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Introduction

The purpose of this paper is to represent the Teichmiiller space of a branched
or punctured surface as a real algebraic subspace of the Euclidean space.
Let F, denote an oriented closed surface of genus g with a set of s distin-
guished points P = {x,, ..., X}, where s =1, 2g —2+s > 0. We consider first
the Teichmiiller space T(g;vy,...,»), Where 2g+s—2—->3_,(1/»;) > 0, of
marked classes of complete hyperbolic metrics with singularities of F; such
that the angle around x; is 2« /»; with ;€ N, »; = 2, or equivalently the marked
classes of Fuchsian groups representing F; with branched points x; of order
v;. Let d = 6g — 6+ 2s be the dimension of the Teichmiiller space. Then a tri-
angulation of F; by d+s curves with endpoints in P induces global real ana-
lytic coordinates, the so-called L-length coordinates (which are essentially
the hyperbolic lengths of the geodesic curves homotopic to the curves of the
triangulation) introduced by Ndatdnen and Penner [7; 8]. These coordinates
allow T(g;»y, ..., »;) a real algebraic representation. Following their ideas,
we discuss also a decomposition into subsets of the Teichmiiller space that
is left invariant under the action of the mapping class group MC;.

The Teichmiiller space T(g; =, ..., ), with co repeated s times, consists of
marked classes of complete finite-area hyperbolic metrics of F; — P, or equiv-
alently of marked classes of Fuchsian groups representing F, with punctures
X1, ..., Xs. A real algebraic representation of T(g; o, ..., ) is obtained as a
limit of the sequence T(g;v, ..., »), v = 2, after a suitable normalization, and
is characterized by s homogeneous equations defined in R‘_{*S.

Both the L-length coordinates employed in this paper for the Teichmiiller
space and the convergence have a natural geometric interpretation: In the
case of branched surfaces, L> = cosh/—1, where / is the hyperbolic length
of a geodesic with endpoints at elliptic fixed points; for punctured surfaces,
L? = e% where 6 is the distance between certain horocycles based at para-
bolic fixed points. The convergence means geometrically that a sequence
D(v) of normalized fundamental domains equipped with circles centered at
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elliptic fixed points of order » converges, as v — o, to a fundamental domain
D equipped with horocycles based at parabolic fixed points. If the interiors
of the circles are deleted, then the hyperbolic lengths converge for each part
of the boundary.

Since the coordinates given for T(g; o, ..., o) differ by a factor of only v2
from the A-lengths employed in [9], our real algebraic model of T(g; o, ..., )
turns out to be a natural embedding of the Teichmiiller space into the dec-
orated Teichmiiller space of Penner [9]. As an example, we consider explic-
itly the Teichmiiller space of a twice-punctured torus and the mapping class
group MCZ.

We would like to thank T. Kuusalo for valuable remarks.

1. Definitions and Preliminaries

1.1. Hyperbolic Trigonometry in Terms of L-Lengths
Let H = {z = x+iy: y > 0} be the hyperbolic plane with metric

ds? = y~2(dx’+dy?).

We fix the following notation for hyperbolic triangles in H: A hyperbolic
triangle 7 will have vertices labeled v,, vy, v.; the sides opposite these ver-
tices will have lengths /,, /;, {. (respectively); and the interior angles at the
vertices will be «, 3, v. The following sine and cosine rules {2, Sec. 7.12] will
be used frequently:

sinh/, sinh/, sinh/

—— = —— =, (S)

sin o sin 3 sin vy
cosh /. = cosh /, cosh /;, —sinh /, sinh /, cos v, (CD)
cosh /. = COS & COS B+cos'y. (CID)

sin « sin 8

We shall use the L-lengths (see [7; 8]) defined by the equation L? = cosh /—1
rather than the hyperbolic length /. In terms of L-lengths, (CI) reads

AL+ 12+ 13 —L2

cosy = ; (1.1)
i LoLpN(L2+2)(LE+2)
hence,
27272 L
siny — \/2La bLC+F( asLb:Lc) ’ (12)
LoLy\(L2+2)(L2+2)
where

F(L,,Ly,L,.)
= (La +Lb +Lc)(La +Lb _Lc)(Lb +Lc _La)(Lc+La —Lb)- (1‘3)

We then have, for the angle sum of 7,
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(L2+L}+ L2+ 4)\2L2L2 L2+ F(Ly, Ly, L,)
(L2+2)(L2 +2)(L2+2)

sin(a+B+v) = (1.4)

and

L2LAL2—(LA+ L} +LY—4(L%2+ L3+ 1% -8

cos(a+B+7) = (L242)(L2+2)(L2+2)

(1.5)
1.2. Hyperbolic Quadrilaterals

The following lemma refers to Figure 1.1(a), and deduces a relation between
the L-lengths of the diagonals.

(a) (b)

Figure 1.1

Lemma 1.2. Foriela,b,c,d,e, f}, let L; denote the L-length of the side i.
Then

LiL} =

NQLZL21Z+F(L,, Ly, L)) (2L2L3 L2+ F(L., Ly, L,))

L2+2

N (L3+L3—L3)(L2+ L3 —L2%)
LZ+2

where F is the function in (1.3).

‘L2124 1212, (1.6)

Proof. Theequation cos(a+ ) = cos « cos 3 —sin « sin 3, expressed in terms
of L-lengths, together with the formulas (1.1) and (1.2), yield (1.6). ]

The diagonal e divides the quadrilateral into two hyperbolic triangles S and
T; see Figure 1.1(b). By the Ptolemy equation (see [7; 8]), the circumscribing
circles of S and T coincide if and only if
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LeLy=L,L.+LyL,.
Using (1.6), it can be shown that this equality is equivalent to
L Ly(L2+ LY — LY+ L Ly(L2+L}—12)=0. (1.7)
The triangle T has a vertex outside the circumscribing circle of S if and only if
L Ly(L24 L3 =LY+ L L (L*+L:—L%)>0. (1.8)

Since this inequality is symmetric for S and 7, (1.8) holds if and only if S has
a vertex outside the circumscribing circle of 7.

DeriNITION. The equality (1.7) is called the face equality on e and (1.8) the
Jace inequality on e.

1.3. Triples of Horocycles

Let 4, C H be a horocycle based at v,. Take a hyperbolic isometry y so that
h,=~v{x+i:xeR]}. For d R, define s, s =y{x+ie ®: xeR}. Then h, ; is
a horocycle based at v,; it expands to dH as 6 — +o and shrinks to v, as 6 -
—oo, Let A be a horocycle based at v, distinct from v,. Denote by 6(A,, hj)
the signed hyperbolic distance along the geodesic from v, to v, between 4,
and A, taken with positive sign if #,MN A, = @ and negative sign if h,N A, #= 0.

REMARK. Let L =% ")2  Then A =V2L is the A-length employed by
Penner in [9].

Consider triples of horocycles whose base points are mutually distinct. We
say that two such triples (h,, hy, h.) and (hy, h,, hy) are congruent if there
exists an isometry sending A, hy, k. to hg, h,, hy, respectively, and denote
the equivalence class by [(A,, Ay, h.)].

LEMMA 1.3. The set RY. ={(L,, Ly, L.);L,, Ly, L.> 0} parameterizes the
classes of triples of horocycles.

Proof. We show that (L,, L, L.) determines [(A,, Ay, h.)] uniquely. Let 6;
be such that L; =e%2, i =a, b,c. We may assume that 4, = {x+i: xR},
that A, is the horocycle based at 0 going through ie %, and that A, is based

in R,. Since A, is tangent to both A, s, and h;, 5 , h is determined uniquely.
O

1.4. The Teichmiiller Space of a
Branched or Punctured Surface

Let F; be a smooth oriented closed surface of genus g with a subset P=
{xi, ..., X} of distinguished points, and let 2g—2+s > 0. We assign to each
point x; of P an integer »; = 2, or « in case P consists of punctures. The fun-
damental group G of F; — P has the canonical representation

(al, bl’ ceey g, bg, €1y ey €5t ( a,-b,-a,-_lb,-_l)el- T 1).

g
i=

1
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Let G(vy, ..., ¥) be the group obtained by adding the relations e/i=1, i =
1,...,s, tothe group G. If, in particular, » = »; = --- =y as in Section 4, then
we denote G, = G(», ..., »).

Let I' be a Fuchsian group acting on H such that the quotient surface H/T'
is a closed surface of genus g and the covering map =: H— H/T is branched
over s points with branching orders vy, ..., »;. An orientation-preserving ho-
meomorphism f of F; onto H/T that sends each point x; of P to a branched
point of order »; induces an isomorphism ¢ of the group G(», ..., »,) onto I'.
This isomorphism ¢ is called a marking of I'. A marked group T,, = (T, ¢)
defines a marked hyperbolic structure on £, which is the pull-back by f of
the hyperbolic metric (with singularities at the distinguished points) on H/T.
Two marked groups (I';),, = (I';, ¢;) and (I'y),, = (', ¢,) are said to be
equivalent if ¢,°¢;! is a conjugation by a conformal isometry of H. The
Teichmiiller space T(g; v, ...,¥;) is the space of equivalence classes [I},] of
marked Fuchsian groups. We choose the group I',,, = (T, ¢) such that

A0
0 A1
and ¢(b,) has the fixed points p and g with pg = —1. Then the entries of
o(ay), d(by), ..., p(e;) e SL(2, R) (we assume that their traces are nonnega-

tive) give coordinates for the point [T},,]€ T(g;»y, ..., ¥). It is known that
T(g;vy, ...,») is homeomorphic to R, d = 6g—6+2s [10, Chap. 3].

¢(al)=( ), 0<AK],

2. Parameterization of the Teichmiiller Space
of a Branched Surface

2.1
We consider, on F; — P, curves ¢ with the following properties:

(i) cissimple and not null-homotopic relative to the boundary in F; — P;
(ii) ¢ connects two not necessarily distinct points x; and x; of P.

In this paper, homotopy deformations of curves as above are done in
F7 —P. We denote by [c] the homotopy class of c relative to its endpoints.
Let A=(cy,...,Cp) be a system of disjoint curves on F, — P satisfying (i)
and (ii) and let [¢;] # [¢;] if i # .

DEFINITION. A is a cell decomposition of F; if every component of F;—A
is simply connected. Let d =6g—6+2s. A cell decomposition can contain
at most d+s curves, and contains this maximal number of curves only when
Ais a triangulation. If A = (cy, ..., ¢4, ) is a triangulation, a triangle in A is
a component of ;' — A, There are Q =4g—4+2s triangles T in A. It is pos-
sible that some triangles are as depicted in Figure 2.1.

In the rest of this section and in Section 3, we assume that »y, ..., »; are finite
for the signature (g;»,,...,»;). With a triangulation A =(cy, ..., Cgz4) We
shall give a global coordinate system of T(g;»,, ..., »;). Take a marked group
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Figure 2.1

T,y it defines a marked hyperbolic structure with singularities on F;’. Then
[c;] contains a unique geodesic curve with respect to this hyperbolic struc-
ture. We denote by /; the hyperbolic length of this geodesic curve. (An excep-
tion is the case where ¢; and c¢; are as depicted in Figure 2.1 and the point x;,
has branching order 2; for this case, we put /; = 2/;.) Let L; denote the L-
length, L? = cosh(/;)—1, i=1, ...,d+s.

ProposiTION 2.1. The mapping T(g;vy, ..., vs)— Rf{“ that sends (T',] to
(Ly, ...y Lgys) is injective and real analytic.

Proof. The mapping is real analytic, since the fixed points of elliptic trans-
formations of I' are real analytic functions on T(g;»,, ...,») and the dis-
tance between two points depends real analytically on these points.

In order to prove the injectivity, assume that two marked groups I'; ,,, and
I'; ,, determine the same point (L, ..., Ly.5). Let ¢; , denote the geodesic
curvein [¢;] with respect to T ,,,, K =1, 2. If three curves ¢;, Cj, Ci are the sides
of a triangle T in A, then by assumption (c; y, ¢j,1, Ck,1) and (c; 2, €}, 2, Cx,2)
bound congruent geodesic triangles 77 and 7, (respectively) and there is a
conformal isometry hy: T, - T;. Let h = hy on T, for all triangles 7 in A.
Then 4 extends uniquely to a conformal mapping of H/T', onto H/T',. Since
h preserves each homotopy class of A, it is easy to see that 4 is homotopic
to the identity map. Thus Iy , =T, ,,. ]

A component of a small neighborhood of a vertex of a triangle defines an
end of the triangle; see Figure 2.2. Let E} ;, ..., E,;),; be the complete list of
the ends of the triangles in A to which x; € P belongs. If a marked group T},
is given, choose curves in A to be geodesic with respect to I',,. Denote by
0(p, i) the angle of the end E, ;. Then we have

pli)
> 0(p,i)=

27
T

i=1,...,s. 2.1
Using formulas (1.1) and (1.2), the trigonometric equations induced by (2.1)

give s algebraic equations for Ly, ..., L;, , defining the Teichmiiller space as
a real algebraic subspace of R4+,
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C1(p,i)
(@)
C2(p.) €1(p.)
By C2(pi) = C3(p.i)
cl(p,f) = Cs(ps‘)
(b)
Figure 2.2

3. A Model of the Teichmiiller Space

3.1. Triangle Inequality

Let /,, l}, I. be any positive numbers. Then the triangle inequality /. < /,+/,
is described in terms of the L-lengths L,, Ly, L. by

L2< 2L+ L2+ L3+ L,LyN(L2+2)(L3+2). (3.1)

We assume that L, = max(L,, L,;). Let t(L,, L, L) be the least nonnega-
tive value of ¢ such that the triangle inequality (3.1) holds for ¢L,, tL;, and
tL.; that is,

L < PLIL3+ Lo+ L+ Lo Ly (2L +2)(12L] +2).

This least value is

(L Ly, L) = {

0 if L,+Ly>L,,
7(Lg4, Ly, L;) otherwise,
where

T(Las Lba Lc) = ‘\/—F(La: Lbs Lc)/ZL%IL%L%‘
with the function F in (1.3).
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LeEmMA 3.1.1. Let 0<L,, Ly, L.. Consider a hyperbolic triangle with L-
lengths of sides tL,, tL,, tL. and opposite angles o(t), B(t), y(t), where t >
t(Ly, Ly, L.). Then the angle sum 2(t) = a(t)+B(t)+v(t) is a strictly de-
creasing function of t. 2.(t) converges to = as t—t(L,, Ly, L.) and con-
verges to 0 as t — +co,

Proof. By (1.5),
2LELELA(1— 727 (Lgy Ly, L))

HN+1= ;
cos (1) (L2+122)(L2+1-22) (L2 +1-22)

hence cos 2J(¢) is monotone increasing and tends to —1 as ¢t - #(L,, Ly, L.)
and to 1 as ¢t — o, 1

The following lemma is a variant of Lemma 3.1.1.

LEMMA 3.1.2. FixveN, v> 2. Let L > 0 and consider a hyperbolic right-
angled triangle with an angle w/v. Suppose that the side opposite the angle
7/ v has length I(t) such that t*L? = cosh(21(t))— 1. Then the third angle §(t)
of the triangle is strictly decreasing for t > 0, and converges to w(27'—p™)
ast—0andto 0 ast— +oo.

Proof. The lemma is an immediate consequence of the equation cot §(¢) =
tan(w/v)~1+¢2L2/2, which is obtained from (S) and (CI). -]

3.2. Special Triangulation

We proceed with a special triangulation Ay = (cy, ..., c445) of Fy, where ¢;
separates ¢;41+; from all other curves and ¢4, ; connects x; and x;,, i =
1,...,s—1. Then in A, there are s—1 triangles 73, ..., T;_;, as in Figure 2.1.
By Section 2, the Teichmiiller space T(g; vy, ..., »;) can be represented as a
subspace of R‘i’” determined by A,. Next we shall characterize this subspace.
Choose a marked group I, = (T, ¢). Let (L4, ..., L4,,) be the L-length co-
ordinates of I',,. The geodesic triangle corresponding to 7;, i =1, ...,s—1, is
isosceles and can be divided into two congruent right-angled triangles. One
of the angles of the right-angled triangle is #/»;,;. Let §; < #/2 denote the
other angle. Using (S), we obtain

. (3 .
If g, B4, v4 denote the angles of T, g =, ..., Q, then by (2.1) we have
o s—1 207
D (ag+By+7y)+ X 26, =—. (3.3)
g=s i=1 g

By (3.2) we can omit Ly, 5, ..., Ly, s from our list of parameters. For L,, ...,
L;.,, a single relation—namely, the one derived from (3.3)—remains.
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ProposITION 3.2. The image of T(g;vy, ...,v,) under the mapping in Prop-
osition 2.1 meets each ray from the origin exactly once in

RI*V = (L, ...,Lz41): L;>0}.

Proof. Let (L,,...,Lg.1)€ R Choose ¢, to be the minimum of all ¢ for
which the triangle inequalities (3.1) hold among all triples

(tLl(q),sz(q),tL:;(q)), q=3S,..., Q,
where the subscripts arise from the coordinates corresponding to the sides
of T,,.

Let a,(1), 84(2), v4(¢#) denote the angles of the geodesic triangle with L-
lengths of sides tLy,), tLy(4), tL3(q)- Next consider the triangle with angles
w/2, w/vi;1, and 6;(¢), and assume that the side opposite w/»;,; has hyper-
bolic length / defined by #2L% = cosh(2/)—1. Then we need to show that there
exists a unique ¢ > f, for which the angle sum satisfies

Q s 27
D (og(D+Ba(D+v,(N+ X 251(0=—VT- (3.4

q=s i=1
By Lemmas 3.1.1 and 3.1.2, the left-hand side in (3.4) is strictly decreasing
for ¢t > ty; its value is greater than 7w at f = ¢y and tendstoOQas t > +o0. [J

4. Action of the Mapping Class Group on the
Teichmiiller Space of a Branched Surface

4.1

In this section we consider transformations between Teichmiiller spaces re-
lated to different triangulations and the mapping class group.

4.1.1. A triangulation A of F; defines a representation of the Teichmiiller
space T(g;v,...,v), v =2, as a real algebraic subspace T, (A) C Rﬁ“. When
another triangulation A’ is given, let R a, ot T,(A)—>T,(A") denote the map-
ping that gives the correspondence between points representing the same
class of marked groups.

We first consider a special case. Suppose that a, b, ¢, d, e € A are such that
(a, b, e) and (c, d, e) define triangles in A, as in Figure 4.1. The operation on
A indicated in Figure 4.1 defines a new triangulation A’, which is said to arise
from A by an elementary move. Let L; be the L-length of the geodesic in [],
iela,b,c,d,e, f}, with respect to a marked group TI',,. In this case the ex-
plicit expression of RA’ A’ can be obtained by using (1.6).

A sequence of triangulations (Aj)}=1 is called a chain if A;,, arises from
A; by an elementary move. For a general triangulation A’, there exists a chain
(Aj)}=l such that A; = A and A’= A,; see [9, Prop. 7.1]. It is therefore pos-
sible to obtain an explicit (but in general very complicated) expression of
the transformation R, , by using (1.6) successively:

RA,A’ = RA,_,,A'° Tor °RA,A2-
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Figure 4.1 Elementary move

4.1.2. The mapping class group MC; is the group of homotopy classes of
mappings in Homeo , (F}) relative to P, where Homeo  (F})) is the group of
orientation-preserving homeomorphisms of F;’ that preserve the set P=
{x1, ..., X5} of distinguished points. A mapping # € Homeo . (F;’) induces an
isomorphism hy: G, — G,. For I, = (T, ¢), where [T},,]€ T(g;, ...,»), we let
h,T,, = (T, thﬁ“). Since Ay is independent of the choice of 4 from its homo-
topy class, the change of marking [T,,] - [4.T},,] induces an action of MC,
onT(g;v,...,»).

Fix a triangulation A and identify T(g;v, ..., ) with its model T,(A). We
next study the action of 4, € MC; on T,(A). Take a marked group I,,. For
ceA,letl(c,T),) and L(c,T},,) denote the hyperbolic length and the L-length
of the geodesic in [c] with respect to T',,. Then there is a natural relation
I(h(c), h.T,,)=1I(c,T,,), and hence

L(h(c), h.T};) = L(c,T},). (4.1)

The action of h*eMcg on T(g;,...,v) is expressed by using the coordi-
nates of T,(A) as

ha(L(c;, Tp))f2e = (Lci, haTp)) 2. (4.2)

By (4.1), L(c;, h.T,,) = L(h~\(c;),T,,). Hence the action of 4, coincides with
the mapping R a, n—1a followed by an auxiliary permutation p of coordinates.
Since T,(A) and T, (% ~!(A)) are identical subspaces of R%**, we can think of
poR a, n-1a as a self-mapping of T,(A). Then we have a representation of the
mapping class group MCy in the group of self-mappings of T,(A) that sends
hy to p°ﬁA, h1A.

4.2. Decomposition of the Teichmiiller Space T(g;v, ...,v)
into Subsets

4.2.1. Let A be a cell decomposition. Choose a triangulation A’2 A. When-
ever a marked group I',,, of T(g;», ..., v) is given, take the curves ¢ in A’ to be
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geodesic with respect to the hyperbolic structure defined by I',. Fix a curve
ee A’. Let S and T be the triangles in A’ which abut on e from different sides.
We identify S UT with the hyperbolic quadrilateral as depicted in Figure
1.1(b). (This is visualized in the universal cover H if e is as in Figure 2.1.)
We say that T, satisfies the face inequality (resp. the face equality) on e if
the face inequality (resp. the face equality) holds on e; see Section 1.2.

DEerINITION. T, satisfies face relations on Arel A’ if face inequalities hold
on each e € A and face equalities hold on each ee A'—A.

Define a subset of T(g;», ...,») by
C,(A) = {[T},]: T, satisfies face relations for Arel A’}.

It will be shown in Proposition 4.2.2 that C,(A) does not depend on the par-
ticular triangulation A’ containing A.

4.2.2. LetT be a Fuchsian group with signature (g;», ...,»). Let &(T') de-
note the set of elliptic fixed points of I in H. For each z,€ &(I"), we define

P(z0) = {z€ H; p(z,29) < p(z,2’) for all z2’e E\{zp}},

where p(-, -) is the hyperbolic distance. Since &(T') is discrete in H, P(zy) is
a locally finite hyperbolic polygon. By Selberg’s lemma [10, Thm. 15.14], T
has a subgroup T' of finite index that contains no elliptic transformations.
The closure of the Dirichlet polygon D(z,, I') centered at Zo is included in
H, because T' is purely hyperbolic and the hyperbolic area of D(z,, I') is
finite. Since T'zo C I'zo C &(T'), we have P(zo) C D(zo, I'). Therefore P(z;)
has finitely many sides and all its vertices lie in H. The collection P(zy), zp €
&(T'), defines a I'-invariant tessellation of H. Next we construct a dual tessel-
lation. Let V(I'") denote the set of vertices of all P(z,), zo€ &(I'). For each
ve V(I'), enumerate polygons around v as P(zy), ..., P(z,). We form the
hyperbolic convex hull D(v) of zg, ..., z2,. Because zy, ..., Z,, are equidistant
from v, D(v) inscribes in a hyperbolic circle. The collection D(v), ve V(T),
defines a dual tessellation, denoted by Tess(I'). Under the canonical projec-
tion w: H—- H/T, the edges of Tess(I') are sent to geodesic curves in H/T
connecting branched points. Denote by A(T") the system of these geodesic
curves.

For a cell decomposition A, let A(T,,) be the system of geodesic curves in
A with respect to I,,,. Then we have the following proposition.

ProposiTION 4.2.2.  For a cell decomposition A of Fy,

C,(A) = {[T}y); A(T,,) = A(T)}.
Proof. Assume A(T,,) = A(T') for a marked group I',,. Let A’ be any tri-
angulation containing A. We may assume that curves in A’ are geodesic with

respect to I',,. Then A’ induces a triangulation of H, which is a subdivision
of Tess(I').
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Let e A’. We continue using the notation of Figure 1.1(b). We may iden-
tify e with an edge of Tess(I'). If e A, then S and T are contained in dis-
tinct polygons D(v) and D(v’), respectively. It follows that 7 has a vertex
outside the circumscribing circle of D(v), hence also outside of S, and the
face inequality holds on e. If ee A’— A, then S and T are contained in the
same polygon D(v) and their circumscribing circles are identical. Hence the
face equality holds on e. The other direction can be proved by using a simi-
lar argument. O

4.2.3. Proposition 4.2.2 implies that I, defines a unique cell decomposi-
tion A for which [I},]e€ C,(A), which proves the first claim of the follow-
ing theorem.

THEOREM 4.2.3. T(g;v,...,»v) is a disjoint union of the subsets C,(A),

T(g;v,...,») =UC,(A),

where A runs over all cell decompositions. Possibly some C,(A) are empty.
This subset decomposition is MCg-invariant.

Proof. The last claim is a consequence of (4.1), since A,C,(A) = C,(h(A))
for h, e MC;. O

5. Convergence of Teichmiiller Spaces of Branched
Surfaces to That of a Punctured Surface

5.1. Sequence of Teichmiiller Spaces

We consider the Teichmiiller spaces T(g;v,...,»), v =2, with v repeated s
times. We fix a triangulation A of F; and denote by T,(A) C R9*S the model
of the Teichmiiller space obtained in Proposition 2.1. Define a positive num-
ber p(r) by cosh p(v) = (2 sin #/»)~!. Then, by Matelski’s result [5, Lemma
4.2], for v = 7 all coordinates of a point (L, ..., Ly, ) of T,(A) satisfy L2 >
cosh2p(r)—1 = (2sin®7/»)"'—2. Thus L; —» o as » - . Fix a constant
o > 0 and consider the homothety

V2 sin 7/v
hv,a(Ll""’Ld-{-s):(EyLls---:EuLd-i-s), EVZ_B[——— (51)
Let (Ly,...,Lg.+5)€T,(A). By (2.1), we have
pli)
sin( ) B(p,i)) = sin(ZT”), i=1,...,s. (5.2)
p=1

We develop the left-hand side of (5.2) in sin8(p, i) and cos8(p, i), and re-
write it in terms of L-lengths by using (1.1) and (1.2). Then we substitute
£,'L; for L; to obtain the equations defining 4, ,T,(A). When » tends to o,
all angles appearing in (5.2) tend to 0. We divide both sides by sin(2#/») and
let » — oo. Since the terms having at least two sine factors vanish and cosine
factors tend to 1, we obtain a subspace of R4*%, which we denote by To, o (4),
defined by
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pi)

Ll(p i) .
: =a, i=1,...,s, (5.3)
p=1 (Lap,iyL3(p,iy)
where 1(p,i),2(p,i),3(p,i)ell,...,d+s} are determined as depicted in
Figure 2.2.

5.2. Algebraic Convergence

5.2.1. We consider the space Ty ,(A) C R‘f” obtained in Section 5.1. Let
(Ly, ..o, Lgys) €Ty o(A). Take a triangle T in A with sides ¢;, ¢;, and ¢i. By
Lemma 1.3, (L;, L;, L;) determine a triple of horocycles (4; 7, hj, 1, A, 1) an~d
then the base points of the horocycles determine a hyperbolic triangle 7.
Taking care that the horocycles fit nicely, replace triangles 7 in A by 7. This
forms Fy — P with a marked hyperbolic structure on it. Let I, denote the
corresponding marked group. The above horocycles are divided into s classes
corresponding to the punctures. The equations in (5.3) mean that the length
of each horocycle on F; equals « (see [9, Prop. 2.8] and also (5.6) below).
By this observation we have the following result.

THEOREM 5.2.1. The subspace T, ,(A) represents the Teichmiiller space
T(g; o, ...,©) of the closed surface of genus g with s punctures.

In the preceding argument the coordinates (L, ..., L) of T, o(A) differ
by a factor of V2 from Penner’s A-length coordinates. Hence Te,(A) can
be viewed as a natural embedding of the Teichmiiller space T(g;, ..., )
into the decorated Teichmiiller space.

PROPOSITION 5.2.2. Let (L,,...,Lg.s)€ Ty o(A). Choose

(Li(), ..o; Lgys(v)) €T, (A)
so that

hv,a(Ll(V)’-":Ld+s(V))_’(Lla°-°9Ld+s)’ p— 00, (5'4)

Let [T'(v),,] be the point of T(g;v, ...,v) defined by (L (v), ..., Lg.s(v)).
Then suitably normalized marked groups I'(v),, converge to a marked group
T, = (T, ¢) determined by (L, ...,L,.,) algebraically in the sense of Jor-
gensen [3].

Proof. Let r =2g+s—1. Relabel the curves in A so that F; reduces to a
plane (2r)-gon D when it is cut along ¢y, ..., ¢, (for a detailed description of
this, see [4, para. 18]). Topologically we may pass from the polygon D to
the surface F; by identifying the sides of D in pairs.

Now we consider I,,(») = (I',, ¢,) and replace curves c; in A by the geo-
desic curves ¢; , in [c;] with respect to I',,,(»). As in the case just illustrated,
construct a geodesic (2r)-gon D, by cutting H/T, along ¢, ,,...,c,,. We
choose from A a triangle 7] that has ¢; as a side, and normalize I', by conju-
gation so that:
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(A) ¢, is an interval on the imaginary axis and the imaginary unit i/ is its
middle point; and
(B) T, lies in the right-hand side of the imaginary axis.

Draw hyperbolic circles C, ,, ..., C,,,, of radius p(»)+p centered at vertices
of D,, where a = e”. For each curve ¢y ,, k =1, ...,d+s, find two circles C; ,
and C;, centered at its endpoints. For v large enough, p < p(»). Then the
signed hyperbolic distance é,(») along ¢, , between C; , and C;, is defined
by 8 (v) = L () — 2(p(v) + p) with L,(»)2 =coshly(v)—1,i=1,...,d+s. A
simple calculation shows that

e 512 as y—ooo, (5.5)

For each end E, ;, p =1, ..., p(i), take the circle C;, which has its center at
the vertex in E, ;. If the angle at E,, ; is 6 = 6(p, i), then

Bp,i(v) = 0 sinh(p(v)+p)

is the hyperbolic distance along C; , between the sides of E, ;. Because 6 <
«/v, sin8/0 — 1 as v — . Hence by using (1.2) we have

Bp,i(¥) = Lyp,iy/(Lap,iyL3(p, i) as v—oo. (5.6)

By (5.5) and (5.6), 6,(»), ..., 0445(¥), B1,1(¥), ..., Bp(s),s(¥) are bounded uni-
formly. By Condition (A),i is the middle point of ¢; ,. Then, although all ver-
tices of D, move far from i, the distances from i to the circles C, ,, ..., C,,,
are bounded by S(6;(»)|+X5-, =5 B, i(v). Therefore, by choosing a
subsequence if necessary, C; , converges as » —» o to a horocycle 4;, i =1, ...,
2r, and these horocycles have distinct base points. Thus the limit D, of D, is
still a geodesic (2r)-gon and by (5.5) the side pairing that fits the horocycles
of D, determines I',,, the same marked group as constructed in 5.2.1 from
(Ly, ..., Lgys). Let g; be the homotopy class on F;'— P represented by a loop
that cuts ;U ---Uc, once and only once in ¢;. Theny; , = ¢,(g), i=1,...,r,
are the side-pairing transformations of D,, where ¢, is the composite of the
projection G — G, and the marking ¢,: G,—TI,. As y — o, y; , converges to
the side-pairing transformation v; € I' of D,; see Figure 5.1. Hence we have
a convergence in PSL(2, R)” on the generator system

(’Yl.v! teey ’Yr,v) - (71’ seey 'Yr), .
which is the desired algebraic convergence I',,(v) —T},,. 1

5.3

Let T, o(4A) and T, ,(A’) be associated with different triangulations A and
A’, respectively. Then the natural transformation Rj A from T, ,(A) to
To, o (4') is the limit of ha,,,ﬁA, ahg, 1 as v — o0, where EA, A 1s the transfor-
mation in 4.1.1. To study R a, o> We first assume that A’ is obtained from A by
an elementary move on e€ A and that a, b, ¢, d, e, f are as depicted in Fig-
ure 4.1. By substituting £,;7'L; for L;in (1.6) fori = a, ..., f and letting » — «,
we obtain the Ptolemy equation of [7; 8]:
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Figure 5.1
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 LeLy=L,L.+LyL,. (5.8)

Hence, in this case R, » is expressed by (5.8). For a general triangulation A’,
choose a chain (A;)j-; from A to A’. Then

Ra o =Ra,_,a°°Ry 4,

and R, » is a homogeneous integral rational map of degree 1, as pointed out
by Penner (see [9, Sec. 7]). The mapping class group MC; acts on T, ,(A)
in the same manner as described in Section 4.1.

Because the face conditions (1.7) and (1.8) are homogeneous, they are pre-
served under homothety. Thus, if C,(A) is the set defined in 4.2.1 for a cell
decomposition A, then the limit C,, ,(A) of C,(A) in the sense of Proposi-
tion 5.2.2 consists of all [T},]€ T(g;, ...,0) that satisfy the face relations
for A. By Theorem 5.5 of [9], we have our next result.

THEOREM 5.3. T(g;, ..., ®) is a disjoint union of the subsets C, ,(4),

T(g; o, ...,0) = Cx,4(A), (5.9)

where A runs over all cell decompositions. The subset decomposition (5.9)
is MCg-invariant.

In the statement of the theorem, possibly some sets C,, ,(A) are empty.

6. Teichmiiller Space of a Twice-Punctured Torus

We identify the topological surface FZ with C/M, where M = {a+ib:a,be
Z} is a lattice. The distinguished points are identified with the congruence
classes of the origin and of (1+17)/2.

Let A, be the triangulation of F? whose lift to C is depicted in Figure 6.1.
To simplify the notation, we write j for L; (the L-coordinate at j € {a, b, c,
d, e, f}). Then two equations of type (5.3), with « fixed, determine the Teich-
miiller space T(1;, ). These equations yield e = f. Hence T(1; o, ) is
represented as a subspace of the (a, b, ¢, d, e)-space Ri by the equation

d,c,e b a_ e

ae ' be bc  ce de _a?i-=

Let w;, w;y, w3 be the orientation-preserving homeomorphisms whose lifts
@;, I =1, 2,3, with respect to the covering C - C/M are:

o. 6.1)

x+i(y+2x—[x]) if 0=x—[x]=<1/2,

@y(x+iy) = {x+i(y+[x}+1) if 1712=x—-[x]=1,

@(x+1iy)=—y+ix,

x+i(y+[x]) if 0=x—[x]=1/2,

w3(x+’y)={x+i(y+2x—[x]—1) if 1/2=x—-[x]=1,
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1

Figure 6.1 A,

where [x] denotes the greatest integer not exceeding x; see Figure 6.2. Each
w;, i =1,2,3, induces a transformation w;, on the space T(l1; co, ) repre-
sented by (6.1). The images of a point (a, b, ¢, d, e) under respective trans-
formations are:

wisi (d, b, c, (€2 +d?*)/a,e);  wi:(d,a,b,c,(ac+bd)/e);
wyt (a, (b2 +e?)/c, b, d, e).

Let G denote the group generated by w;«, wy«, and w3,. The transformation
w4 has order 4,
w3, = the identity transformation, (6.2)

and fixes (4V2/a, 4V2/a, 4V2 /o, 4V2 /e, 8/cr). Then w3.: (c, d, a, b, €) has
order 2, preserves C, ,(A), and fixes every point in

{(a, b,a,b,e);2(a*+ b*+e?) = aabe).
We also have

wzz*wl*w%* = W3x, Wi W3sx = W3xWix, (6.3)

— =l =1 =1 = wilewles]
W1xW2xW]x = Wk Wik Wk s W34 WA W3k = W W34 Wk . (6.4)

We consider the decomposition (5.9) of T(1; e, ). For simplicity we write
C(A) instead of C, ,(A). Let C(A) denote the closure of C(A) in T(1; o, o),
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Figure 6.2
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If A, is the triangulation of Figure 6.1, then C(4,) is defined by the face in-
equalities d*>+e? > a?, a®?+e*>d?, c*+e?> b? b%+e?> c?, and

ad(b?*+c*—e?)+bc(a®+d*—e?) > 0.
LEMMA 6.1. T(1;00,0) =Uf{w,C(A|): ws € G}, where G = {w«, Was, W3x).

Proof. We denote the coordinate functions by a(x),...,e(x) and define
m(x)=a+b+c+d for x=(a, b, c,d, e). If the lemma is false, there exists
a point xo = (ayg, by, o, dy, €g) € T(1; 0, ) such that its G-orbit G(x,) does
not meet C(A;). We choose a point x =(a, b, c,d, e)e G(x,). Let M be a
number such that m(x) < M and e < V2M. Then we can find x’in G(x;) such
that m(x’) < m(x) < M and e(x’) < V2M: Since x does not belong to C(4,),
some weak face inequality fails to hold on A,. If it fails to hold on a (i.e., if
e?+d? < a?),letx’' = wix(x). Then d(x’) = (e +d?*)/a < a, so m(x’) < m(x)
and e(x’) = e < V2M. Likewise, if the weak face inequality does not hold on
b (resp. c,d), then we can choose X’ = w3, (x) (resp. w3«(x), wi(x)) as x”.
If the weak face inequality fails to hold on e, then

ad(b?+c?—e?)+bc(a’+d?*—e?) < 0 o (ac+ bd)(ab+cd) < (ad+ bc)e?.

This inequality is the face inequality for w,.(x) on e. Then for w,.(x) the
weak face inequality fails to hold either on a, b, ¢, or d by our assumption.
As before, we can find some w, € {wii!, !} s0 that x” = w,w,«(x) satisfies
m(x") < m(wyp(x)) = m(x). If e(x”) <V2M, let x’=x". If e(x") = V2M, let
X' = wye(x”). Then m(x’) = m(x") and
" n " " 2
e(x’) = a(x")e(x”)+b(x")d(x") < 2ME _ 5
e(x") e(x”)
We apply this argument successively to produce points x,,, n =1, 2, ..., such
that M > m(xg) > --- > m(x,_,) > m(x,) and e, <V2M. Since the x, are
uniformly bounded, {x,};-; contains a converging sequence. This contra-
dicts the discontinuity of the action of the mapping class group, and hence
of G, on the Teichmiiller space [1, pp. 64-80]. O

The hyperelliptic involution J of Fy lifts to the mapping z — —z+(1+1i)/2
with respect to the covering C —» C/M. Then G is a subgroup of

MCY, = MC{/[J]),
since the class of J generates the isotropy subgroup [6, Sec. 2.3.8].

PROPOSITION 6.2. MC{ coincides with G.

Proof. Let we MC#. By Theorem 5.3 and Lemma 6.1, there exists an 7, € G
such that 5;'w,C(A,) = C(4,). Then 5 'w preserves the triangulation A,.
Composing with J if necessary, we may assume that n ' fixes each distin-
guished point of P. Then either n 'w fixes all homotopy classes in A, or it
sends a, b, c,d, e to c,d, a, b, e, respectively. Therefore 3 'w is homotopic
either to the identity map or to w3. Hence wy = 1« OT Wy = 75 w3x. O
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wa(4)

—an = e W= -

wylwi e (4)

= wzwlwz(Al)

Figure 6.3(a) Triangulations containing A, ,

Let A; j=A;—{i,j} for distinct i, j€ {a, b, c,d, e}. Then C(4A; ;) gives a
codimension-2 face of C(4A,), provided that A; ;is a cell decomposition. One
can verify that only A, ; and A, . fail to be cell decompositions. In order
to obtain relations in the group MC3,, we find all sets w,C(A;), w, € MC},,
around a codimension-2 face. If w,.C(A;) = C(wA;) has a codimension-2
face A; j, then w(4A,) contains A; ;. In Figure 6.3(a) all triangulations that
contain A, . (and in (b) all that contain A, ;) are described. Two triangula-
tions are connected by a broken line if one arises from the other by an ele-
mentary move. Note that w,w, preserves A, .. We derive the first relation in
(6.4) and the commutativity of w,. and ws;.. Relations obtained from other
codimension-2 faces are consequences of (6.3) and (6.4). Hence the relations
(6.2), (6.3), and (6.4) give a representation of the group G = MCf.

We finish by considering the special case o = 6. In this case, (6.1) can be
written as the Diophantine equation
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A
1
| wiey 'yt (Ay)
=w; (&)
!
< i
~. '
\\ ]
wl(AI)
wywy (4,)

Figure 6.3(b) Triangulations containing A, ,

ad(b?+ c?+e?)+ be(a?+d?* +e?) = 6abcede. (6.5)

Equation (6.5), when restricted to the subspace {a =c¢, b =d}, reduces to the
classical Markov equation a2+ b2+ e? = 3abe. The transformations gener-
ated by w;«w3« and w,, send (a, b, e) = (1,1,1) to Markov numbers. Hence
equation (6.5) can be viewed as a generalization of the Markov equation,
and we may expect that (6.5) admits an analogy of the positive integer solu-
tions of the Markov equation. We actually obtain the following.

PROPOSITION 6.3. Any transformation in MC}, sends the solution (1,1, 1,
1,1) to an integer solution of (6.5).

The rest of this paper is devoted to a proof of this proposition. First, we

define
2 2 2 2 2 2
Flabedey=2"1 % 1d G b cde=2td+e
bc ad

Then (6.5) reads F(a, b, c,d,e)+ G(a, b, c,d, e) = 6e. If (a, b, c,d, e) is a so-
lution of (6.5), then the quadratic equation

2, .2,.2
xz—(6e—b—_'_gc—-*—_—f-—)dx+c172+e2 =0
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has roots a and (d>+e?)/a, and

a+(d*+e?/a=G(a,b,c,d,e)d.
Therefore

w]*(a9 b:o c, d’ e) = (da b’ G, —a+ G(a’ b’ c, d’ e)d, e);

likewise for x = (a, b, ¢, d, €), v (x)=(—d+ G(xX)a, b, ¢, a, €), w3.(x)=
(a,—c+F(x)b, b,d, e), and w3, (x) = (a,c, —b+ F(x)c,d, e). The functions
F (and hence also G) are automorphic with respect to {w;«, w3«}; that is,

F(wy(a, b,c,d,e)) = F(ws.(a, b,c,d, e)) = F(a, b, c,d, e).

Furthermore,
F(w3.(a, b,c,d,e))=G(a,b,c,d,e)

because w3.(a, b, c,d,e) =(c,d,a,b,e). Note that x =(1,1,1,1,1) satisfies
the following condition:

(*) wil(x)and wilwi!(x) are also integer solutions of (6.5), and F(x),
i jx Wi

F(wit!(x)), and F(wii'wi (x) are integers for i, j € (1,2, 3}.

We can show that w,(x) is an integer solution of (6.5) for any w, e MC%,
if x satisfies the condition (*). However, at present the authors do not know
of any integer solutions satisfying condition (*) except for w.(1,1,1,1,1),
wy € MCE,.. To simplify the notation, we denote by L the set of all positive in-
teger solutions x = (a, b, ¢, d, ) of (6.5) such that F(x) and hence G(x) are
integers. The next lemma is immediate from the results mentioned above.

+1

LEMMA 6.4. Forany xelL, wfi‘(x), wix (x), and wﬁ*(x) belong to L.
The following lemma is needed for our argument by induction.

LEMMA 6.5. For any solution x = (a, b, c,d, e) of (6.5),
F(w2502(x)) = (66— F(X)) F (@20 14 (X)) — F(w24(X)),
G (w0 (X)) = (66 — F(X)) G(w3x w14 (X)) — Gw34(X)).

These equations imply that if X, wy«(Xx), and w;xwix(x)€ L then Wox i (X)
and wy, w1 (x)€ L, and if X, w24(X), and w,.w3.(x)€ L then wz*wf*(x) and
Wy (X)E L.

Proof. If (a,,b,c,d,,e)=wl(a,b,c,d,e), n=0,1,2, then
(a2+b?)e?+(a,c+bd,)?

F(ws wi’*(x)) =

a,b
_apc(b*+cP+e? +d,,b a’+d?*+e? +2(cd,,——ba,,)
T g2 bc e? ad e? '

This equation yields the first equality in the statement of the lemma. The
second equality can be obtained in a similar way. £
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We define Q = {w, € MC{: w.(1,1,1,1,1)e L}. Proposition 6.3 follows if we
prove that Q coincides with MCf. (We remark that this is true if (1,1,1,1,1)
is replaced by any positive integer solution of (6.5) satisfying the condition
(*).) Now take an arbitrary element w, of MCfA and represent it as a word

Wx = 01027 Op 415

where 0; € {0}, w3, wil}, i=1,...,n+1, n = 2. Assume as an induction hy-

pothesis that any element in MC3, represented as a word of length < n, be-
longs to . We consider the following cases.

Case I: 0, = 0! or ;= w}!. The function F is automorphic with respect

to {w;«, w34}. Hence, by the induction hypothesis, w, belongs to .

Case 2: 0, = w34. By (6.2), w3) = w3,w,.. From Lemma 6.4 we can in-
clude this case in the next one.

Case 3: 0; = wy«. By Lemma 6.4, Lemma 6.5, (6.3), and the induction
hypothesis, we need only consider the following subcases:

(a) 010203 = W W xW24;

(b) 010203 = Wy w1057 ;

(€) 010203 = W@ w35 = (W24 W14 ) (W2 W14 W34 );

(d) 010203 = WysW3xw2s;

(€) 010203 = Wy w33y

Here we have used (6.3). Let wi =040, 41.

Case (a). By using (6.4) we can write w, = wj,w;rwiw, Which is a case
considered above. The same argument proves case (d).

Case (b). By Lemma 6.5, w, = w,sw;xw5.w, belongs to Q if both w} and
WorWinwirws d0. Here wyy 0w = wr(wixwxwix) by (6.4). By the induc-
tion hypothesis, ws, wywxwi €. Since (by Lemma 6.4) w%,,wl* preserves
L, 03, w120 w05 belongs to Q. Hence w, € Q. The same argument shows
case (e).

Case (c). By (6.4), wx = olwilorwiswxwiws. By Lemma 6.4, w, €9
if Wi lwilwewsw3w} € Q. By (6.2) and Lemmas 6.4 and 6.5, the last word
belongs to Q if Wy, w3, @} and w3, (] @Wyx W sWrx ) Wrx s = W7 2WIAWyxw, dO. By
the induction hypothesis and Lemma 6.5, the last claim is true. d

REMARK. The transformations defined by
wys(a, b,c,d,e)=(d,b,c,a,e) and ws.(a,b,c,d,e)=(a,c,b,d,e)

preserve the integer solutions of (6.5), but the group generated by these and
MC12=|= does not preserve the integer solutions. For example,

WosWarwaswi(1,1,1,1,1) = (5,1,2,1,11/7).

Hence MC#} does not preserve the integer solutions of (6.5). This fact causes
the difficulty in finding all integer solutions of (6.5).
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