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0. Introduction

Let fe LP(T), 0 < p < +oo, where T is the unit circle in the complex plane
C and @, the set of complex polynomials whose degree is not greater than n.
The best approximation of f by the polynomials of degree n in LP-metric
is defined by

En(f) = En(f)p = inf{”f_g"p: ge®,}.

An application of the Hahn-Banach theorem to the quotient space L?/®,,
1 < p <+, enables us to get a convenient expression of E,(f), for fur-
ther application (see the equality (1.1) below). Using (1.1), we prove that if
Fe H? (1< p<+), wis an inner function, and w(0) =0, then E,(Fow), =
E,(F),.

In Sections 2 and 3, we consider applications of this result. In Section
2, we give a characterization of the Lipschitz-Besov space X = A(«, p, q)
by means of the best approximation. Using this result, we prove that if
Fowe X then Fe X, where X is a Lipschitz-Besov space and w is an inner
function.

If ¢ is an inner function and if ¢ has no zeros in the unit disk then ¢ =
Aow, where w is an inner function and A is the atomic function. In Section
3, combining this fact with results obtained in previous sections, we prove
that if ¢ is an inner function with a nonconstant singular factorand1 < p <
+o0, then there exists a positive constant C such that

Ei(p), = Ck™V2P,

This result is sharp. The case p = 2 of this result is due to Newman and Sha-
piro [6].

Finally, applications to the growth of integral means of inner functions
are given. Using the lower bound on the rate at which E,(f), may go to
zero, together with the characterization of Ay(p), we prove that if ¢ is an
inner function with nonconstant singular factor and 0 < p < +co then

lim sup(1—r)!=Y22M, (r, ¢") > 0.
r—
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An immediate corollary of this is the following result, due to Ahern [2]: If
the atomic function does not belong to X then no nonconstant singular
function belongs to X, where X is a Lipschitz-Besov space.

1. Theorem 1.1

Let U = {z:|z| <1} be the open unit disk in the complex plane. The class
of all holomorphic (analytic) functions in U will be denoted by H(U). If
fe H(U), 0 <r<1, we define the integral means of f by

1

27 ) 1/p
EL If(re:f))[l’dﬁ} , Ip(r,f) =M1§’(r,f), 0< p<+oo;

My(r, f) = {
M (r, f) = sgplf(re"")l-

For 0 < p < o, the class H? is defined to consist of all fe H(U) for which
M, (r, f) remains bounded as r —1_.

A function fe H(U) is said to be subordinate to a function Fe H(U)
(written f < F) if f(z) = F(w(z)) for some function w(z) analytic in U, sat-
isfying |w(z)| < |z|.

Throughout the paper let the letters n, k£, and v denote natural numbers.
From now on, all sums without limits are taken from O to co. In the theorems
that follow, C denotes a positive constant though not always the same one.
In order to give a background of our investigation, we first sketch the proof
of Theorem 1.1 in the case p = 2. First we need the following.

TueoreM L (Littlewood’s subordination theorem). Let f,Fe H(U) and
f<FinU. Then

M,(r,[)=M,(r,F), 0<p=o.

Let f(z) =3 a,2", F(z) =X An2", Si(z) =3f-0 Axz*, and f<F. Since
S,(W(2)) =3F_0 axzX + 2841 biz", an application of Theorem L gives
the next theorem. ‘

THEOREM A. Under the conditions of Theorem L, we have
n n
lal*= Z|A n=1.
k=0 k=0

Let T = {z:|z| = 1}. For the following result, see [8].

THEOREM B. Let w be an inner function and w(0) =0, and let he L'(T).
Then howe LN(T') and

27 . 2% .
h(w(e®))do = h(e’®) de.
0 0

Combining Theorem A with Theorem B, we find the following.
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PROPOSITION A. Let fe H? and f = Fow, where w is an inner function
and w(0) =0. Then

- 2. < 2
> lae)® = X |Akl”
k=n k=n

Since E,(f)2 = =l f(k)|?> with n = 0 and f e H?, the following result is a
generalization of Proposition A.

THEOREM 1.1. Suppose that Fe H? (1 < p < +) and f = F-w, where w is
an inner function with w(0) = 0. Then

En(f)p = Ey(F)p.

Before we give a proof, for the convenience of the reader we emphasize
some similarities between the proofs of Proposition A and Theorem 1.1.
Instead of a simple expression for the best approximation in L2-metric and
Littlewood’s subordination theorem, we shall use (respectively) the equality
(1.1) and Lemma 1.1. Theorem B has the same role in both proofs.

The following result, which plays an essential role in the theory of ex-
tremal problems, will be needed in the proof of Theorem 1.1.

THEOREM C. Let X be a Banach space with dual space X*, and let S be a
closed subspace of X. Then, for each fixed x € X,

infllx—y|= max [¢(x)|,
yes vesS |¢|=1

where St is the annihilator of the subspace S, that is, the set of all linear
Sunctionals Y € X* such that y(x) =0 for all xe S.

Proof of Theorem 1.1. 1t is well known that the dual space of L? = L?(T)
(1< p <o) is L? = LP(T), where the pairing is given by

(f,8) =f f(e®)g(e”)db, feL” gelL”
and 1/p+1/p’=1. Therefore, it is easily verified that
Cr=L={g:gel?, g(w)=0,v=0,1,2,...,n)}.
Now, an application of Theorem C gives
E.(f)p,=sup{|<f,g)|: ge LE | gl < 1}. (1.1

To complete the proof we need the following result.

LEMMA 1.1. Let w be an inner function and let w(0) =0. If geL?, 1<
D <o, then gewe LE and

"g°W”p="g"p' 1.2)
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Now, by this lemma and (1.1) (recall that f = Fow),
E,(f)p = sup{[KFow, gew)|: ge LY, ||g| ,» < 1.
Hence, by (1.1) and Theorem B, we obtain Theorem 1.1. W

Proof of Lemma 1.1. First, suppose that 1 < p < c. Next, let

G(z)= X &)z’ and g =g-G.

v=n+l

A routine application of known results from H?” theory gives that there
exists a function g, € H” such that g,(e?) = g,(e?) a.e. on 7. Hence

et 27r . 1 27r - .

(@) (0) = — f gi(w(e?))e ™ do = f 2 (w(e®)e do, v=0.
271' 0 27I' 0

Thus g,°we LZ. Next it is easily seen, from

G = 3 aw@)]

v=n+l

and the hypothesis, that (Gew) (v) =0, v=0,1,...,n. Thus Gewe L? and
consequently gew € LE. To finish the proof of this case, we need only observe
that the equality (1.2) follows from Theorem B.

In the case p = o, we can use Theorem B to conclude that || gew||e = || €| o-
Now, it follows from the previous consideration that (gew) (v) =0, v=
0,1,...,n. Thus gewe L. O

The following result will be needed in Section 3.

ProrosiTION 1.1.  Let f = IF, where I is an inner function and F e H?. Then
E,(f)pz CLE(F),, 1<p<-+oo.

Proof. Let HP = L?'N H? where 1/p’+1/p =1, and let g be an arbitrary
function in LZ". Since 1 < p’< oo, the M. Riesz theorem (see e.g. [3]) guar-

antees that the “analytic projection” Pg(z) =3}, c,z" of the original L?’
+o0

function g(e”?) ~3+®_, c,e™ is in H”" Furthermore, there exists a con-
stant A, such that
I1Pgllr < Apllelp> geL”. (1.3)

From (1.1) and (1.3) and since {f, g) = (f, Pg) for every fe H? and ge L”,
it follows that

sup([</, G)|: Ge H, |G|y < 1)
< E,(f)p, <Ay sup{|{f,G)|: Ge HY, |G| ,» < 1}. (1.4)
Thus (recall that f = IF) we have

21" . . - ’
E,(f)p= sup{ F(e")I(e"®)G(e®)db|: Ge HY, |G|, = 1}.
0

Since GI e HY" for every G € H? and ||GI|| ,» = ||G >, we find
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E,(f)p= sup{

2” . . T e ’
F(ele)l(elﬂ)G(elﬁ)I(ela) dol: GEHf, "G"p' < lz .
0

Now, the second inequality in (1.4) gives
E(f)p= CrE,(F)p,
where C, = 1/4,.. OJ

2. Membership in A(a, p, q)
Let

n—1 .
K.(x)= X (l—l—lﬂ)e”"‘ (n=1), Ky(x)=0,
k=—(n—1) n

be Fejer’s kernel and let ¥, be de la Vallee Poussin’s kernel
Vam(X) = 2K (X) = K;p(x) (m=1), Vp(x)=0,
Vam+1(X) = Vap(x) (m=1).

If fe L'(0,27] we write V,,(f)(x) for
27
Vot f) == [ fle"WV(x—tydt,
27 0

the convolution of V,, with f. Let Wyn =Von—Von-1 forn= 1.

LEMMA 2.1. Ifl<p=<o, felL?(0,27), and n =0, then

@) [Va)Np =3[/ s
®) S =VaDllp = 4l 11l ps
© |f*Wal,<6|f], n=1

Proof. From the definition of Fejer’s kernel K, it follows that K,(x) =0
and foz” K,(x)dx = 2=. Hence, by combining this with Minkowski’s inequal-
ity we obtain (a). Using (a), it is easy to prove (b) and (c). O

An immediate corollary of the Riesz projection theorem is: if 1< p <oo,
fe€L?[0,2x], and S, f(e™) =3i_o f(k)e™ ™, then there exists a constant
C, > 0 such that

Coll F =SS Np < Enf)p < |.f =SS -

This inequality does not hold for p =1, co.
We need the following result, which can be viewed as a generalization of
Lemma 2.1to thecasel < p < co.

LEMMA 2.2. Letl< p=<oo, feL?(0,27), and n = 0. Then
il =Vl p = Ea()p = | f=Val Nl p- 2.0
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Proof. Let P,=3X}_,a;e™™ be an arbitrary polynomial. Because

1 if |k| = n,
Vonlk) =% 2n—|k|)/n if n<k<2n,
0 if |k|=2n,

it is easy to check that V,,(P,) = P,.
Therefore, by part (a) of Lemma 2.1,

1f =Pullp = 21 = Po) = VaulF = P)ll = 31/ = Vau( -

Thus, we have the left-hand inequality of (2.1); the right-hand inequality
follows immediately from the definition of E,(f),. O

Let n be a positive integer with 0 < o < n. We say that a function fe H(U)
belongs to the Lipschitz-Besov space X = A(a, p, @), 0 < p < 4, if

1
Ifllx = U (1=r)=a=Ipgd (r, £) dr} <+, 0<g<oo,
0

and
Ifllx = Osugl(l —r)"" M y(r, f™) < +o0, g=0o.
<r

In the case g = +o0, we will use the notation A(«, p) instead of A(«, p, ).
By Ay(c, p) we denote the subspace of A(«, p) consisting of fe H(U) for
which

(1=r)""*M,(r, f™) >0
when r — 1.
It is well known that A(«y, py, 1) C Ay, D3, q5) if either
(a) a;> a, (g and g, need not be related) or
(b) oy =y and g; =< q>.

Let f =3 a;z* be an analytic function on the unit disk U, and let 8 = 0.
The fractional derivative f1%1 of f is defined by

fBl(z) = i Makzk,
k=0 k!

It is known that the definition of a Lipschitz-Besov space is independent of
n, and that we define the same space if we write f"] instead of f™.

The following result is probably known (at least partially) to specialists in
the field. Our proof is based on the ideas developed in [5].

zeU.

THEOREM 2.1. Let 1< p <o and 0< g =< +o. Then the following condi-
tions are equivalent:

(@) feAlw, p,q);

(b) @[S+ Wi )1 € 1%

(©) ¥ Ex(f)p)k=1€”.
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We will make a few definitions and comments before giving the proof of
this result.

For fe H(U), we define S, f(z) = -0 f(K)z¥, A,f(2) = Sonf(2) -
Syn—1f(z) (n=1), and Ay(z) =0 for ze U. In [5], we proved the following
result.

THEOREM MP. If1< p <o, then f€ A(a, p, q) if and only if
A IR €19 (2.2)

The proof of the equivalence of Theorem 2.1(a) and (b) is similar to the one
given in [5], where to prove that f e A(«, p, q) implies (2.2) we used a corol-
lary of the Riesz projection theorem: If 1 < p < o and if fe H?, then there
exists a constant C, > 0 such that

12 f 1o = Cpll.f1l-

Here we shall instead use part (c) of Lemma 2.1.

Combining the equality f(z) — S~ f(2) = X o=n+14,f(2), € U, with the
Riesz projection theorem and Minkowski’s inequality, we can prove the fol-
lowing result: If 1 < p < oo and if f€ H? then there exists a constant C, > 0
such that

Collanfl,<Esp= S 18071

v=n+
Using this inequality and Theorem MP, we can prove that for the case 1 <

p <+, Theorem 2.1(a) holds if and only if (c) holds. To get an extension
of this to the case 1 < p < o, we shall use the inequalities (2.5) and (2.6).

Proof of Theorem 2.1. Let By = | f*Wy|, and v, = Ex(f),, k=1. By
Lemma 2.1(c) and [5, Lemma 3.1, inequality (3.4)], we have
sup CT'2K7r 28, < || £, 2.3)

0=<r«l

On the other hand, using Minkowski’s inequality and again [5, (3.4)], we
obtain

1771, S 1 ewal, = o £ 280 2g). @
k=1 k=2

Now, [5, Prop. 4.11, together with (2.3) and (2.4), shows the equivalence of
(a) and (b).
Let P,« denote the polynomial of order 2, ¥ = 1. By Lemma 2.1(c),

6"f—‘P2k||p > ”(f—sz)* W2k+2"p = Hf* W2k+2||p,
so that
67k26k+2' (2.5)
Thus, (c) implies (b).
Combining Lemma 2.2, the equality f—Vox f = X 7_ ;1 f* W,», and Min-
kowski’s inequality, we have
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=]

2 Bo (2.6)

v=k+1
Let us prove that (b) implies (c). By (2.6), it suffices to prove that K, =
> (2%*Bk)7 < +o0 implies that K, = 3(2¥*R,)7 < oo, where R, = 3%_,. 5.
First, let g < 1. Since Ry = 8+ Ry, we have

IA

Yk

Ky < 3 (269 +27%9 3 [2+DeR, 1
k=1 k=1

This gives the desired result.
If g = 1, we use the Minkowski inequality to obtain

oo 1/q
Ky < K"+ {kE (ZkaRk+l)q} .
=1

The rest is similar to the case g < 1. O

THEOREM 2.2. For 1< p < +oo, the following conditions are equivalent:
(@) feAyla, p);
(b) 25|\ f % W], 0, k - +oo;
(c) 2%*Eyu(f),— 0, k- +oo.

Proof. Let fe Ay(a, p). For given € > 0, there is an ry € (0, 1) such that
A=r)= P, <e, r=ry @.7)

From (2.3) and (2.7), it follows that there exists a k, such that
Clipkn—aipkng < k= ky,

so that (a) implies (b).
In order to prove the converse, suppose that (b) holds. This means that,
for given € > 0, there exists a natural number &, such that

2keg, <€, k=kg. (2.8)
Therefore, this inequality and (2.4) show that

ko o ~
A=r)"" ), < KQ=r)""% 3 258+ Ke(1—r)"~e 3 2kn=a)y 27
k=1 k=k,
Because the first term on the right-hand side is arbitrarily small for r close
enough to 1, and since

> 2kn=a) 2 < g(1—r)an,

we obtain (a).

As (2.5) shows that (c) implies (b), it remains only to prove that (b) im-
plies (c). Suppose that we have (b), so that (2.8) holds for given ¢ > 0. Com-
bining (2.6) and (2.8) yields

o0
s S 27V < Me2Th
v=k+1

so that we have (c). O
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THEOREM 2.3. Let F be an analytic function in U and let w be an inner
nonconstant function. If f=Fow, 1 < p<o, and 0 < g < o, then

(a) feA(a, p,q) implies Fe A(o, p, q) and
(b) fe Ay(a, p) implies Fe Ay(a, D).

Proof. Suppose that fe A(a, p, q). Hence f e A(«, p) and since A(x, p) C
HP, we conclude that fe H”. A result of Stephenson [9] (see also Rudin [7])
states that Fe H?, so that E, (f), = E,(F),, by Theorem 1.1. Therefore (a)
follows from Theorem 2.1.

In a similar manner, by using Theorem 2.2 instead of Theorem 2.1 we can
prove (b). O

3. Growth of Means of a Singular Inner Function

LEMmMA 3.1. Let

A(z) = Ay(z) = exp(szii), §>0

(the atomic function), and let 1 < p < . Then there are two constants C,
and C, such that

(@) E,(A),<Cin"V?*’, n=1, and
(b) E(A),=Con™V?’, n=1.

Proof. Mateljevi¢ and Pavlovic¢ [4] proved, in the case k =1, thatif p > 1/2
then there exists a constant C, > 0 such that

My(r,A) = C,(1—r)"?71, 0=r<1.

Using the argument given in [4], it is easy to get a proof of this inequality in
the general case s > 0. This means that A€ A(1/2p, p). Hence, by Theorem
2.1, we have part (a) of Lemma 3.1.

The case p = 2 of part (b) is due to Newman and Shapiro [6]. It is inter-
esting that we can induce the general case to this one. Let 7,4 = A—V,(A).
By Holder’s inequality,

170 A3 < | T Al p || T As|

where 1 < p <+ and 1/p+1/p’=1. This inequality, part (a), and Lemma
2.1 show that

p»

Cn—l/Z < “THAS"pn—l/Zp"
so we have (b). O

THEOREM 3.1. Let ¢ be an inner function with a nonconstant singular fac-
tor, and let 1 < p <+, Then there exists a constant C such that

Ep(p), = Ck™V2P,

Proof. Consider first the case 1 < p < +o0. If ¢ has no zero in U, it is known
(see e.g. [6, p. 254]) that
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o(z) = e"A[w(2)], zel,

where v is a real number, w is an inner function with w(0) =0, s > 0, and

As(z) = exp(sz+l)
z—1

is the atomic function. Hence, applying Theorem 1.1, we find
En(‘P)p = En(As)ps n=l.

The result then follows from this inequality and Lemma 3.1(b). If ¢ has
zeros, we factor out the Blaschke product B(z) to obtain a nonvanishing
inner function S(z) = ¢(z)/B(z). Therefore, by Proposition 1.1,

E0), = C,E,(S),) =Cn™ V2P, n=1.

Consider now the case p =1. By Lemma 2.2,

Ey = gle—Vau@l
2

4 Jy

Since |l¢ — Van(¢)||l» < 4 by Lemma 2.1(b), we have

Ey(¢)1 = 47 o —Van(o)|3-
Hence, by Lemma 2.2 again,

E,(p)1 = 47 Ez,(9)3.
Combining the last inequality with E,,(¢), = Cn~

le(e®) = Vau(p) ()| |p(e™) = Van(e)(e®)|? db.

4 vields the result. O
For 0 < p < =, it is convenient to use the notation Ay(p) = Ay(1/2p, p).

CoOROLLARY 3.1. Let ¢ be an inner function with nonconstant singular fac-
tor. Then ¢ & Ay(p), 0 < p < 400,

Proof. Let 0 < p< g <+, and let n be a natural number such that n>
1/2p. Next let z € U. By the Cauchy integral formula we have

e fm,p, -1

where K(z, p) is the circle defined by vy(0) = z+pe?, 0<60<2x, and p=
p(z) = (1—|z|)/2. Since ¢ € H*, it follows from the last equality that there
exists a positive constant C > 0 such that

le"(2)| = C(1—|z))™", zeU.
Using this inequality and

27 . .
I(r,¢™) = f |\ (re™)|7P | (re™)|Pdt, 0<r<l,
0
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we conclude that
I(r, ™) < C(1—r)"P~"MI(r,¢"), 0<r<l.

Thus, if 0 < p < g <o and ¢ € Ay(p) then ¢ € Ayp(q). This shows that it is
enough to prove the theorem for p > 1. Now the result follows from Theo-
rem 2.2 and Theorem 3.1. O]

In order to give a geometric interpretation of Corollary 3.1, we introduce
the notation
27

I(r) = I(r, ) = fo lo'(re™)| .

Note that /(r) is the length of the curve v,: w = p(re), 0 <t <2, for 0 <
r<1.If p=1, Corollary 3.1 states that

lim sup(1—r)"2i(r) > 0.

r—1_

In this connection, we conjecture that there exists a constant C > 0 such that

I(ry=1I(r,p) = C(1—r)™/?
for r close to 1.

The following result, which is due to P. Ahern [2], is an immediate conse-
quence of Corollary 3.1.

TueoreM Ah. If S is a singular inner function, p>0, ¢>0, 0<a<l,
and 1/2p < «, then

1
f (1—r)3=09=1019(s, §") dr = +o. (3.)
0

Proof. Conversely, suppose that the integral (3.1) converges. Then
(1=r)=*M,(r,S") >0

when r — 1. Hence, since o = 1/2p, we find S e Ay(p). But this is not true,
by Corollary 3.1. O

The interested reader can find further references related to this result, as
well as contributions of other authors, in [1], [2], and [4]. In a forthcoming
paper we will give a new approach to Theorem Ah and some related results
using Littlewood’s subordination principle and duality.
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