Functional Calculus for Noncommuting Operators

GELU POPESCU

1. Notation and Preliminaries

Throughout this paper, Λ stands for the set $\{1, 2, ..., n\}$ where n is a fixed natural number. For every $k \in \mathbb{N}^* = \{1, 2, ...\}$ let $F(k, \Lambda)$ be the set of all functions from the set $\{1, 2, ..., k\}$ to Λ , and let

$$\mathfrak{F} = \bigcup_{k=0}^{\infty} F(k, \Lambda), \tag{1.1}$$

where $F(0, \Lambda)$ stands for the set $\{0\}$.

A sequence $S = \{S_{\lambda}\}_{{\lambda} \in \Lambda}$ of unilateral shifts on a Hilbert space ${\mathfrak C}$ with orthogonal final spaces is called a ${\Lambda}$ -orthogonal shift if the operator matrix $[S_1, S_2, ..., S_n]$ is nonunitary, that is, ${\mathfrak L} := {\mathfrak I}{\mathfrak C} \ominus (\bigoplus_{{\lambda} \in {\Lambda}} S_{\lambda} {\mathfrak I}{\mathfrak C}) \neq \{0\}$. This definition is essentially the same as that from [4]. The dimension of ${\mathfrak L}$ is called the multiplicity of the ${\Lambda}$ -orthogonal shift. Two ${\Lambda}$ -orthogonal shifts are unitarily equivalent if and only if they have the same multiplicity (see [6, Thm. 1.2]).

Let us consider a model Λ -orthogonal shift of multiplicity 1, acting on the full Fock space [3]

$$F^{2}(H_{n}) = \mathbf{C}1 \oplus \bigoplus_{m \ge 1} H_{n}^{\otimes m}, \tag{1.2}$$

where H_n is an *n*-dimensional complex Hilbert space with orthonormal basis $\{e_1, e_2, ..., e_n\}$.

For each $\lambda \in \Lambda$ we define the isometry S_{λ} by

$$S_{\lambda}h = e_{\lambda} \otimes h \quad \text{for } h \in F(H_n).$$
 (1.3)

It is easy to see that $S = \{S_{\lambda}\}_{{\lambda} \in \Lambda}$ is a Λ -orthogonal shift of multiplicity 1. This model will play an important role in our investigation. We shall denote by ${\mathcal P}$ the set of all $p \in F^2(H_n)$ of the form

$$p = a_0 + \sum_{\substack{1 \leq i_1, \dots, i_k \leq n \\ 1 \leq k \leq m}} a_{i_1 \dots i_k} e_{i_1} \otimes \dots \otimes e_{i_k}, \quad m \in \mathbb{N},$$

where $a_0, a_{i_1...i_k} \in \mathbb{C}$. The set \mathcal{O} may be viewed as the algebra of the polynomials in n noncommuting indeterminates, with $p \otimes q$, $p, q \in \mathcal{O}$, as multi-

Received June 16, 1994. Revision received March 3, 1995. Michigan Math. J. 42 (1995).

plication. For any sequence $\{T_1, T_2, ..., T_n\}$ of bounded operators on a Hilbert space \mathcal{K} , let $p(T_1, ..., T_n)$ denote the operator acting on \mathcal{K} , given by

$$p(T_1, ..., T_n) = a_0 I_{\mathfrak{M}} + \sum a_{i_1 ... i_k} T_{i_1} \cdots T_{i_k}.$$
 (1.4)

The von Neumann inequality [8] for $(B(3C)^n)_1$ (see [6]) asserts that if

$$(T_1, ..., T_n) \in (B(\mathfrak{IC})^n)_1 := \left\{ (T_1, ..., T_n) \in B(\mathfrak{IC})^n : \sum_{i=1}^n T_i T_i^* \le I_{\mathfrak{IC}} \right\}$$

and $p \in \mathcal{O}$, then

$$||p(T_1,...,T_n)|| \le ||p(S_1,...,S_n)|| = \sup_{q \in (\mathcal{O})_1} ||p \otimes q||_{F^2(H_n)},$$
 (1.5)

where

$$(\mathcal{P})_1 := \{ q \in \mathcal{P} : \|q\|_{F^2(H_n)} \le 1 \}.$$

Now we define F^{∞} as being the set of all $g \in F^{2}(H_{n})$ for which

$$\|g\|_{\infty} := \sup_{q \in (\mathcal{O})_1} \|g \otimes q\|_2 < \infty, \text{ where } \|\|_2 := \|\|_{F^2(H_n)}.$$
 (1.6)

Let us recall from [6] that, if $f \in F^{\infty}$ and $g \in F^{2}(H_{n})$, then the multiplication defined by

$$f \otimes g := \lim_{n \to \infty} f \otimes p_n \tag{1.7}$$

(the convergence being in $F^2(H_n)$), where $p_n \in \mathcal{O}$ and $||p_n - g||_2 \to 0$, is well-defined and $f \otimes g \in F^2(H_n)$. Notice also that $||f \otimes g||_2 \le ||f||_{\infty} ||g||_2$ and, according to [6], $(F^{\infty}, || ||_{\infty})$ is a noncommutative Banach algebra, which can be viewed as a noncommutative analog of the Hardy space H^{∞} .

Now let us recall the Wold decomposition theorem for sequences of isometries [4]. Let $\mathcal{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ be a sequence of isometries on a Hilbert space \mathcal{K} such that $\sum_{{\lambda} \in \Lambda} V_{\lambda} V_{\lambda}^* \leq I_{\mathcal{K}}$. Then \mathcal{K} decomposes into an orthogonal sum $\mathcal{K} = \mathcal{K}_u \oplus \mathcal{K}_s$ such that \mathcal{K}_u and \mathcal{K}_s reduce each operator V_{λ} (${\lambda} \in \Lambda$), and we have

$$\left(I_{\mathcal{K}} - \sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^{*}\right)\Big|_{\mathcal{K}_{u}} = 0 \quad \text{and} \quad \{V_{\lambda}|_{\mathcal{K}_{s}}\}_{\lambda \in \Lambda}$$

is a Λ -orthogonal shift acting on \mathcal{K}_s . This decomposition is uniquely determined; indeed, we have

$$\mathcal{K}_{u} = \bigcap_{k=0}^{\infty} \left(\bigoplus_{f \in F(k,\Lambda)} V_{f} \mathcal{K} \right) \text{ and } \mathcal{K}_{s} = \bigoplus_{f \in \mathfrak{F}} V_{f} \mathfrak{L},$$

where $\mathfrak{L} = \mathfrak{K} \bigcirc (\bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathfrak{K}).$

We recall from [4] that, for any sequence $\Im = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$ of operators on a Hilbert space $\Im C$ such that $\sum_{{\lambda} \in \Lambda} T_{\lambda} T_{\lambda}^* \leq I_{\Im C}$, there exists a minimal isometric dilation $\nabla = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ on a Hilbert Space $\Im C$ that is uniquely determined up to an isomorphism; that is, the following conditions hold:

- (i) $V_{\lambda}^* V_{\lambda} = I_{\mathcal{K}}$ for any $\lambda \in \Lambda$;
- (ii) $\sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^* \leq I_{\mathcal{K}}$;
- (iii) $V_{\lambda}^* \mathcal{K} \subset \mathcal{K}$ and $V_{\lambda}^*|_{\mathcal{K}} = T_{\lambda}^*$ for any $\lambda \in \Lambda$; and
- (iv) $\mathfrak{K} = \bigvee_{f \in \mathfrak{F}} V_f \mathfrak{K}$.

2.
$$C^*(V_1, ..., V_n)$$
 and Similarity

It is well known that if two isometries V_1 and V_2 are similar then they are unitarily equivalent. As a consequence, the C^* -algebra generated by V_1 is *-isometric to the C^* -algebra generated by V_2 .

In this section we extend this result to sequences of isometries with orthogonal final spaces.

THEOREM 2.1. Let $\{V_i\}_{i=1}^n \subset B(\mathcal{K})$ and $\{W_i\}_{i=1}^n \subset B(\mathcal{K}')$ be two sequences of isometries such that $\sum_{i=1}^n V_i V_i^* \leq I_{\mathcal{K}}$ and $\sum_{i=1}^n W_i W_i^* \leq I_{\mathcal{K}'}$. If there exists an invertible operator $X \in B(\mathcal{K}, \mathcal{K}')$ such that

$$XV_i = W_i X, \quad i = 1, 2, ..., n,$$

then there exists a unitary operator $U \in B(\mathcal{K}, \mathcal{K}')$ such that

$$UV_i = W_i U, \quad i = 1, 2, ..., n.$$

Proof. According to the Wold decomposition, \mathcal{K} decomposes into an orthogonal sum $\mathcal{K} = \mathcal{K}_u \oplus \mathcal{K}_s$ such that \mathcal{K}_u and \mathcal{K}_s reduce each operator V_i (i = 1, 2, ..., n), and we have

$$\left(I_{\mathcal{K}} - \sum_{i=1}^{n} V_i V_i^*\right)\Big|_{\mathcal{K}_u} = 0 \quad \text{and} \quad \{V_i |_{\mathcal{K}_s}\}_{i=1}^n$$

is a Λ -orthogonal shift acting on \mathcal{K}_s . Moreover, we have

$$\mathcal{K}_{u} = \bigcap_{k=0}^{\infty} \left(\bigoplus_{f \in F(k,\Lambda)} V_{f} \mathcal{K} \right) \quad \text{and} \quad \mathcal{K}_{s} = \bigoplus_{f \in \mathcal{F}} V_{f} \mathcal{L}, \tag{2.1}$$

where $\mathcal{L} = \mathcal{K} \bigcirc (\bigoplus_{i=1}^n V_i \mathcal{K})$.

The Wold decomposition for $\{W_i\}_{i=1}^n$ provides the corresponding spaces \mathcal{K}'_u , \mathcal{K}'_s , and \mathcal{L}' .

Let us denote

$$V_i|_{\mathcal{X}_u} := A_i, \quad V_i|_{\mathcal{X}_s} := B_i, \quad W_i|_{\mathcal{X}_u'} := C_i, \quad \text{and} \quad W_i|_{\mathcal{X}_s'} = D_i. \quad (2.2)$$

Since $V_i^*X^* = X^*W_i^*$ and X is invertible, it is easy to see that

$$X^*(\text{Ker }W_i^*) = \text{Ker }V_i^*, \quad i = 1, 2, ..., n.$$

Hence, we get

$$X^* \left(\bigcap_{i=1}^n \operatorname{Ker} W_i^* \right) = \bigcap_{i=1}^n \operatorname{Ker} V_i^*.$$

Since $\mathcal{L}' = \bigcap_{i=1}^n \operatorname{Ker} W_i^*$ and $\mathcal{L} = \bigcap_{i=1}^n \operatorname{Ker} V_i^*$, we infer that dim $\mathcal{L}' = \dim \mathcal{L}$. According to [6, Thm. 1.2] there is a unitary operator $M \in B(\mathcal{K}_s, \mathcal{K}'_s)$ such that

$$MB_i = D_i M, \quad i = 1, 2, ..., n.$$
 (2.3)

On the other hand, since $XV_i = W_i X$ (i = 1, 2, ..., n), the relation (2.1) implies $X(\mathcal{K}_u) = \mathcal{K}'_u$. Therefore

$$(X|_{\mathcal{K}_{u}})(V_{i}|_{\mathcal{K}_{u}}) = (W_{i}|_{\mathcal{K}'_{u}})(X|_{\mathcal{K}_{u}}), \quad i = 1, 2, ..., n.$$
(2.4)

Let us denote $X|_{\mathcal{K}_u} := X_0$. Obviously X_0 is an invertible operator from \mathcal{K}_u to \mathcal{K}'_u . By (2.2) the relation (2.4) becomes

$$X_0 A_i = C_i X_0, \quad i = 1, 2, \dots$$
 (2.5)

Notice that $\sum_{i=1}^n A_i A_i^* = I_{\mathcal{K}_u}$ and $\sum_{i=1}^n C_i C_i^* = I_{\mathcal{K}_u'}$. By (2.5), we have

$$X_0 A_i A_i^* = C_i X_0 A_i^*, \quad i = 1, 2, ..., n.$$

Hence, it follows that

$$X_0 = C_1 X_0 A_1^* + C_2 X_0 A_2^* + \dots + C_n X_0 A_n^*.$$

Since $C_i^*C_j = 0$ $(i \neq j)$ and $C_i^*C_i = I_{\mathcal{K}'_{u}}$, we deduce that

$$C_i^* X_0 = X_0 A_i^*, \quad i = 1, 2, ..., n.$$

Taking the adjoint of these relations, we obtain

$$A_i X_0^* = X_0^* C_i, \quad i = 1, 2, ..., n,$$

which implies that

$$A_i X_0^* X_0 = X_0^* C_i X_0 = X_0^* X_0 A_i, \quad i = 1, 2, ..., n.$$

Hence,

$$A_i(X_0^*X_0)^{1/2} = (X_0^*X_0)^{1/2}A_i, \quad i = 1, 2, ..., n.$$
 (2.6)

The polar decomposition of X_0 gives $X_0 = \Omega R$, where Ω is a unitary operator and $R = (X^*X_0)^{1/2}$ is an invertible operator. The relation (2.6) becomes

$$A_i R = R A_i, \quad i = 1, 2, ..., n.$$

Now, for each i = 1, 2, ..., n we have

$$C_i \Omega = C_i \Omega R R^{-1} = C_i X_0 R^{-1}$$

= $X_0 A_i R^{-1} = \Omega R A_i R^{-1} = \Omega A_i$.

Therefore

$$C_i\Omega = \Omega A_i$$
 for any $i = 1, 2, ..., n$, (2.7)

and Ω is a unitary operator from \mathcal{K}_u onto \mathcal{K}_u' . Let us define the unitary operator $U = M \oplus \Omega$. According to the relations (2.2), (2.3), and (2.7), it follows that

$$UV_i = W_i U, \quad i = 1, 2, ..., n.$$

The proof is complete.

Now let us denote by $C^*(V_1, ..., V_n)$ the C^* -algebra generated by $\{V_1, ..., V_n\}$ (see [1; 2]).

COROLLARY 2.2. Under the hypothesis of Theorem 2.1, the mapping

$$\phi: C^*(V_1, ..., V_n) \to C^*(W_1, ..., W_n)$$

defined by

$$\phi(X) = UXU^* \quad for \ X \in C^*(V_1, ..., V_n)$$

is an isometric *-isomorphism.

3. Von Neumann Inequality

Let us recall some facts concerning the Cuntz algebra \mathcal{O}_n and a certain extension of \mathcal{O}_n . In [2] the C^* -algebra \mathcal{O}_n ($n \ge 2$) was defined as the C^* -algebra generated by n isometries V_1, V_2, \ldots, V_n such that $\sum_{i=1}^n V_i V_i^* = I$. It was shown that \mathcal{O}_n does not depend, up to canonical isomorphism, on the choice of the generators V_1, \ldots, V_n . In other words, if $\hat{V}_1, \ldots, \hat{V}_n$ is a second family of isometries satisfying $\sum_{i=1}^n \hat{V}_i \hat{V}_i^* = I$, then $C^*(\hat{V}_1, \ldots, \hat{V}_n)$ is canonically isomorphic to $C^*(V_1, \ldots, V_n)$; that is, the map $\hat{V}_i \to V_i$ extends to an isomorphism from $C^*(\hat{V}_1, \ldots, \hat{V}_n)$ onto $C^*(V_1, \ldots, V_n)$. In what follows we need the following result due to Cuntz [2, Prop. 3.1].

Lemma 3.1. Let $V_1, ..., V_n$ be isometries on a Hilbert space \mathcal{K} such that $\sum_{i=1}^n V_i V_i^* \leq I_{\mathcal{K}}$ (n finite). Then the projection $P = I_{\mathcal{K}} - \sum_{i=1}^n V_i V_i^*$ generates a closed two-sided ideal \mathcal{G} in $C^*(V_1, ..., V_n)$ which is isomorphic to the C^* -algebra of all compact operators on an infinite-dimensional separable Hilbert space, and contains P as a minimal projection. The short sequence

$$0 \to \mathcal{G} \to C^*(V_1, \dots, V_n) \to \mathcal{O}_n \to 0 \tag{3.1}$$

is exact.

The main result of this section is the following.

THEOREM 3.2. Let $\{V_i\}_{i=1}^n$ $(n \ge 2)$ be a sequence of isometries on a Hilbert space $\mathcal K$ such that

$$\sum_{i=1}^n V_i V_i^* \leq I_{\mathcal{K}}.$$

Then the C^* -algebra $C^*(V_1, ..., V_n)$ is *-isomorphic either to $C^*(S_1, ..., S_n)$ or to \mathfrak{O}_n .

Proof. According to the Wold decomposition for the sequence $\{V_i\}_{i=1}^n$, the Hilbert space \mathcal{K} decomposes into an orthogonal sum

$$\mathcal{K} = \mathcal{K}_u \oplus \mathcal{K}_s \tag{3.2}$$

such that \mathcal{K}_u and \mathcal{K}_s reduce each operator V_i (i = 1, 2, ..., n), and we have

$$\sum_{i=1}^{n} W_i W_i^* = I_{\mathcal{K}_u}. \tag{3.3}$$

Moreover, $\{U_i\}_{i=1}^n$ is a Λ -orthogonal shift on \mathcal{K}_s , where

$$V_i=W_i\oplus U_i,\quad i=1,2,...,n,$$

is the decomposition of the operator V_i with respect to (3.2).

Now if $\mathcal{K}_s = \{0\}$ then $\sum_{i=1}^n V_i V_i^* = I_{\mathcal{K}}$ and, according to the result of Cuntz [2], $C^*(V_1, ..., V_n)$ is *-isomorphic to \mathcal{O}_n . Let us consider the case when $\mathcal{K}_s \neq \{0\}$. For any polynomial $p(X_1, ..., X_n; Y_1, ..., Y_n)$ in 2n noncommuting indeterminates we have

$$p(V_1, ..., V_n; V_1^*, ..., V_n^*)$$

$$= p(W_1, ..., W_n; W_1^*, ..., W_n^*) \oplus p(U_1, ..., U_n; U_1^*, ..., U_n^*),$$

whence

$$||p(V_1, ..., V_n; V_1^*, ..., V_n^*)||$$

$$= \max\{||p(W_1, ..., W_n; W_1^*, ..., W_n^*)||, ||p(U_1, ..., U_n; U_1^*, ..., U_n^*)||\}.$$
(3.4)

If the multiplicity of the Λ -orthogonal shift $\{U_1, ..., U_n\}$ is α , then the operator $p(U_1, ..., U_n; U_1^*, ..., U_n^*)$ is unitarily equivalent to the direct sum of α copies of $p(S_1, ..., S_n; S_1^*, ..., S_n^*)$, where $\{S_1, ..., S_n\}$ is the model Λ -orthogonal shift of multiplicity 1 acting on the Fock space $F^2(H_n)$. Therefore,

$$||p(U_1,...,U_n;U_1^*,...,U_n^*)|| = ||p(S_1,...,S_n;S_1^*,...,S_n^*)||.$$
 (3.5)

Since $\sum_{i=1}^{n} W_i W_i^* = I_{\mathcal{K}_u}$, according to [2] we have

$$||p(W_1, ..., W_n; W_1^*, ..., W_n^*)|| = ||p(\sigma_1, ..., \sigma_n; \sigma_1^*, ..., \sigma_n^*)||,$$
(3.6)

where $\{\sigma_1, ..., \sigma_n\}$ is a system of generators for the Cuntz algebra \mathcal{O}_n .

On the other hand (see Lemma 3.1), we have the following short exact sequence,

$$0 \to \mathcal{G} \to C^*(S_1, ..., S_n) \to \mathcal{O}_n \to 0$$
,

where \mathcal{G} denotes the closed two-sided ideal in $C^*(S_1, ..., S_n)$ generated by P_{C_1} , which is the orthogonal projection from $F^2(H_n)$ onto C_1 .

Thus, if π denotes the quotient map from $B(F^2(H_n))$ onto $B(F^2(H_n))/\emptyset$, we then have

$$||p(\sigma_1, ..., \sigma_n; \sigma_1^*, ..., \sigma_n^*)|| = ||p(\pi(S_1), ..., \pi(S_n); \pi(S_1^*), ..., \pi(S_n^*))||$$

$$= ||\pi(p(S_1, ..., S_n; S_1^*, ..., S_n^*))||$$

$$\leq ||p(S_1, ..., S_n; S_1^*, ..., S_n^*)||.$$

Hence, using the relations (3.4), (3.5), and (3.6), we infer that

$$||p(V_1,...,V_n;V_1^*,...,V_n^*)|| = ||p(S_1,...,S_n;S_1^*,...,S_n^*)||.$$

Therefore, the mapping $V_i \mapsto S_i$ (i = 1, 2, ..., n) extends to an isometry from $C^*(V_1, ..., V_n)$ onto $C^*(S_1, ..., S_n)$ which is also a *-isomorphism. The proof is complete.

COROLLARY 3.3. If $\{V_1, ... V_n\}$ is a sequence of isometries on a Hilbert space \mathcal{K} such that

$$\sum_{i=1}^{n} V_i V_i^* \le I_{\mathcal{K}},\tag{3.7}$$

then

$$||p(V_1,...,V_n;V_1^*,...,V_n^*)|| \le ||p(S_1,...,S_n;S_1^*,...,S_n^*)||$$
 (3.8)

for any polynomial $p(X_1, ..., X_n; Y_1, ..., Y_n)$ in 2n noncommuting indeterminates. Moreover, if (3.7) is not an equality then (3.8) is an equality.

Let us now denote by $\mathcal{O}(X, Y)$ the set of all polynomials in 2n noncommuting indeterminates $p(X_1, ..., X_n; Y_1, ..., Y_n)$ of the following form,

$$p(X_1, ..., X_n; Y_1, ..., Y_n) = \sum a_{i_1, ..., j_m} X_{i_1} \cdots X_{i_k} Y_{j_1} \cdots Y_{j_m},$$

where $a_{i_1,...,j_m} \in \mathbb{C}$, $i_1,...,i_k,j_1,...,j_m \in \{0,1,2,...,n\}$, and $k,m \in \mathbb{N}^*$. Here we use the convention $X_0 = 1$ and $Y_0 = 1$.

An extension of the von Neumann inequality [6, Thm. 2.1] is as follows.

THEOREM 3.4. Let $(T_1, ..., T_n) \in B(\mathfrak{IC})^n$, $n \ge 2$. Then $\sum_{i=1}^n T_i T_i^* \le I_{\mathfrak{IC}}$ if and only if

$$||p(T_1, ..., T_n; T_1^*, ..., T_n^*)|| \le ||p(S_1, ..., S_n; S_1^*, ..., S_n^*)||$$
 (3.9)

for any $p \in \mathcal{O}(X, Y)$.

Proof. Since $(T_1, ..., T_n) \in (B(\mathfrak{IC})^n)_1$, there is a minimal isometric dilation $(V_1, ..., V_n) \in (B(\mathfrak{K})^n)_1$ on a Hilbert space $\mathfrak{K} \supset \mathfrak{K}$ such that

$$V_i^* V_i = I_{\mathcal{K}}, \quad i = 1, 2, ..., n;$$

$$\sum_{i=1}^n V_i V_i^* \le I_{\mathcal{K}}, \qquad (3.10)$$

$$V_i^*|_{\mathcal{A}C} = T_i^*, \quad i = 1, 2, ..., n.$$
 (3.11)

By (3.11), it follows that

$$p(T_1, ..., T_n; T_1^*, ..., T_n^*) = P_{\mathfrak{R}} p(V_1, ..., V_n; V_1^*, ..., V_n^*)|_{\mathfrak{R}}, \quad p \in \mathcal{O},$$

where $P_{\mathcal{K}}$ stands for the orthogonal projection of \mathcal{K} onto \mathcal{K} . Hence, we get

$$||p(T_1,...,T_n;T_1^*,...,T_n^*)|| \le ||p(V_1,...,V_n;V_1^*,...,V_n^*)||.$$

According to Corollary 3.3 the result follows.

Conversely, by setting $p(X, Y) = X_1Y_1 + \cdots + X_nY_n$ in (3.9) we obtain

$$\left\| \sum_{i=1}^{n} T_{i} T_{i}^{*} \right\| \leq \left\| \sum_{i=1}^{n} S_{i} S_{i}^{*} \right\| \leq 1.$$

The proof is complete.

Let us remark that this theorem is also true when the relation (3.9) holds for matrices of polynomials in $\mathcal{O}(X, Y)$.

Let $\mathcal{O}(X)$ denote the set of all polynomials in n noncommuting indeterminates $\{X_1, ..., X_n\}$. It is clear that $\mathcal{O}(X) \subset \mathcal{O}(X, Y)$ and that $\mathcal{O}(X)$ can be identified with $\mathcal{O} \subset F^2(H_n)$ (see Section 1).

According to Theorem 3.4, for any $p \in \mathcal{O}(X)$ we have

$$||p(T_1, ..., T_n)|| \le ||p(S_1, ..., S_n)||, p \in \mathcal{O}(X).$$
 (3.12)

Thus, we again find the von Neumann inequality (1.5) proved in [6, Thm. 2.1]. It would be interesting to know the answer to the following question.

If the relation (3.12) holds for polynomials in $\mathcal{O}(X)$, does this imply that $(T_1, ..., T_n)$ is in $(B(\mathfrak{FC})^n)_1$?

For any polynomial $p \in \mathcal{O}(X)$,

$$p = \sum a_{i_1, i_2, \dots, i_k} X_{i_1} X_{i_2} \cdots X_{i_k}$$

let us define

$$\tilde{p} = \sum \bar{a}_{i_1, i_2, \dots, i_k} X_{i_k} \cdots X_{i_2} X_{i_1}.$$

COROLLARY 3.5. If $(T_1, ..., T_n) \in B(\mathfrak{IC})^n$ such that $\sum_{i=1}^n T_i^* T_i \leq I_{\mathfrak{IC}}$, then $\|p(T_1, ..., T_n)\| \leq \|\tilde{p}\|_{\infty}$, $p \in \mathcal{O}(X)$.

Proof. According to (3.12), we have

$$||p(T_1, ..., T_n)|| = ||(p(T_1, ..., T_n))^*||$$

$$= ||\tilde{p}(T_1^*, ..., T_n^*)|| \le ||\tilde{p}(S_1, ..., S_n)|| = ||\tilde{p}||_{\infty}.$$

4. F^{∞} -Functional Calculus

In this section we extend [6, Thm. 3.6] to a more general setting. More precisely, we will obtain a noncommutative analog of the Sz.-Nagy-Foiaş H^{∞} -functional calculus for completely noncoisometric (c.n.c.) contractions. An important role is played by the functional model for a c.n.c. contraction $[T_1, ..., T_n]$ (see [5]) and the von Neumann inequality (1.5).

Let us note that any element $f \in F^2(H_n)$ can be written as follows:

$$f = \sum_{f \in \mathfrak{F}} a_f e_f$$
 with $a_f \in \mathbf{C}$

and

$$||f||_2 = \sum_{f \in \mathfrak{F}} |a_f|^2 < \infty,$$
 (4.1)

where e_f stands for $e_{f(1)} \otimes \cdots \otimes e_{f(k)}$ if $f \in F(k, \Lambda)$, $k \ge 1$, and $e_0 = 1$. We make the natural identification of $e_f \otimes 1$ with e_f for any $f \in \mathcal{F}$.

For any 0 < r < 1 and $f = \sum_{f \in \mathcal{F}} a_f e_f$, define

$$f_r = \sum_{f \in \mathfrak{F}} r_f a_f e_f,$$

where $r_f = r_{f(1)} \cdots r_{f(k)}$, if $f \in F(k, \Lambda)$, $k \ge 1$, $r_0 = 1$, and $r_{f(k)} = r$ for any $k \in \{1, 2, ...\}$. Notice that $||f_r||_2 \le ||f||_2$.

LEMMA 4.1. If $f \in F^2(H_n)$, then

$$||f_r - f||_2 \to 0$$
 as $r \to 1$.

Proof. An easy computation shows that

$$||f_r - f||_2 = \sum_{f \in \mathcal{F}} (r_f - 1)^2 |a_f|^2 = \sum_{k=1}^{\infty} (r^k - 1)^2 \sum_{f \in F(k, \Lambda)} |a_f|^2.$$

Because (4.1) holds, it follows that

$$||f_r - f||_2 \to 0$$
 as $r \to 1$.

Proposition 4.2. If $f \in F^{\infty}$ then $f_r \in F^{\infty}$ (0 < r < 1) and

$$f(S_1, ..., S_n) = \text{so-} \lim_{r \to 1} f_r(S_1, ..., S_n),$$

where so- denotes the strong operator topology.

Proof. Since $||f_r - f||_2 \to 0$ as $r \to 1$, it follows that, for any $p \in \mathcal{O}$,

$$||f_r \otimes p - f \otimes p||_2 \to 0 \quad \text{as } r \to 1.$$
 (4.2)

On the other hand, since r < 1, the inequality (1.5) applied to $(rS_1, rS_2, ..., rS_n)$ implies that

$$||f_r||_{\infty} = ||f_r(S_1, ..., S_n)|| = ||f(rS_1, ..., rS_n)|| \le ||f||_{\infty}.$$

Let $\epsilon > 0$ and $h \in F^2(H_n)$. There exists a polynomial $p \in \mathcal{O}$ such that

$$||h-p||_2 \le \epsilon/||f||_{\infty}.$$

On the other hand,

$$||f_r \otimes h - f \otimes h||_2 \le ||f_r \otimes (h - p)||_2 + ||(f_r - f) \otimes p||_2 + ||f \otimes (h - p)||_2$$

$$\le ||f_r||_{\infty} ||h - p||_2 + ||(f_r - f) \otimes p||_2 + ||f||_{\infty} ||h - p||_2$$

$$\le \epsilon + ||(f_r - f) \otimes p||_2.$$

Taking into account (4.2), we infer that for any $\epsilon > 0$

$$\limsup_{r\to 1} \|f_r \otimes h - f \otimes h\|_2 \le \epsilon.$$

Therefore,

$$\lim_{r\to 1} \|f_r \otimes h - f \otimes h\|_2 = 0,$$

which is equivalent to

$$f(S_1, ..., S_n) = \text{so-}\lim_{r \to 1} f_r(S_1, ..., S_n).$$

The proof is complete.

Let us remark that the above proposition remains true if $\{S_1, ..., S_n\}$ is replaced by a Λ -orthogonal shift of arbitrary multiplicity.

Now we extend the functional calculus for $(T_1, ..., T_n) \in (B(\mathfrak{FC})^n)_1$ (see [6, Thm. 3.6]) to a more general setting. Let us recall from [4] that a contraction $[T_1, ..., T_n]$ is called completely noncoisometric if there is no $h \in \mathfrak{FC}$, $h \neq 0$, such that

$$\sum_{f \in F(k,\Lambda)} ||T_f^* h||^2 = ||h||^2 \quad \text{for any } k \in \{1, 2, \ldots\}.$$

We remark that $[T_1, ..., T_n]$ is c.n.c. if there is no subspace $\mathcal{K}_0 \subset \mathcal{K}$ such that the operator

$$\begin{bmatrix} T_1^* \\ \vdots \\ T_n^* \end{bmatrix} : \mathfrak{R}_0 \to \mathfrak{R}_0 \oplus \cdots \oplus \mathfrak{R}_0$$
n times

is an isometry. For this kind of contraction we have a functional model [5] which will be used in what follows.

THEOREM 4.3. If $(T_1, ..., T_n) \in (B(\mathfrak{IC})^n)_1$ is c.n.c., then for any $f \in F^{\infty}$ there exists

so-
$$\lim_{r\to 1} f_r(T_1,...,T_n) \stackrel{\text{def}}{=} f(T_1,...,T_n).$$

Moreover, the mapping

$$f \mapsto f(T_1, ..., T_n)$$

is a contractive homomorphism from the Banach algebra F^{∞} to $B(\mathcal{K})$.

Proof. According to [5, Thm. 4.1], we can assume that

$$\mathfrak{K} \subset \mathfrak{K} = l^2(\mathfrak{F}, \mathfrak{D}_*) \oplus \overline{\Delta_3 l^2(\mathfrak{F}, \mathfrak{D})}$$

and

$$T_{\lambda} = P_{3C} V_{\lambda} |_{3C}, \lambda \in \Lambda, \tag{4.3}$$

where $V_{\lambda} = S_{\lambda} \oplus C_{\lambda}$, $\lambda \in \Lambda$, and $\{S_{\lambda}\}_{{\lambda} \in \Lambda}$ is the Λ -orthogonal shift on $l^{2}(\mathfrak{F}, \mathfrak{D}_{*})$. $\{C_{\lambda}\}_{{\lambda} \in \Lambda}$ is a sequence of isometries on $\overline{\Delta_{3} l^{2}(\mathfrak{F}, \mathfrak{D})}$ defined by

$$C_{\lambda}(\Delta_3 v) = \Delta_3(S_{\lambda} v), \quad v \in l^2(\mathfrak{F}, \mathfrak{L}),$$
 (4.4)

where $\{S_{\lambda}\}$ is the Λ -orthogonal shift on $l^2(\mathfrak{F}, \mathfrak{L})$. Let us recall from [5, Thm. 4.1] that Δ_3 is a contraction and

$$\sum_{\lambda \in \Lambda} C_{\lambda} C_{\lambda}^* = I.$$

Let $f \in F^{\infty}$ and 0 < r < 1. By (4.3) we infer that

$$f_r(T_1, ..., T_n) = P_{3C} f_r(V_1, ..., V_n)|_{3C}.$$
 (4.5)

We claim that so- $\lim_{r\to 1} f_r(V_1, ..., V_n)$ exists. Because

$$f_r(V_1, ..., V_n) = f_r(S_1, ..., S_n) \oplus f_r(C_1, ..., C_n)$$

and so- $\lim_{r\to 1} f_r(S_1, ..., S_n)$ exists by Proposition 4.2, it is enough to prove that so- $\lim_{r\to 1} f_r(C_1, ..., C_n)$ exists on $\overline{\Delta_3 l^2(\mathfrak{F}, \mathfrak{D})}$.

By (4.4), for any $v \in l^2(\mathfrak{F}, \mathfrak{D})$ we have

$$f_r(C_1, ..., C_n)(\Delta_3 v) = \Delta_3 f_r(S_1, ..., S_n) v,$$

which tends to $\Delta_3 f(S_1, ..., S_n)v$ as $r \to 1$ (according to Proposition 4.2). Notice that for any 0 < r < 1 we have

$$||f_r(C_1,...,C_n)|| = ||f(rC_1,...,rC_n)|| \le ||f(S_1,...,S_n)|| = ||f||_{\infty}.$$
 (4.6)

The above inequality comes from applying the von Neumann inequality (1.5).

Let $x \in \overline{\Delta_3 l^2(\mathfrak{F}, \mathfrak{D})}$ and $v_k \in l^2(\mathfrak{F}, \mathfrak{D})$ be such that $\|\Delta_3 v_k - x\| \to 0$ as $k \to \infty$. There exists k_0 such that if $k \ge k_0$ then $\|\Delta_3 v_k - x\| < \epsilon$. We have:

$$\begin{split} & \|f_{r}(C_{1},...,C_{n})x - f_{r'}(C_{1},...,C_{n})x \| \\ & \leq \|f_{r}(C_{1},...,C_{n})(x - \Delta_{3}v_{k_{0}})\| \\ & + \|((f_{r}(C_{1},...,C_{n}) - f_{r'}(C_{1},...,C_{n}))\Delta_{3}v_{k_{0}}\| + \|f_{r'}(C_{1},...,C_{n})(x - \Delta_{3}v_{k_{0}})\| \\ & \leq \|f\|_{\infty} \|x - \Delta_{3}v_{k_{0}}\| + \|f\|_{\infty} \|x - \Delta_{3}v_{k_{0}}\| \\ & + \|\Delta_{3}(f_{r}(S_{1},...,S_{n}) - f_{r'}(S_{1},...,S_{n}))v_{k_{0}}\| \\ & \leq 2\epsilon \|f\|_{\infty} + \|(f_{r}(S_{1},...,S_{n}) - f_{r'}(S_{1},...,S_{n}))v_{k_{0}}\|. \end{split}$$

Using Proposition 4.2 and the above inequalities, it follows that

$$\lim_{r\to 1} f_r(C_1,...,C_n)x$$

exists for any $x \in \overline{\Delta_3 l^2(\mathfrak{F}, \mathfrak{D})}$.

On the other hand, according to (4.6) we have

$$\|\lim_{r\to 1} f_r(C_1,...,C_n)x\| \le \|f\|_{\infty} \|x\|.$$

Therefore, the operator

$$f(C_1, ..., C_n) \stackrel{\text{def}}{=} \text{so-} \lim_{r \to 1} f_r(C_1, ..., C_n)$$

is well-defined and bounded. Thus so- $\lim_{r\to 1} f_r(V_1, ..., V_n)$ exists and the relation (4.5) implies that so- $\lim_{r\to 1} f_r(T_1, ..., T_n)$ exists, and the operator $f(T_1, ..., T_n)$ defined by

$$f(T_1, ..., T_n) = \text{so-}\lim_{r \to 1} f_r(T_1, ..., T_n)$$

is bounded and

$$||f(T_1,...,T_n)|| \le ||f||_{\infty}.$$

The fact that the mapping $f \mapsto f(T_1, ..., T_n)$ is a homomorphism from F^{∞} to $B(3\mathbb{C})$ is easy to deduce.

COROLLARY 4.4. If n = 1 we find again the Sz.-Nagy-Foiaş H^{∞} -functional calculus for completely noncoisometric contractions.

ACKNOWLEDGMENT. I am very grateful to Professor G. Pisier for useful discussions on the subject of this paper. I also wish to thank the referee for several suggestions.

References

- [1] L. A. Coburn, *The C*-algebra generated by an isometry*, Bull. Amer. Math. Soc. 73 (1967), 722–726.
- [2] J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.

- [3] D. E. Evans, On O_n, Publ. Res. Inst. Math. Sci. 16 (1980), 915-927.
- [4] G. Popescu, *Isometric dilations for infinite sequences of noncommuting operators*, Trans. Amer. Math. Soc. 316 (1989), 523-536.
- [5] ——, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory 22 (1989), 51-71.
- [6] —, Von Neumann inequality for $(B(H)^n)_1$, Math. Scand. 68 (1991), 292–304.
- [7] B. Sz.-Nagy and C. Foiaş, *Harmonic analysis of operators on Hilbert space*, North-Holland, Amsterdam, 1970.
- [8] J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258-281.

Division of Mathematics and Statistics University of Texas at San Antonio San Antonio, TX 78249