Functional Calculus for
Noncommuting Operators

GEeELU PoPEscu

1. Notation and Preliminaries

Throughout this paper, A stands for the set {1,2,...,n} where n is a fixed
natural number. For every ke N*= {1, 2, ...} let F(k, A) be the set of all
functions from the set {1, 2, ..., k] to A, and let

F=U F(k,A), (1.1)
k=0
where F(0, A) stands for the set {0].

A sequence 8 = {S)},eca of unilateral shifts on a Hilbert space 3C with
orthogonal final spaces is called a A-orthogonal shift if the operator matrix
[Sy, S3, ..., S,] is nonunitary, that is, £ := JCO (@) S,IC) # {0}. This defi-
nition is essentially the same as that from [4]. The dimension of £ is called the
multiplicity of the A-orthogonal shift. Two A-orthogonal shifts are unitarily
equivalent if and only if they have the same multiplicity (see {6, Thm. 1.2]).

Let us consider a model A-orthogonal shift of multiplicity 1, acting on the
full Fock space [3]

F*(H,)=C1® (P H®", (1.2)
m=1
where H,, is an n-dimensional complex Hilbert space with orthonormal basis
[el, €25 ¢uny e,,}.
For each A € A we define the isometry S, by

S\h=e,@h for he F(H,). (1.3)

It is easy to see that 8§ = {S,},cx is @ A-orthogonal shift of multiplicity 1. This
model will play an important role in our investigation. We shall denote by &
the set of all p e F?(H,) of the form

p=a+ > a .e®- e, meN,
1<iy,...,ix<n
l<sk=m
where ag, q;, .. ; € C. The set @ may be viewed as the algebra of the poly-
nomials in #» noncommuting indeterminates, with p®gq, p, g €®, as multi-
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plication. For any sequence {7}, 75, ..., T,,} of bounded operators on a Hil-
bert space 3C, let p(Ty, ..., T,,) denote the operator acting on JC, given by

p(Ty,....,T))=aplye+Xa; ;T T,. (1.4)
The von Neumann inequality [8] for (B(JC)"), (see [6]) asserts that if

i=l1

(TI’ ceey Tn)e (B(:}c)n)l = [(Tls ceey Tn)E B(:}C)n. E T;T;*S— IJCI
and p e @, then

”p(Tlv seey Tn)" = ”p(Sl: seey Sn)” = SL(IGI)) “p®un2(Hn)’ (15)
e(®),
where !

(@)l = [q E(P: ||q”F2(H,,) < 1}.
Now we define F* as being the set of all ge F?(H,) for which

lgllo:= sup [|lge®ql> <o, where || [z:=] ||F2em,- (1.6
ge(@),
Let us recall from [6] that, if fe F® and g e F2(H,), then the multiplication
defined by

S®g:= JTL S®p, (L.7)
(the convergence being in F?(H,)), where p,e® and || p, —g|,— 0, is well-
defined and f®g e F*(H,). Notice also that | f®g|> < || fll-/l&ll. and, ac-
cording to [6], (F%,] ||l») is @ noncommutative Banach algebra, which can
be viewed as a noncommutative analog of the Hardy space H*.

Now let us recall the Wold decomposition theorem for sequences of isom-
etries [4]. Let V= {V,],ca be a sequence of isometries on a Hilbert space X
such that X, A VW Vi' < I. Then X decomposes into an orthogonal sum X =
X, ® XK, such that X, and X, reduce each operator V, (A€ A), and we have

(Isc -2 W VA*>

A€A

=0 and {VilxJxrea
Xy
is a A-orthogonal shift acting on X;. This decomposition is uniquely deter-
mined; indeed, we have

K, = ﬂ (
k=0\ feF(k,A)
where £ = KO(@h A N X).

We recall from [4] that, for any sequence 3 = {7,},ca Oof operators on a
Hilbert space JC such that X, ., 7, 73" < I, there exists a minimal isometric
dilation V = {V,},ca on a Hilbert Space X D JC that is uniquely determined
up to an isomorphism; that is, the following conditions hold:

(i) W3V, = Iy for any A€ A;

(i) ZpeaaAWi' = I
(iii) V*3C C 3C and V3|5 = Ty for any A€ A; and
(iv) X = Vs V;3C.

Igsc) and X,=@DV L,
feF
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2. C*(V1,...,V,) and Similarity

It is well known that if two isometries ¥} and V, are similar then they are
unitarily equivalent. As a consequence, the C*-algebra generated by V] is *-
isometric to the C*-algebra generated by V5.

In this section we extend this result to sequences of isometries with orthog-
onal final spaces.

THEOREM 2.1. Let {V;}7-;C B(X) and {W;}]-, C B(X') be two sequences
of isometries such that X7_|V;V;* < I, and X7 \W;W;* < Iy.. If there exists
an invertible operator X € B(X,X') such that

XVi=W;X, i=12,...,n,
then there exists a unitary operator U € B(X, X’) such that
uv,=w;U, i=12,...,n.
Proof. According to the Wold decomposition, X decomposes into an or-

thogonal sum X = X, ® X, such that ¥, and ¥ reduce each operator V;
(i=1,2,...,n), and we have

(-2 w7

i=1

=0 and (V| }io
X,

is a A-orthogonal shift acting on X,. Moreover, we have
Ky = ﬂ (

k=0\ feF(k, A)
where £ =KX O(DLV;X).

The Wold decomposition for {#;}/_, provides the corresponding spaces
X, X, and £

Let us denote

Vilx,=Ai, Vilx,"=Bi;, Wilx,'=C;, and W|x.=D; (2.2)
Since V;*X™* = X*W;* and X is invertible, it is easy to see that
X*(KerW*)=KerVy*, i=1,2,...,n.

I{fff{f) and X,=@®V L, 2.1)
feF

Hence, we get
n n
X*( () Ker W,*) =) Ker V;*.
i=1 i=1
Since £'=M}-;Ker W;* and £ =M/_, Ker V;*, we infer that dim £'=dim £.
According to [6, Thm. 1.2] there is a unitary operator M € B(X,, X}) such
that

MB;=D;M, i=1,2,...,n. 2.3)

On the other hand, since XV, =W, X (i =1, 2, ..., n), the relation (2.1) im-
plies X(X,) = X,,. Therefore

(Xx)Vilx,)=Wilx:)(X|x,), i=12,...,n. (2.4)
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Let us denote X |5 := X,. Obviously X is an invertible operator from X,
to X,. By (2.2) the relation (2.4) becomes

XoA;=C;X,y, i=1,2,.... (2.5)
Notice that 2;_| A; A} = I, and ¥/, C;C/* = Ix. . By (2.5), we have
XoA;Af=C; XgA:, i=12,..,n.
Hence, it follows that
Xo=C1 XpAT+ Cr Xg A5+ -+ C,, X A5,

Since C*C; =0 (i # j) and CiC;'= I, we deduce that

CrXo=XpA;, i=12,...,n.
Taking the adjoint of these relations, we obtain

A Xg=X;Ci, i=12,...,n,
which implies that

A; X5 Xy =X3Ci Xg=X5X0A;, i=1,2,...,n.

Hence,
A(X3X0)? = (X§X0) %A, i=1,2,..,n. (2.6)

The polar decomposition of X, gives X, = R, where  is a unitary operator
and R = (X*X,)"? is an invertible operator. The relation (2.6) becomes

AiR =RA;, i=1,2, R (B
Now, foreachi=1,2,...,n we have
CiQ = CiQRR_I = CiXQR_l
=X0AiR_1 = QRA,'R_I = QA;

Therefore
CiQ1=QA; forany i=1,2,...,n, 2.7)

and  is a unitary operator from X, onto X,,. Let us define the unitary oper-
ator U = M® Q. According to the relations (2.2), (2.3), and (2.7), it follows
that

uv,=wW,U, i=12,...,n.

The proof is complete.

Now let us denote by C*(V4, ..., V,,) the C*-algebra generated by (¥, ..., V]
(see [1; 2]).
COROLLARY 2.2. Under the hypothesis of Theorem 2.1, the mapping

o:C*Ny, .., V) C* (W, ..., W)
defined by
d(X)=UXU* for XeC*(W,...,V,)

is an isometric *-isomorphism.
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3. Yon Neumann Inequality

Let us recall some facts concerning the Cuntz algebra O, and a certain ex-
tension of O,,. In [2] the C*-algebra O, (n = 2) was defined as the C*-algebra
generated by n isometries V;, V5, ..., V,, such that X7_,V;V;* = I. It was shown
that O,, does not depend, up to canonical isomorphism, on the choice of the

generators Vj, ..., V,,. In other words, if ¥, ..., ¥, is a second family of isom-
etries satisfying 27_,V;V;*= I, then C*(V}, ..., V}) is canonically isomorphic
to C*(Vy, ..., V,); that is, the map V; — V; extends to an isomorphism from

c*(V,, ..., V,) onto C*(V,, ..., V,). In what follows we need the following re-
sult due to Cuntz [2, Prop. 3.1].

LEmMMA 3.1. Let V,,...,V, be isometries on a Hilbert space X such that
"_\ViVi* < Iy (n finite). Then the projection P = Iy, —>7_,V:V;* generates
a closed two-sided ideal 3 in C*(Vy, ..., V,) which is isomorphic to the C*-
algebra of all compact operators on an infinite-dimensional separable Hil-
bert space, and contains P as a minimal projection. The short sequence

0O-9-C*Vy,...,V,)»0,-0 (3.1)
is exact.

The main result of this section is the following.

THEOREM 3.2. Let {V;}7-, (n=2) be a sequence of isometries on a Hilbert
space X such that

n

2 ViVitsIy.

i=1

Then the C*-algebra C*(V, ..., V,) is *-isomorphic either to C*(S, ..., S,)
ortoQ,.

Proof. According to the Wold decomposition for the sequence {V;}7_;, the
Hilbert space X decomposes into an orthogonal sum

K=K,DX, (3.2)

such that ¥, and X, reduce each operator V; (i =1, 2, ..., n), and we have
n

WiW*=Iy,. (3.3)
=1

i

Moreover, {U;}/—, is a A-orthogonal shift on X, where
Vi=W,®U;,, i=1,2,...,n,

is the decomposition of the operator V; with respect to (3.2).

Now if X, = {0} then X[_,V;V;* = I and, according to the result of Cuntz
[2], C*(Vy, ..., V,) is *-isomorphic to O,,. Let us consider the case when X #
{0}. For any polynomial p(X,,...,X,;Y;,..., Y,) in 2n noncommuting in-
determinates we have



350 GELU PoPEscu

p(V], ceey Vn; Vl*’ ceey Vn*)
=pWy, ... Wy Wi ... W)@ oy, ..., U, U, ..., U,
whence

”p(Vla seny Vn; Vl*s seey Vn*)”
=max({| p(Wy, ..o, Wo; W oo WO DU, ..., U U, . U (3.4)
If the multiplicity of the A-orthogonal shift {U,, ..., U,} is «, then the op-
erator p(U,, ..., U,; Uf, ..., Uy) is unitarily equivalent to the direct sum of &

copies of p(Sy, ..., Sy ST, ..., Sy), where {S,, ..., S,,} is the model A-orthog-
onal shift of multiplicity 1 acting on the Fock space F?(H,,). Therefore,

”p(Ul’ esey Un; U]*, eeey U:)" = ”p(Sl: sesy Sn; Siks ceey S;:)"' (35)
Since Xi_W;W;* = Iy , according to [2] we have
(W, oo s Wos W oo, W = || (015 - 045 0F,s .. 00) s (3.6)

where {0y, ..., 0,} is a system of generators for the Cuntz algebra O,,.
On the other hand (see Lemma 3.1), we have the following short exact
sequence,
0-9-C*S,...,S,)—0,-0,

where 9 denotes the closed two-sided ideal in C*(Sy,..., S,) generated by
Pc,, which is the orthogonal projection from F2(H,) onto Cl.

Thus, if = denotes the quotient map from B(F?*(H,)) onto B(F*(H,))/9,
we then have

|p(oy, ... on; 0f,s o.sop) || = | P(w(SY), ..., T(Sp); T(ST),s oons T(ST)) ||
= [w(P(S1s .--» Sp; STs o0 SH)||
= "p(Sla ey Sn; Siks cery S;:)"~
Hence, using the relations (3.4), (3.5), and (3.6), we infer that
oV ces Vis Vs s VO = [ D(S1s - S ST - S

Therefore, the mapping V;~ S; (i =1, 2, ..., n) extends to an isometry from
c*(Vy, ..., V,) onto C*(Sy, ..., S,) which is also a #-isomorphism. The proof
is complete. O

CorOLLARY 3.3. If {V},...V,) is a sequence of isometries on a Hilbert space
X such that

n
2 ViVit=sIy, (3.7)
i=1
then
"p(Vl’ ooy Vns Vl*’ ey Vn*)” = "p(Sh resy Sn; Sik, ooy S;:)" (38)

Sfor any polynomial p(Xy,...,X; Y1, ..., Y,) in 2n noncommuting indeter-
minates. Moreover, if (3.7) is not an equality then (3.8) is an equality.
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Let us now denote by ®(X, Y) the set of all polynomials in 27 noncommut-
ing indeterminates p(Xj, ..., X;;; Y}, ..., ¥,) of the following form,
p(Xy s XYy, YY) =Xa;, i X X Y Y

where a; . ; €C, if, ..., ig, J15+» Jm € {0, 1,2, ...,n}, and k,meN*. Here
we use the convention Xy =1and Yy =1.
An extension of the von Neumann inequality [6, Thm. 2.1] is as follows.

THEOREM 3.4. Let (Ty,...,T,)e B(3C)", n=2. Then X7_T;T;* < I if and
only if
| (T ooy Ty T, s T < | CS1s v Snis STy ooy S| (3.9)

forany pe®(X,Y).

Proof. Since (T3, ..., T,) € (B(3C)"),, there is a minimal isometric dilation
V1, ..., Vi) € (B(X)"); on a Hilbert space X D 3C such that

VVi=Iy, i=1,2,...,n

n .
> ViV s Iy, (3.10)

i=1
Vi lsee =T, i=12,...,n. (3.11)
By (3.11), it follows that
(T, ... T ... T, =Py p(Vyy o s Vs Vi ooty Vi ) lzes, DE®,
where Py stands for the orthogonal projection of X onto JC. Hence, we get
V(T ooy Ty T s TOI < L2V oo s Vs VI o VO

According to Corollary 3.3 the result follows.

Conversely, by setting p(X,Y) = X, Y;+ -+ + X, Y, in (3.9) we obtain

n
<| 2 57 =

The proof is complete. ]

Let us remark that this theorem is also true when the relation (3.9) holds for
matrices of polynomials in (X, Y).

Let ®(X) denote the set of all polynomials in # noncommuting indeter-
minates {X}, ..., X,}. It is clear that ®(X) C ®(X, Y) and that ®(X) can be
identified with ® C F?(H,) (see Section 1).

According to Theorem 3.4, for any p e ®(X) we have

lp(Ty, ..., T = | p(S1s s S, PE®(X). (3.12)

Thus, we again find the von Neumann inequality (1.5) proved in [6, Thm.
2.1]. It would be interesting to know the answer to the following question.
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If the relation (3.12) holds for polynomials in ®@(X), does this imply that
(T, ..., T,,) is in (B(3C)"),?
For any polynomial p e ®(X),

p=2 a;,i,, ...,ikXi‘Xiz' X

Ig?
let us define

P=2a; i, ... X Xi, X,
CoRroLLARY 3.5. If (Ty,...,T,)€ B(3C)" such that 37_T;*T; < Iy, then
1Ty, -, T = (| Plles P E®X).

Proof. According to (3.12), we have

lo(Th, ..., T = 1(o(Ths ..., T))*||
=[BT, ... TOH =151, ..., S| = | P - O

4. F*-Functional Calculus

In this section we extend [6, Thm. 3.6] to a more general setting. More pre-
cisely, we will obtain a noncommutative analog of the Sz.-Nagy-Foias H *-
functional calculus for completely noncoisometric (c.n.c.) contractions. An
important role is played by the functional model for a c.n.c. contraction
[T}, ..., T,] (see [5]) and the von Neumann inequality (1.5).

Let us note that any element fe F?(H,) can be written as follows:

f= 2 ase, with a;eC
SeF

|Vh=}wa<w, (4.1)

where ey stands for e;;)&® - - Qe if feF(k,A), k=1, and ey =1. We
make the natural identification of e,&®1 with e, for any fe .
For any 0 <r<1land f =X c5arey, define

and

Jr= 2 rragey,
feF

where ry = rpy- - rrp, if f€F(k,A), k=1, rg=1, and ry) =r for any ke
{1, 2, ...}. Notice that || £l =< | f]l-

LeEmMA 4.1. If fe F*(H,), then
Ifi=flla—0 as r—1.

Proof. An easy computation shows that

Ifi=Slla= 2 =DaP =T r*=1* 3 |af|*
feF k=1

JeF(k,A)
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Because (4.1) holds, it follows that
1—Fl—0 as ro1.. O

PRoOPOSITION 4.2. If fe F” then f,e F* (0<r<1) and
f(Sls seey Sn) = SO-li_I’T} f;‘(S], esey Sn)’

where so- denotes the strong operator topology.

Proof. Since || f,—f|,— 0 as r—1, it follows that, for any pe®,

|l ®p—f@®p|,—0 as r—1. (4.2)

On the other hand, since r < 1, the inequality (1.5) applied to (rS,, rS,, ...,
rS,) implies that
[ frlleo = 1 /-€(S1s «oes S = /7Sy ooy rS = || f || o
Let € > 0 and h € F?(H,). There exists a polynomial p € ® such that
la—pl2=e/] /]l
On the other hand,
I/ @k —fRh|> <]/, ®(h— D) +|(f; = QP2+ f& (7 —D)|
= || fllollte = pll2+(fr = ) ®pl2+ || f |l = P2
=e+[(fi = )Rpl2-

Taking into account (4.2), we infer that for any e > 0

lim sup||/, ®h —f@hl, = e.
Therefore,

lim||f, @4~/ ®h], =0,
which is equivalent to
f(Sy, ..., S,) =so- 11_1}} S (S, ..., Sp).

The proof is complete. ]

Let us remark that the above proposition remains true if {5y, ..., S,]} is re-
placed by a A-orthogonal shift of arbitrary multiplicity.

Now we extend the functional calculus for (7, ..., T,,) € (B(3C)"), (see [6,
Thm. 3.6]) to a more general setting. Let us recall from [4] that a contraction
[Ty, ..., T,] is called completely noncoisometric if there is no he 3C, h # 0,
such that

> TR =||#)* for any kefl,2,...}.
SfeF(k,A)
We remark that [77, ..., 7] is c.n.c. if there is no subspace 3C, C JC such that
the operator
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/Ay
. :SCO_;J(:O@...@:}CO
[ J

7’;1*

n times

is an isometry. For this kind of contraction we have a functional model [5]
which will be used in what follows.

THeOREM 4.3. If (T, ...,T,) e (B(3C)"),is c.n.c., then for any fe F~ there
exists
s0-lim f,(Ti, ..., T,) € f(Ty, ..., Tp)-
r—

Moreover, the mapping

fo(Tla eeey 7-;1)

is a contractive homomorphism from the Banach algebra F™ to B(3C).

Proof. According to [5, Thm. 4.1], we can assume that

I C X =1I1%FD)DA;I%(F, D)
and
T\ = Py V)]s, A€A, (4.3)

where V), = S\@ C), A€ A, and {5, )¢, is the A-orthogonal shift on /%(F, D,).
{Cy)aca 1 a sequence of isometries on A5/2(F, D) defined by

Ca(Ag0) = Ag(Syv), vel*(S, L), (4.4)

where {S,] is the A-orthogonal shift on /2(F, £). Let us recall from [5, Thm.
4.1] that Ay is a contraction and

> CCx=1L
A€eA
Let fe F* and 0 < r < 1. By (4.3) we infer that
j;'(Tls---:Tn)=P3C.ﬂ'(Vls---s Vn)l(}C (4°5)

We claim that so-lim,_,, f,(V, ..., V,) exists. Because

./;'(Vly veny Vn) =f;'(Sls sesy Sn)@f;'(cl: seey Cn)

and so-lim,_,; (S}, ..., S,) exists by Proposition 4.2, it is enough to prove
that so-lim,_,; f,(Cy, ..., C,) exists on A5/%(F, D).
By (4.4), for any v e I%(F, D) we have
.f;‘(cls sesy Cn)(ASU) = Aﬁf;'(sl’ ceey Sn)vs

which tends to Ajf(S;,...,S,)v as r—1 (according to Proposition 4.2).
Notice that for any 0 < r < 1 we have

I/HACss oes Cl = 1S Crs s rC) = 1SS, s S| = [ fll- - (4.6)

The above inequality comes from applying the von Neumann inequality (1.5).
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Let x€ A;/%(F, D) and v, € I%(F, D) be such that |Azv,—x|| -0 as k — oo,
There exists kg such that if k£ = k then ||Azv; — x| < e. We have:
|/(Cys .. C)X—fr(Cyy ...y Cp)X||
< | /i(Cyy .oy C)(x—Agtp )|
+ (S (Cyy ooy C) = [ACy wvvy CN A5V ||+ || Sr(Cyy oovy Cr)(x— Az, )|
=< ||/ leollx — Az i, |+ 1 f ol ¥ — A |
+[|A5(Sr(S1y eoes Sp) = Sr(S1s ves S)) U, |
< 2€|| flloo F (S (Sts vvvs Sp) =SS5 oo es S Uk, |-
Using Proposition 4.2 and the above inequalities, it follows that

lin} JA(Cyy ..l C)x
r—

exists for any x € A5/2(F, D).
On the other hand, accordiqg to (4.6) we have

lim f(Cy, ..., C)x[| =< [Lf |l ]l
Therefore, the operator
f(Cy, .., C) E s0-1im £(Cy, ..., C)

is well-defined and bounded. Thus so-lim,_, f,(V3, ..., ¥,) exists and the
relation (4.5) implies that so-lim,_,; (7}, ..., T,,) exists, and the operator
f(1y, ..., T,) defined by .

f(1y, ..., T,) =so- lrig} STy, ..., T,)
is bounded and
"f(Tb sery Tn)" = ||f|l°°

The fact that the mapping f+~ f(T}, ..., T,) is a homomorphism from F* to
B(3C) is easy to deduce. O]

CoROLLARY 4.4. Ifn =1 we find again the Sz.-Nagy-Foias H™-functional
calculus for completely noncoisometric contractions.
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