and sup-
pose that C, is bounded but not compact on AZ%. Then there exists { in
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dD with |¢’({)| = 1. Moreover, there exists a positive sequence r, —»1 with
G(r,)/G(M(r,)) bounded. But

Gr) _ MM —h(r) — o H(S)M(r)—r)
G(M(r))

where r <5 < M(r). Since #’ is nondecreasing we have h’(s) = h’(r), and so
for some constant B > 0,

’ ’ M(r )—'r
B = h'(r,)(M(r,) =) = (1= r,)h'(r,) ———".
(1 _rn)
Since (1 —r,,)3h’(r,,) — 00, we may apply the corollary to conclude that ¢ is a
rotation. 0O

To prove Theorem 2 and to provide some interesting examples, we consider
the mappings

d(z)=z+t(1—-2)5 >0, B>1. (5)

According to Proposition 1, such a ¢ cannot map D into D if 8 > 3. Burns
and Krantz [1; 3] observed that when 8 = 3 and ¢ is small enough, ¢(D) C D,
thus showing that their version of Proposition 1 (and ours as well) is sharp.
These maps also appear in [5] to provide examples of composition operators
on fast weight spaces, a theme that we pursue in what follows. Because none
of these papers verifies ¢(D) C D, we do so here, plus a bit more.

PROPOSITION 2. Suppose ¢ is given by (5). _If 1<B=<3and 0<t<2'75
then ¢ maps D to D and |p(e”)| < 1 for all e 1. Moreover (and clearly),
¢(1)=1and ¢'(1) =1.

Proof. Consider a point e” # 1 on the unit circle, and write 1 —e” in polar
form as pe™* with p > 0 and —#/2 < x < w/2. A calculation shows that

|p(e™))? = 1+ t2p%P +2tpP[cos Bx—p cos(B—1)x]. (6)
Further, the condition |1 — pe™ | =1 translates to p = 2 cos x; on substituting
this into (6) and using the identity
cos Bx—2cos(B—1)xcosx = —cos(B—2)x,
we find
|p(e™)|? = 1+ £2°[£28 cos? x—2 cos(B—2)x] cos® x.

Clearly, we want the second term on the right to be negative. But this follows
since # < 2! 78 and because the inequality 1 < 8 < 3 implies that cos(8 —2)x =
cos x = cos® x for —n/2 < x < w/2. O

LEMMA. Let ¢ be given by (S) with1<B8<3and 0<t<2'"P If {z,}isa
sequence in D with z,,— 1 tangentially, then |$(z,)| < |z,| for n large.

Proof. First consider the case 3 = 3. Let z,— 1 tangentially. Without loss
of generality we can take z,, in the first quadrant of D. Let us abbreviate
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z, = z and introduce the polar forms z = re’’ and 1 —z = pe™*. We have 0 <
0 <w/2and —7/2 < x<0. Then

¢(rei0) — rei0+tp3e3ix,
and we compute that
| (re®®)|> —r? = tp3[1p> +2r cos( — 3x)]. ©)

As z—1, r—1 and 8 — 0. Tangential approach means that x —» —«/2 and
p/0— 1 as well. We see from (7) that it suffices to show 63 +cos(6 —3x) <0
when z is tangentially close to 1.

Consider now two triangles. The first has corners at 0, 1, and re’®. The
interior angle at the vertex 1 is clearly —x. The second triangle, isoceles, has
corners at 0, 1, and e, and interior angles « at 1 and e®. Clearly —x < « and

2a+60 = 7. Thus
3¢ 6

0—3x<0+3ac=———,
X + 3 ) )

so 0 —3x is tending to 3#/2 from below as z — 1 tangentially. But just to the
left of 3#w/2 the cosine satisfies

1 37
coss < 5( —‘—2——),

37 6 0
cos(f0—3x) < cos(T —i> < -7

Since 16 < 6/4 for small positive 6, we are done.
The case 1 < 8 < 3 is more obvious. With p and x as before,

d(re’’) = re’ + tpPe ',

so that

In the limit we have B8x — —B#/2, so that eventually the small complex num-
ber tpPe’* lies inside a sector opening from 0 into the left half-plane, sym-
metric about the negative real axis and with angle less than «. Clearly, then,
¢(z) is closer to zero than z for z near 1. O

Now consider the weights
1
(1—-r)¢

Theorem 1 implies that if « > 2, the only bounded composition operators
C, on A% are those with |¢’({)| > 1 for all { in 8D, and those with ¢(z) = cz,
|c| = 1. Accordingly, we concentrate on the range 0 < o < 2.

G(r)=exp{—B }, B>0, >0.

THEOREM 3. Consider the exponential weights G as just defined with 0 <
o <2. Let ¢ be one of the maps (5) with 1<B=<3 and t<2'5. Then C, is
bounded on A% if and only if 8 = a+1.
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Note. Since ¢’(1) =1, none of the operators C, in Theorem 3 can be compact.

Proof. Let0<a<2andl< g =<3, and write M(r) for the maximum mod-
ulus function of ¢. As in the proof of Theorem 1, we have

G(r) M(r)—r
G(M(r)) (1—=s)*+1)’
where r < s < M(r). Since the minimum value of |¢’({)| over 4D is exactly 1,

1-M(r)~1—r as r—1 (see [5]), and so G(r)/G(M(r)) remains bounded
or tends to co with the quantity

= exp {aB

M(r)—r

)

Thus, if C, is bounded, the expression (8) remains bounded on some se-
quence r,, — 1, and since £(1—r)? =|¢(r)|—r < M(r)—r we see that = a+1.
On the other hand, if C, is unbounded, then (8) is unbounded on a sequence
r,— 1. Select z,, in D with |z,| = r, and |¢(z,)| = M(r,). Since M(r,) -1, it
follows from Proposition 2 that z,, — 1. By the lemma, z, must tend to 1 non-
tangentially, that is, |1—z,| < C(1—r,) for some C > 0 and all n. Thus

M(rn)_rn _ |¢(zn)|_rn
(I=r)e*t (1=,

(l_rn)a+l

< (constant)(1 —r,)~*~1,

Since the left side tends to o, we see that 3 < a+1. O

Remark. The last half of the proof of Theorem 3, when applied in the case
o = 2, shows that for the functions

o(z) =z+t(1-2)3, <43,
one has
M) —r<C1-r), 0<r<i,

and thus that our corollary is indeed sharp.

Proof of Theorem 2. The work has mostly been done. We let ¢ be the cubic
in the last remark and invoke the hypothesis on 4 to find

M(r)
hOM(P)) — h(r) = f () dx

" L4
<< -
= f (1—x?
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- M(r)—r
— (1=-M(r)?
M(r)—r
(1-r)3°
By our remark the right side is bounded, so G(r)/G(M(r)) is bounded as
well, and C, acts boundedly in AZ. O

- O
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