The Branched Schwarz Lemma:
A Classical Result via Circle Packing
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1. Introduction

Our original aim in this work was to establish certain results about circle
packings which were suggested by classical complex function theory. We
succeeded in doing that, but along the way we found that we could in fact
extend the classical results themselves, independently establishing a theorem
of Z. Nehari.

A circle packing is a collection of circles in the plane with a prescribed
pattern of tangencies satisfying certain combinatoric conditions, which will
be described in a moment. Connections between circle packings and analytic
functions were introduced by W. Thurston in 1985. The seminal paper in this
topic is the proof by Rodin and Sullivan [RS] of Thurston’s conjecture on the
approximation of conformal mappings via circle packings. Subsequent work
by several researchers has refined the approximation results, but has also
suggested the possibility of developing a “discrete analytic function” theory
based on circle packings which would parallel classical analytic function
theory. Here, a thorough mixing of the proofs of certain fundamental clas-
sical, discrete, and approximation results suggests that the emerging discrete
theory provides far more than mere analogy with its classical counterpart.

It is certainly best for the reader if we state the classical results first. A
finite Blaschke product is an n-to-1 proper mapping of the unit disc D onto
itself for some positive integer n and br(f) denotes the set of branch points
of an analytic function f, counting multiplicities.

Scuwarz’s LEMMA (Branched). Let f,b: D — D be analytic, with f(0) =
0=0b(0), and assume b is a finite Blaschke product. If br(b) € br(f), count-
ing multiplicities, then | f'(0)| < |b’(0)|. If | b’(0)| # 0, then equality holds iff
f = Ab for some unimodular constant A.

DistortioN LEMMA (Branched). Let f:D — C be analytic with f(0)=0
and let r > 0. Write Q for the component of f~'(rD) containing 0 and as-
sume that the restriction f|q: Q — rD is a proper mapping. Let b be a finite
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Blaschke product satisfying br(b) = br(f)NQ, counting multiplicities, and
b(0) =0. Then | f'(0)| = r|b’(0)|. When |b’(0)|# 0, equality holds iff f =
(Ar)b for some unimodular constant M.

When b is the identity function, b(z) = z, these statements reduce to stan-
dard versions which are well known. Indeed, the Schwarz lemma is one of
the true pillars of complex analysis. The extension here is apparently due to
Nehari [Ne, p. 1037], while the companion distortion lemma follows easily
from it via subordination.

We do not consider these classical results to be the main goal of this
paper—our interest is in circle packing. However, we found a very pleasing
and potentially valuable interplay between the two theories as our investiga-
tion developed. That interplay is the common thread running through the
paper. Briefly, the chain of events was this: The discrete Schwarz lemma
(DSL), a circle-packing version of the standard Schwarz lemma, had been
shown in [BS2] and proved to be very valuable. Motivated by that, we for-
mulated and proved a discrete distortion lemma (DDL). The DSL and DDL
immediately proved their worth by leading to two theorems on circle packing,
one concerned with the approximation of derivatives of analytic functions
and the other concerned with uniqueness of extremal packings. These were
our putative goals. We then observed, however, that the proofs of DSL and
DDL could be generalized quite naturally and easily to incorporate discrete
branch points, leading to their “branched” versions. At that point things nat-
urally switched around—now the discrete results motivated extensions of the
classical lemmas, leading ultimately to the two results just given. Moreover,
we proved the classical extensions from the discrete ones via approximation.

Nehari’s work was subsequently pointed out to us by C. D. Minda. None-
theless, we feel that this paper may represent a new chapter in the topic of
circle packing, which is itself quite new: It is true that fechniques arising in
circle packing have been used by He and Schramm [HS] in a major advance
on Koebe’s “Kreisnormierungsproblem”. However, here we see the discrete
theory itself both inspiring and helping to prove classical results; in the fu-
ture, such “classical” results may turn out to be new.

The paper begins with a review of the definitions and notation associated
with circle packing; the reader is assumed to be familiar with the basics of
the topic, as presented in {BSl1], for example. In Section 3 we formulate
the discrete versions of the standard Schwarz and distortion lemmas, along
with two theorems that should be valuable in the continuing development
of circle packing. One relates to the approximation of derivatives of ana-
lIytic functions by “ratio functions”, and is applied later in this paper; the
other establishes the uniqueness of certain extremal hyperbolic circle pack-
ings. Both theorems strengthen and considerably simplify results in the circle
packing literature. The DDL is proven in Section 4 and the two theorems
in Section 5; their proofs are quite similar in spirit to arguments in the clas-
sical setting.
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In Section 6 we review the notion of branched circle packings and certain
material developed in [ D1; D2] concerning their use in the approximation of
analytic functions. We formulate the extensions of DSL and DDL to incor-
porate branch points in Section 7; the proofs are essentially the same as the
unbranched cases. In Section 8 we motivate the foregoing classical lemmas
and then prove them from the discrete versions via approximation.

2. Circle Packing Preliminaries

We recall here the basic definitions, terminology, and notation (for details,
the reader is referred to [BS1; BS2]). In manipulating a circle packing, the
sizes and locations of the circles change, while the underlying pattern of
tangencies is what remains invariant. That pattern is encoded in an abstract
simplicial complex that we generally denote by K. A collection of circles P is
said to be a circle packing for K if there is a one-to-one correspondence
between the circles of P and the vertices of K such that two circles are (ex-
ternally) tangent if the corresponding vertices share an edge of K. In par-
ticular, then, the faces of K correspond to mutually tangent triples of circles
in P.

Circle packings can be defined in great generality, but those we encounter
are of the garden variety: our packings consist of Euclidean circles, and
throughout the paper it is assumed that the underlying complex X is (sim-
plicially equivalent to) a triangulation of a topological disc, with the added
condition that every boundary vertex has at least one interior vertex as a
neighbor. (We use the term proper complex if we need to emphasize these
conditions.) Note that K triangulates a closed disc iff it is finite, an open
disc iff it is infinite and has no boundary vertices, and a disc with partial
boundary otherwise. We also assume that X is oriented and that its packings
P preserve that orientation; that is, if vy, v,, v; are the vertices of a face of
K taken in positive order, then the corresponding circles C;, C,, C; of P
form a positively oriented triple of circles in the plane. It is important to
note that our definition of circle packing does not require that the circles
have mutually disjoint interiors. Of course, a pair of circles associated with
the endpoints of an edge of K will have disjoint interiors, since they are
necessarily tangent. However, the overall pattern may have circles that over-
lap one another or are accidentally tangent. For purposes of illustration,
four circle packings having the same (finite) complex are shown in Figure 1.

It is precisely the fact that a given complex K might give rise to many dif-
ferent circle packings which underlies our topic. Putting aside the question
of existence for a moment, there are several pieces of terminology regarding
packings that we shall need in the sequel: Each circle packing PC C of K
determines a simplicial map sp: K — C by identifying each vertex of K with
the center of the corresponding circle of P and extending using barycentric
coordinates. The image of K under sp is therefore a union of Euclidean tri-
angles whose vertices are center points of the circles—that is, it forms a
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Figure 1 Three packings of the same complex

geometric complex in C that is simplicially equivalent to K. We refer to it as
the (Euclidean) carrier of P, carr(P). A flower is a portion of P consisting
of a circle associated with a vertex v of K, called the center circle, and the
tangent circles associated with the neighbors of v, called the petals. The num-
ber of petals is the degree of v. For interior vertices, the petals will neces-
sarily wrap around the center some integral number # times; if n = 2, then
the center of the circle represents a branch point of sp having multiplicity n
and order n—1. One easily verifies that sp is an open, continuous, light-
interior, orientation-preserving, possibly branched mapping of K into C;
we will say that sp is an immersion of K (whether branched or locally one-
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to-one). The packing P will be called univalent if this immersion is in fact
an embedding. A useful sufficient condition for univalence is that the circles
of P have mutually disjoint interiors; however, note that this is not neces-
sary, since boundary circles of P might well overlap some others without
causing the triangles in the carrier of P to overlap. In Figure 1, P, and P, are
univalent packings.

Regarding existence, it is an important fact from the general theory of cir-
cle packing [BS1] that for each complex K there exists an essentially unique
extremal circle packing Py associated with K, termed the maximal packing
(commonly called the Andreev packing when X is finite). Because K, as a
proper complex, triangulates a disc, Pk lies in C and is univalent. Two mu-
tually exclusive possibilities exist: either carr(Px) = C or carr(Px) € D, and
these cases are described as parabolic or hyperbolic, respectively. For in-
stance, the complex K having constant degree 6 is that associated with a
regular hexagonal lattice in C; it is parabolic, having as its maximal packing
the regular hexagonal packing of C by circles of constant radius. On the
other hand, the complex having constant degree 7 is hyperbolic (see [BS3]).
Various criteria have been studied for distinguishing these types, but for
purposes of the present paper it is enough to note that, if K has boundary
vertices or if there exists a circle packing for K whose carrier is bounded,
then KX is necessarily hyperbolic. Indeed, the only parabolic complex we will
encounter herein is that underlying the regular hexagonal packing. In Fig-
ure 1, the circle packing on the left is the maximal packing for the complex
underlying all four of the packings, though it may appear to have fewer
circles because some of them are too small to be seen.

Suppose now that we have two circle packings P and Q for the same com-
plex K. There is a natural map between these collections, namely, that which
identifies each circle of Q with the corresponding circle of P. It would be our
preference to treat this as an instance of a “discrete analytic function”. Such
a formulation is rather more abstract than necessary for this paper, however,
so we will work with more explicit point mappings. Proceed as follows: For
each vertex ve K, write o (v), zp(v) and rg(v), rp(v) for the centers and radii
of the corresponding circles from Q and P, respectively. (Later in the paper
we will rely heavily on hyperbolic data for circles in the unit disc D, but
unless stated otherwise, all centers and radii are Euclidean.) The simplicial
maps Sg and sp from K to Q and P have already been described.

DEerFINITION. The circle packmg map from Q to P is the simplicial map Fy p
defined by Fyp p = SP°SQ : carr(Q) — carr(P). The correspondmg ratio map
FQ p:carr(Q) — R is defined on the set of centers of Q by FQ p(zo(V)) =
rp(v)/rg(v), ve K, and is extended affinely to faces.

The mapping Fy pis piecewise affine, with Fy p(zg(v)) = zp(v) for all ve K,
and it serves as a pointwise version of a discrete analytic function. In this
same vein, the ratio function FQ#, p blays a role parallel to the modulus of the
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derivative of an analytic function, since at the center of each circle it gives
the factor by which that circle is stretched or shrunk by Fy, p. Note that Fj p
has been extended to faces purely for the convenience of having a point
function on all of carr(Q).

The typical situation we encounter is that in which Q = Py, the maximal
packing, and in this case we replace the bulky notation Fp, p by Fp. It may
help the reader to refer to Figure 1 here and to have the parallels with the
classical setting laid out explicitly: The packing on the left in Figure 1 is
a maximal packing Py, while on the right are three additional packings,
Py, P,, P;. Pgis the common domain for the three circle packing maps Fp,,
J=1,2,3. Mentally, one should make the following identifications: Py is
the unit disc; Fp, is an analytlc function on the unit disc; P; is the Riemann
image surface of Fp; and Fp is le| Note that Fp, is umvalent Fp, is 2-
valent but locally umvalent whlle Fp, is 2-valent and has one branch point.

3. Statements

We will be working primarily with the maps Fp. At almost every stage in
our development, it is advantageous to mentally identify Fp as an analytic
function on D, as described in the preceding paragraph. Indeed, the origi-
nal motivation for this paper was to show that there is real substance to
the analogy by establishing discrete versions of the following two classical
results.

CLASSICAL SCHWARZ LEMMA. Let f: D — D be analytic with f(0) = 0. Then
| f(0)| = 1, with equality iff f(z) = Az for some unimodular constant A.

CLASSICAL DISTORTION LEMMA. Let f be a univalent analytic function map-
ping D onto an open set @ C C, with f(0) =0. If Q contains the disc {|w|<r}
Sforr >0, then | f'(0)| = r, with equality iff f(z) = (Ar)z for some unimodu-
lar constant A.

In the discrete setting, we will be given a proper complex K and an asso-
ciated packing P. The normalization Fp(0) =0 means that in both P and
Py the circle associated with some designated interior vertex vye K is cen-
tered at the origin; this can always be arranged by applying appropriate
Mobius transformations to D and /or C. A discrete version of the Schwarz-
Pick lemma was proven for finite complexes in {BS2]; in fact, the proofs
go through for infinite complexes as in [BS1, Lemma 5] (even without the
bounded degree restriction). We require only the “Schwarz” portion of the
statement.

DISCRETE SCHWARZ LEMMA. Let P C D be a circle packing for K and sup-
pose the associated circle packing map Fp satisfies Fp(0) = 0. Then F4(0) <
1, with equality iff P is a rotated copy of Pk, that is, P = APk for some uni-
modular constant A.
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Our first goal is to formulate and prove a discrete analog of the distortion
lemma. We’ll need to introduce one piece of terminology: Suppose P is a
circle packing of K in C and that the circle for vertex v, is centered at the
origin. Let V be the set of vertices of K whose circles in P intersect {|w|=r}.
We say that P properly covers the disc rD (relative to vg) if V and the edges
of K spanned by V topologically separate v, from the boundary of K. That
is, no edge path in K starting at v, can reach a boundary vertex or approach
the ideal boundary without encountering a vertex of V. This is the discrete
version of the classical condition that the component of f~!(rD) containing
the origin be compact.

DiscreTE DISTORTION LEMMA. Let P be a univalent circle packing for a
hyperbolic complex K and assume that the associated function Fp satisfies
Fp(0) = 0. If P properly covers the disc {|w| < r} for r >0, then F§(0) = r,
with equality iff P = (Ar)Py for some unimodular constant A.

The proof of the classical case is an easy subordination argument, relying
on a composition and an application of the Schwarz lemma. For the discrete
result, we use elementary geometric arguments, the discrete Schwarz lemma,
and the Perron-type arguments used in [Bo]. A close look will show that
these entail a form of discrete “subordination”, though the notion of com-
position is not strictly available in the discrete setting. The proof is carried
out in the next section.

Aside from the DDL itself, the main circle-packing results of the paper
are the following two theorems, which will be proved in Section 5.

THEOREM 1. Let {K,} be a sequence of hyperbolic complexes and {P,} a
sequence of associated circle packings. Assume that the supremum of the
Euclidean radii for circles of the maximal packings Pg_goes to zero uni-
SJormly on compacta (of D) and that the circle packing maps Fp_converge
uniformly on compacta to an analytic function f: D — Q as n goes to infin-
ity. Then the ratio functions F,.’fn converge uniformly on compacta to | f’|.

The conclusion of Theorem 1 was established for packings having hexagonal
combinatorics (i.e., in the setting of Thurston’s original conjecture on ap-
proximation of conformal maps) in work initiated by Rodin [R1] and com-
pleted by [He] (see also [Ah]). However, Thurston’s conjecture has been
shown to hold for circle packings having more general combinatorics (see
[St] and [HR]), and more recently approximation has been extended to situ-
ations involving branch points [D1; D2]. Theorem 1 applies in all these set-
tings, and, moreover, its proof is entirely in the spirit of complex function
theory.

THEOREM 2. Assume that P C D is a circle packing for a hyperbolic com-
plex K with the property that the hyperbolic metric induced on K by the
immersion of P in D is complete and has constant curvature —1. Then P is
Moébius equivalent to the maximal packing Pg.
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The hypotheses of Theorem 2 mean that P “fills” D in the sense of [BSI];
we will make this more precise as we begin the proof. This theorem com-
pletes the picture regarding the uniqueness of maximal packings: The spher-
ical (elliptic) case was covered by the Koebe-Andreev-Thurston theorem and
the parabolic case by Sullivan’s uniqueness theorem (for bounded degree
cases) and more generally by Schramm’s rigidity results (see [Sc]). The hy-
perbolic case for complexes K without boundary was proven by Rodin [R2]
for bounded degree, using results of Sullivan and He, and also follows for
arbitrary degree from [Sc]. The case of infinite complexes with boundary
had remained open. Theorem 2, however, applies to all hyperbolic cases—
complexes of arbitrary degree and with or without boundary. In addition,
the arguments again parallel the classical ones, and they are easily extended
to yield uniqueness of maximal branched packings.

4. Proof of the Discrete Distortion Lemma

The proof of the discrete distortion lemma (DDL) will be carried out in
hyperbolic geometry. We review appropriate definitions and notation, fol-
lowing [BS2], and then recall the conclusions of the discrete Schwarz-Pick
lemma which are needed here.

A radius function for a hyperbolic complex K is a collection R of hyper-
bolic radii, one associated with each vertex of K. The radii for the three ver-
tices of a face of K can be realized in an essentially unique way as the radii
of a triple of mutually tangent circles in the hyperbolic plane, and the hyper-
bolic metric on the triangle they form can be lifted to give a metric on the
face in K. Obtaining these metrics on all faces and pasting them together
isometrically along shared edges induces a hyperbolic structure on K (as a
topological space), generally with cone-type singularities at interior vertices.
The resulting metric space is denoted K(R) and called a labeled complex.
Each vertex ve K has an angle sum 6,(R) in this structure, defined as the
sum of the angles at v in the star of faces containing v. Write the set of ver-
tices of K as the disjoint union K© = K;,, UKy, of interior and boundary
vertices. We say that K(R) is a superpacking if 0,(R) < 2« for all ve K;,;, a
subpacking if 6,(R) = 2« for all ve K, and a packing if 8,(R) = 2« for all
v e K. (We will extend these notions to include branched packings later.)

If P is a circle packing of K whose circles lie in D, then the set R of hyper-
bolic radii of P defines a radius function such that K(R) is a packing. (Note
that horocycles, circles internally tangent to 8D, are naturally interpreted as
circles of infinite hyperbolic radius in D.) Conversely, if K(R) is a packing,
then there exists a circle packing P for K having the radii of R, with P being
uniquely determined up to orientation and Mobius transformations of D.
We study circle packings quantitatively, therefore, by studying their radius
functions. The radius function for the maximal packing of K will be de-
noted Rg.

The following proposition summarizes the important results about circle
packings; the reader is referred to [BS2] and [Bo].
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ProposITION 1. Let K be a hyperbolic complex, and let Ry be the radius
Junction for its maximal packing.

(1) If K(R) is a subpacking then R < Rg; moreover, equality at any inte-
rior vertex implies R = Rg.

(ii) If L is a subcomplex of K which is itself a proper complex, and if R
is the restriction of R to the vertices of L, then R < R, . Equality for
any interior vertex of L implies L = K and R = Ry.

Assuming that K is finite:

(iii) Given any function g defined on K4, and taking values in (0, o],
there exists a unique radius function R that agrees with g at bound-
ary vertices and for which K(R) is a packing.

(iv) Assume that K(R,) is a superpacking, that K(R,) is a subpacking,
and that R, = R, on Ky4,. Then R, = R, on all vertices of K, and
equality at any interior vertex implies R; = R,.

Part (i) of the proposition contains our Schwarz lemma and justifies the
term “maximal” for Pg. Part (iii) guarantees a huge variety of circle pack-
ings for finite complexes. Note in particular that the radius function R for
the maximal packing is uniquely determined by solving the boundary value
problem with infinite boundary radii. The other parts of the proposition
may be described as “monotonicity” results, concerned with how radii of
packings change as the complex or boundary radii are changed. We will
extend and add to these results when we discuss branched packings in Sec-
tion 6.

Proof of DDL. 1t suffices to assume that » =1, so that the circle packing P
of the statement properly covers D, and to prove that the circle packing map
Fp from Py to P satisfies FA(0) = 1. Recall that an interior vertex v, has
been designated and that the corresponding circles ¢, and ¢y of Py and P,
respectively, are centered at the origin. We want to show that the Euclidean
radius of ¢y is greater than or equal to that of &,.

Our first task is to restrict attention to a subcomplex L of K associated
with the part of P in D. It is clearly sufficient to assume that the circle for v,
lies inside D. Let V denote the set of vertices of K whose circles in P inter-
sect the unit circle dD, let G be the edge-connected component of K O\V
containing v, and let L be the closure in K of the union of all faces having
one or more vertices in G. Because P properly covers D, one may easily
verify the following properties associated with L:

(a) AL is a simple closed chain of edges of K connecting vertices from V.
In particular, L is a finite proper complex.

(b) The circles of P associated with boundary vertices of L intersect the
unit circle, while the circles associated with interior vertices of L, in-
cluding ¢, lie in D.

Let Q denote the collection of circles from P corresponding to vertices in
L. Then clearly Q is a circle packing for L. Let R be a radius function for Q
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prescribed as follows: For each ve L;,, the corresponding circle of Q lies
in D, and we set R(v) equal to its hyperbolic radius; for each W€ Lygy, set
R(w) =0,

We claim that L(R) is a superpacking. If v is an interior vertex of L hav-
ing only interior neighbors, then the corresponding circle of Q is the center
of a flower of circles all lying entirely in D; since their hyperbolic radii have
been used as the entries in R, the fact that the circles themselves fit together
to form a flower implies that 6,(R) = 2«. Therefore, we need only check the
angle sum condition for an interior vertex v € L having one or more bound-
ary vertices as neighbors. Let ¢ be the circle of Q corresponding to such a v.
Apply (to the Riemann sphere) a Mébius transformation 7T that maps D to
itself and moves c to a circle ¢’ centered at the origin. We need to look at the
resulting flower centered now on ¢’. Since the restriction of 7 to D is a hyper-
bolic isometry, ¢’ and any petals that lie in D will retain their original hyper-
bolic radii, which were used in the radius function R. On the other hand, any
petals that touch or cross dD, precisely those associated with boundary verti-
ces of L, will have been assigned infinite radius in R. It is evident that if these
latter petals are replaced by horocycles tangent to ¢’, then the angles formed
at ¢’ can only decrease (see Figure 2). Consequently, 6,(R) < 2x. Indeed,
if any petal intersects D¢, then this inequality will be strict. We now have

R (vo) = Rp(vg) = R(vy), ()

where the first inequality follows from Proposition 1(ii) and the second from
(iv). But R(vy) is simply the hyperbolic radius of ¢y and Rg(vy) the hyper-
bolic radius of ¢,. Since these are both centered at the origin, the inequality
Ry (vy) < R(v,) persists for their Euclidean radii, proving that F#(0) = L.
Equality would require two equalities in (1). The first can occur only if K =L
by (ii), giving Q = P. The second would imply that no boundary circles of
P (= Q) extend beyond D, so all would be horocycles. Consequently, the
radius function R that we defined for L (= K) would in fact be just Ry, and
we could conclude that P is the image of Py under an automorphism of D.
Since the circles for vy are placed at the origin in each case, this would mean
that P is a rotation of Pg. This completes the proof of the DDL for r =1,
and the general case follows immediately. O

Observe that our restriction to the subcomplex L is a discrete analog of clas-
sical subordination, wherein one studies the restriction of f to some sub-
domain Q C D by considering f-w, where w is a conformal map w: D — .
Here the map from P; to the circles of Px associated with L plays roughly
the role of w.

5. Proofs of Theorems 1 and 2

The proof of Theorem 1 follows very classical lines. We simply couple the
meta-theorem that analytic functions map “infinitesimal circles to infinitesi-
mal circles” with a scaled juxtaposition of DSL and DDL, which may be
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Figure 2 Adjusting a flower

paraphrased as follows: If a univalent packing Q nearly fills a disc of radius
r, then F3(0) = r.

The argument proceeds informally like this: Suppose zo€ D, wy = f(2p),
and f'(zo) # 0. By the meta-theorem, a disc D, with very small radius r cen-
tered at z, is (approximately) mapped univalently to a disc D, of radius
| f'(zo)|r centered at wy. For large s, a portion of the packing Py will almost
fill D, and, because Fp approximates f, the corresponding portion of P, will
be univalent and will almost fill D,. Two applications of the statement para-
phrased above will imply that the ratio of radii for the circles at wy and z is
approximately | f'(zo)|r/r =|f'(zo)|, as desired.

The details require the following lemma, which is easily obtained by scal-
ing the discrete Schwarz and distortion lemmas.

LeEMMA 1. Let P be a univalent packing lying in the disc rD = {|z] < r} and
satisfying (1—e)rD C carr(P). Assume that the associated circle packing
map Fp satisfies Fp(0) = 0. Then (1—e)r < FA(0) < r.
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Proof of Theorem 1. Recall that the maps Fp , being simplicial maps between
immersions of K, are open, continuous, light-interior, possibly branched
mappings. Therefore, the notion of winding number, the argument prin-
ciple, the maximum principle, Hurwitz’s theorem, and so forth are appli-
cable to Fp . In particular, when the limit function f is one-to-one in a
neighborhood of a compact set, then the Fp will be one-to-one on that
compact set for sufficiently large »n. In the following, write A(a, t) for the
disc {|z—a| < t}.

Given a compact set £ C D and € > 0, it suffices to prove the existence of
6 > 0 and N such that if zo € E and z is the center of a circle of Py forn >N
and |z—2z¢| <, then |Fj (z) —f"(z0)| < e. We will focus on a fixed zo€ D
with image wy = f(2); uniformity will follow routinely.

Define the circle packing O, C Py to consist of all circles belonging to
flowers of Px_which lie entirely in A(zo, r). If L, denotes the corresponding
subcomplex of K,,, then one easily checks that L, is a finite proper complex.
We will be comparing three circle packings for L,, namely: O, itself; the
circle packing Q, C P, corresponding to L,; and an appropriate maximal
packing P;_for L,.

The statement that f maps infinitesimal circles to infinitesimal circles re-
flects the fact that given any g, 0 < ¢ << 1, there exists an arbitrarily small r,
0 < r < (1—|z¢|)/2, such that one of the following holds: If f'(z¢) =0, then

| f(z) —wo| < or*? for |z—zo|<r. (2)
If f'(zo) # 0, then f is univalent on A(zy, 2r) and satisfies

(1=20)r|f'(zo)| <|f(2)—wo| < A+ 0)r|f'(z)] for (1—a)r <|z—2¢|< T
(3

Fix o and r. The hypotheses tell us that radii of circles of 0, are going to

zero uniformly on A(zg, 2r), so we may choose # sufficiently large that

A(zp,(1—0)r)C carr(Q,,) and Q,, C A(zp, 7). (4)

Let v denote any vertex of L, whose circle in O, has center z lying in
A(zo, or). Write p, for its radius. Let P, denote the maximal packing for L,
which has the circle for v centered at the origin, and let p, be its radius. By
(4) and Lemma 1, scaled by the factor r, we have

(1—20)r < % < (1+0)r. )

a

Finally, let p, be the radius of the circle for v in Q,,.

Our task is to compare Fj (z) to | f(2o)|. Start with the case f*(zq) =
Since the Fp converge unlformly to f on A(zg, 2r), given n > 0, (2) 1mphes
that for n large, Q, has diameter less than 7+ 20r%2 The DSL implies

F(0)= p— <n+20r3?

which along with (5) implies
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2 _ (p2/pa) _ nt20r™”
P11 (pi/pg)  (1=20)r°
This can be made arbitrarily small by choosing 5, ¢, and r small.

Next, assume | f'(zq)| # 0. We have chosen 7 so large that f is univalent on
A(zg, 2r). From the uniform convergence of the Fp_ to f, we may also assume
that |Fp (2) — f(2)| < 0, z€ A(2¢,2r), and that Q, is a univalent packing.
From (3) we have

A(wo, (1-30)r| f'(zo)]) C carr(Q,) and Q,C A(wy, (1+20)r|f"(z0)]). (7)

Also, for large n,

Fi(z)= z€ A(zg, 01). (6)

Fp (A(z¢, 01)) C A(wo, 207| f'(20))). (8)
In particular, |Fpn(z) —wo| < 207|f'(20)|, and with (7) and Lemma 1,

(1—50) 7| f"(z0)]| < -gl < (1+40)r| f(z0)- )

a

Combining (5) and (9) gives

(1=50)r|f' 0| _ Ly, _ P2 _ (1+40)r|f"(zo)|
Tror B = < 2ar
Therefore,
IF4(@ -1 @l < T2 |/ @), z€Alzg, 7). (10

Again, we can make this small by choosing ¢ smalil.

To conclude the proof, choose o, r, and 5 so that the right-hand sides of
(6) and (10) are less than the given . In the compact set E, there are at most
finitely many points where f’ vanishes, and one can choose neighborhoods
of those points so that (6) holds for large n. Then, in the remainder of E,
one may choose r independent of z, to meet the conditions of (3), giving
uniform neighborhoods where (10) holds for large n. The reader may verify
that this establishes uniformity and completes the proof. O

CoMmMENTS. The convergence of the ratio functions is actually a local phe-
nomenon, and the fact that we use maximal packings in the statement is
simply a convenience. We have defined circle packing maps more generally,
so one could, for instance, replace the Px here by circle packings that ex-
haust some open set ) other than D.

Proof of Theorem 2. This is completely elementary when the hypotheses
are properly interpreted. The given circle packing P for K corresponds with
a radius function R for which the labeled complex K(R) is a packing. (The
hyperbolic structure induced on K by P is described in Section 2, but see
[BS2, Sec. 2] for additional detail.) The hypothesis on completeness in The-
orem 2 refers to the completeness of K in this induced metric. If K is infinite
without boundary, the hypothesis simply means that P is univalent and its
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carrier fills D. Indeed, the classical theorem of Killing and Hopf implies that
K(R) is isometrically isomorphic to D with the Poincaré metric. If X has
boundary vertices, the hypothesis implies that the corresponding circles of
P must be horocycles. In particular, the boundary vertices of K are ideal
boundary points in the induced metric while the boundary edges of K are
complete geodesics.

In any case, the hypothesis on completeness implies that P properly covers
the disc {|w| < 1—¢} for any e > 0. By the DDL and DSL, respectively, the
ratio function associated with Fjp satisfies the two inequalities

1—e< Fi(0)<1.

Since this holds for e >0, we conclude that FA(0) =1. In particular, the
circles at the origin in P and Py have the same Euclidean and hence the same
hyperbolic radii. By Proposition 1(i), this implies that the hyperbolic radius
functions for P and Pk are identical. Since a hyperbolic circle packing is
determined, up to normalizations, by its radius function, one easily con-
cludes that P is a rotated image of Py, and Theorem 2 is established. O

6. Branched Circle Packings

Let K be a complex, either hyperbolic or parabolic. Recall that a branch
point of multiplicity » = 2 (order n—1) for a circle packing P refers to a
circle whose angle sum is 27 n, so its neighbors wrap n times around it. At
the associated vertex v of K, the simplicial map sp is locally n-to-1. Write
br(P) for the set of (necessarily interior) vertices of K associated with the
branch points of P. In this paper, branch sets always reflect multiplicities;
that is, if v is associated with a branch point of multiplicity #, then v occurs
n—1 times in br(P).

It should be evident that the combinatoric properties of K restrict branch-
ing; even locally, for example, the flower of the branch point of multiplicity
n must have at least 2n +1 petals. Global necessary and sufficient conditions
are established in [DI, Sec. 2, Thm. 2; D2, Thm. 4.1] (see also [Bo] and
[Ga]). We incorporate these in a definition.

DEefFINITION. A set 8 = {v,, v,, ..., U;} of interior vertices of K, perhaps with
repetitions, is called a branch structure for K if every simple closed edge-
path v in K has at least 2m + 3 edges, where m is the number of points of 3
enclosed by v (counting multiplicities).

We will stick to finite numbers of branch points, and in this case several
fundamental results on branched packings were established by Dubejko. In
particular, for 8 finite, 8 = br(P) for some circle packing P for X if and
only if 8 is a branch structure. Moreover, if any such packing lies in D, then
there exists an essentially unique extremal one in D, which we will denote
by Pk, g. It is natural to call this the maximal branched packing for K assc-
ciated with 8, since it generalizes the essential features of Pg.
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We are interested only in those cases in which Py glies in D. It is necessary
that K be hyperbolic, but we do not know in general whether this is suffi-
cient. However, for our purposes it is enough to observe that Px s will lie in
D if X is finite or if K has some packing in D with branch set containing 8.
When Py g lies in D, write Ry, g for its hyperbolic radius function. The met-
ric this induces on X is again complete, with constant curvature —1 except at
the branch points; boundary vertices have infinite radius. We need to extend
our terminology to accommodate branch points. Thus, given R, we say the
labeled complex K(R) is a 3-packing (resp. 3-subpacking, 8-superpacking)
if the angle sum at each interior vertex v of K is equal (resp. greater than or
equal, less than or equal) to 27n,, where n,—1 is the number of times v
occurs in 3.

The theory of branched circle packings in case P 3 C D is largely a gen-
eralization of the unbranched theory (which is just the special case 8 = 0).
We will gather the fundamental results we need in the following generaliza-
tion of Proposition 1.

PRroPOSITION 2. Let K be a complex and (3 a finite branch structure so that
Py g lies in D, and let Rk g be the hyperbolic radius function for Pk g.

(1) If K(R) is a B-subpacking then R < Ry g; moreover, equality at any
interior vertex implies R = Rg g.

(ii) Let L be a subcomplex of K which is itself a proper complex, and let
o be a branch structure for L with the property that o S 3 (counting
multiplicities). If R is the restriction of Rk g to the vertices of L, then
R =R, ,. Equality for any interior vertex of L implies L = K, o = §3,
and R=R L,a*

Assuming that K is finite:

(iii) Given any function g defined on K4y and taking values in (0, ),
there exists a unique radius function R that agrees with g at bound-
ary vertices and for which K(R) is a 3-packing.

(iv) Assume that K(R,) is a B-superpacking, that K(R,) is a B-subpack-
ing, and that R, = R, on Ky4,. Then Ry = R, on all vertices of K, and
equality at any interior vertex implies R, = R,.

Proof. Part (i) explains the extremal nature of the maximal branched pack-
ing Py g. Its proof is bound up with the existence of Pg zin [DI, Sec. 2; D2,
Sec. 3] and is quite involved, so we will not go into it here. The proofs of
the other parts are straightforward generalizations of the techniques used in
the unbranched setting, basically relying on (i) and the Perron methods of
[BS2] and [Bo]. We leave the details to the interested reader. O

These kinds of “monotonicity” results are much more useful if one thinks
of them in an informal, dynamic way. Let us consider finite circle pack-
ings in D. They are uniquely determined up to Mdobius transformations by
this “data”: (1) the underlying complex, (2) the boundary radii, and (3) the
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branch structure. Therefore, if we start with a circle packing P for K, we
change its data, and we find the packing Q for the new data, then we should
have some feel for how the circles change in the transition from P to Q. The
monotonicity results may be summarized informally as follows: The radii
will increase if one: (a) decreases the number of branch points, (b) discards
part of the complex, and /or (c¢) increases boundary radii. These changes are
often quite dramatic if you work with computer-generated images of pack-
ings: for instance, when a branch point is removed (i.e., some circle is told
that it is no longer a branch point), then that circle must grow so that its
neighbors no longer wrap more than once around it. This increase in size
leads to increases in each of the neighbors (so that they can maintain their
proper angle sums), which in turn forces increases in yet other circles, and
so forth and so on. Ultimately, there must be a general increase in hyper-
bolic radii to accommodate removal of the branch point. The whole process
is quite intuitive after some mental experiments. (See [St], where these dy-
namics are associated with Markov processes.)

7. Extending the Discrete Results

Let P be a circle packing for K and suppose 8 € br(P). In addition to the
usual maximal packing Py, we have a new circle packing available for com-
parison: the maximal branched packing Pk, . This provides the setting for
our extensions of the Schwarz and distortion lemmas.

As before, Fp will denote the circle packing map from Py to P. Write
Fy, g for the circle packing map from Pg to Pk g; that is, Fy g: carr(Pg) —
carr(Pg ). (We use this notation in preference to the notation Fp, , for ty-
pographic reasons.) Assume our usual normalization, so the circles corre-
sponding with some interior vertex v, of K are always centered at the origin.
The proofs of these generalizations of our earlier lemmas proceed precisely
as before; one need only substitute Proposition 2 for Proposition 1. Indeed,
this realization is what motivated the expanded statements. We leave the ver-
ifications to the reader. Note also that the original versions correspond to the
case 8 =0, since then Py g = Pk, Fy g is the identity map, and F§ 5(0) = 1.

DiscrReTE SCHWARZ LEMMA (Branched). Let P C D be a circle packing for
K. If B is a finite subset of br(P), counting multiplicities, then Py g lies
in D. Assume that the associated circle packing maps Fp and Fy g satisfy
Fp(0) = 0 = Fx g(0). Then F£(0) < Fi{ 5(0), with equality iff 8 = br(P) and
P is a rotated copy of Pk, g, that is, P = APk g for some unimodular con-
stant A.

This lemma states that—among all circle packings for K that lie in D, have
branch structures containing 3, and have the circle ¢, associated with v, cen-
tered at the origin—cy is largest for Pg g. This follows immediately from
Proposition 2(i), since the labeled complex K(R) associated with P is a -
subpacking.
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For the DDL, we need to revisit the notion that P “properly covers” rD:
Recall that the circle for v, is centered at the origin, and we may assume that
it lies in rD. Let ¥ be the set of vertices of K whose circles intersect {|w|=r}.
Let G be the edge-path connected component of vertices of K (P\V contain-
ing vy, and let L be the subcomplex of K formed by the union of the stars of
the vertices of G. One can verify (this uses the convexity of rD) that L is a
proper complex, and in analogy with analytic functions we will refer to L
as the component of Fp'(rD) containing 0. The statement that P properly
covers rD is equivalent to the condition that L be finite and have its bound-
ary vertices in V.

DiscreTE DisTorTION LEMMA (Branched). Let P be a circle packing for a
hyperbolic complex K, and assume that the circle packing map Fp satisfies
Fp(0) = 0. If P properly covers the disc {|w| < r} for r > 0, if 8 denotes the
branch points of P interior to the component of F5'(rD), and if Pg s CD,
then FE(0) = rF{ 5(0), with equality iff P = (Ar)Px, g for some unimodular
constant A.

8. Extending the Classical Results

The foregoing discrete results immediately raise the issue of extending the
classical lemmas, so that they too account for branch points. Once one rec-
ognizes that the finite Blaschke products are the classical models for the
functions Fy g, the discrete statements easily convert to the classical ones
given in the introduction. Here we will prove the classical versions.

Finite Blaschke products have long played an important role in classical
function theory on the disc (see [Co; Du]). They are typically represented as
finite products of Blaschke factors (Mobius transformations of the disc),
and along with more general “inner” functions traditionally arise as fac-
tors of other functions. They occur here in a different role, however. Par-
ticularly appropriate is this geometric characterization: The finite Blaschke
products are precisely the proper mappings of D onto D. Thus, an n-fold
Blaschke product b assumes every value in the unit disc » times, counting
multiplicities. Moreover, b is analytic across the unit circle and maps the
unit circle » times about itself in the positive direction. Direct computation
or elementary reasoning with the argument principle shows that 4’ has n—1
zeros in Dj; that is, b has n—1 branch points. As we will see, among n-fold
Blaschke products, b is uniquely determined up to a conformal automor-
phism of D by its branch set.

Compare, now, the properties of our discrete versions Fy, g (see [DI, Sec.
3]): When K is an infinite complex of bounded degree without boundary,
then given a finite branch structure 8 for K containing » —1 points, counting
multiplicities, and having Py g C D, one can then prove that Fx g is an n-
fold proper mapping of D (= carr(Px)) onto D. In particular, carr(Pg g),
when endowed with the conformal structure induced by its immersion in
D, is precisely the image Riemann surface of some n-fold finite Blaschke
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product b (though, of course, the point mapping Fx, z from the disc is piece-
wise affine while b is analytic). So, for example, F g would have precisely n
zeros. We do not require the infinite case, and when X is finite, carr(Px) and
carr(Pg, g) are proper subsets of D. Nonetheless, Fx g is as close to proper
as is possible; for instance, the hyperbolic metric induced on K by Py g is
complete (with boundary vertices at the ideal boundary and with geodesic
boundary edges). The chain of boundary horocycles of Pk is carried to the
chain of boundary horocycles of Px g, which wrap n times around the inside
of the unit circle. An illustration of a branched packing is given in Figure 3.

Figure 3 A branched circle packing

On the left is Px and on the right is Py g; in each packing, the circles corre-
sponding with the branch vertex and with a designated boundary vertex have
been shaded for reference. Despite this and the fact that 8 has only a single
branch point here, the picture is rather difficult to interpret since the circles
overlap to form two “sheets”. The enlargement shows the circle where the
branching occurs.
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Even without the approximation results to be discussed shortly, when £
is finite and Px 3 C D, we feel that the properties of the functions Fx, g par-
allel those of finite Blaschke products so closely that we will refer to these
functions (and Mdébius transformations of them) as discrete finite Blaschke
products.

The inequalities in the Schwarz and distortion lemmas of Section 1 will
be established by approximating the analytic functions involved with circle
packing maps. The approximations rely on results established in [ D1, Sec. 4,
D2, Sec. 5], which we will need to review here. The proofs of the cases in-
volving equality will be deferred until the end of the section, since they rely
on classical techniques.

Although greater generality is possible, it will be convenient to work with
hexagonal packings. Let Py denote the regular hexagonal packing of C in
which each circle has radius 1, a circle ¢; is centered at the origin, and a
neighboring circle is centered on the positive real axis—this is the familiar
“penny-packing” in C. Write H for the underlying infinite, constant 6-degree
complex, and write v, for the vertex associated with c,. H is parabolic, and
Py is its maximal packing. For ¢ > 0, one can scale Py by applying the map
Z » 1z to obtain a hexagonal packing, which we denote by Py, consisting of
circles of radius ¢. For 0 < f < 1/2, define P’ to be the circle packing consist-
ing of those circles from ¢Py that lie in D. Write H' for the underlying com-
plex, which is a finite proper complex containing vy, and write P’ for its
maximal packing.

A few comments are in order regarding P’. First, normalizations: P’ is
unambiguously defined, but P’ is determined only up to automorphisms of
D. We assume that the circle for v, is placed at the origin and that the circles
centered on the positive real axis in P’ correspond with circles centered on
the positive real axis in P’; that this is possible can be verified by noting the
symmetries of H'. Next we observe that the circle packings P’ and P’ are
nearly identical for small ¢; indeed, the P! exhaust D as ¢ — 0, so with our
normalization the mappings Fp: converge uniformly on compact subsets of
D to the identity function by the theorem of Rodin and Sullivan [RS].

We begin our preparations by approximating finite Blaschke products,
then polynomials, and finally, arbitrary analytic functions on the disc. It will
be a standing assumption that all the circle packings have the circle for v
centered at the origin, but rotational and scalar normalizations will depend
on circumstances.

FINITE BLASCHKE Probpucts. We build our approximants geometrically
rather than analytically, by specifying where we want the branch points.
Start with a fixed set S ={z,, ..., 2,_;} of points in D, possibly with repeti-
tions, which will be the intended branch set. For ¢ > 0, embed H' as carr(P’)
and choose a set M= {z{,...,z._,] of circle centers approximating S. Let
B! denote the corresponding set of vertices of H'. The approximation here
means that
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}ijlz)z}=zj, 1<j<n-1.

We abuse notation by writing 3’ — S, even though it is actually the associated
centers that converge to S. When ¢ is sufficiently small, 3/ may be chosen to
be a branch structure for H'’; meeting the combinatoric conditions is easy,
since the points of S are fixed while the hexagonal mesh of centers of P*
becomes increasingly fine with decreasing 7. (Note that since an interior ver-
tex of H' has only six neighbors, it can be a branch point of order at most 1;
thus each of the sets M’ has n—1 distinct points, though S may have re-
peated points.) The n-fold discrete Blaschke product associated with A and
B’ is the function Fy g; we will simplify the notation to B’ in this setting.
There is some ambiguity about the rotational normalization here, since B’ is
determined only up to rotations. It is difficult in the case of branched pack-
ings to identify any natural normalization, so we will simply specify that
some designated neighbor v, of v, has its circle centered on the positive real
axis. We then circumvent any problems in our statement by appealing to
diagonalization and subsequences.

THEOREM 3 [D1, Sec. 4, Thms. 7.2, 7.3]. Let b be an n-fold finite Blaschke
product with b(0) = 0. There exists a sequence {B;} of n-fold discrete finite
Blaschke products, each B; associated with H Y for some t; >0, such that
{B;} converges uniformly on compacta (of D) to b as j— . In particular,
tj— 0 and br(B;) - br(b) as j— oo.

Conversely, suppose that { B;} is a sequence of n-fold discrete finite Blaschke
products, each associated with HY for some tj, and that br(B;)— S and
ti— 0 as j— o, where S is a set of n—1 points of D, counting repetitions.
Then there exists a subsequence {B; } and a finite Blaschke product b with
br(b) = S so that B; converges uniformly on compacta to b.

PorLynomiALs. Given an infinite circle packing P for H, one may define the
circle packing map Fp,, p: carr(Py)— carr(P) in the usual way. It is clear
from our earlier precedents that this map should be thought of as a discrete
entire function. Because H is infinite, it is in fact quite difficult to construct
associated circle packings P. Until the following theorem was established in
[D2], the only examples (other than Pg) were the “Doyle” spirals studied in
[BDS], which are discrete versions of the exponential function. Here, how-
ever, our interest is in polynomials.

THEOREM 4 [D2, Lemma 5.2, Thm. 6.1]. Let 8 be a branch structure for H
containing n—1 points (necessarily distinct). Then there exists a branched
circle packing Py g for H, with br(Py g) = 8, whose carrier is a proper n-
Jold branched covering surface of C. Py g is unique up to similarities of C.

The circle packing map from Py to Py g will be denoted by Eg. Again, there
is ambiguity here which requires some normalization. In addition to our
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usual assumption that the circles for vy in Py and Py g are centered at the
origin, assume they both have radius 1. Thus, Ez(0) =0 and Eg (0) =1. For
rotational normalization, require that the circle for v; be centered on the
positive real axis.

The numerous parallels between these maps and polynomials, as devel-
oped in [D2, Sec. 5, 6], justify describing them as discrete polynomials. Note,
for instance, that Ej is an n-fold proper mapping of C to itself, a property
that characterizes n-degree polynomials among entire functions. Of course,
we may modify these circle packing maps by applying Mdbius transforma-
tions to domain and range packings. We find that the class of discrete poly-
nomials is then sufficiently rich to approximate classical polynomials.

An n-degree (classical) polynomial p is determined up to complex affine
mappings of C by its n—1 branch points, so we’ll start agan with a given
branch set S = {z, ..., 2,-1}, no longer restricted to the unit disc. As before,
for t > 0, embed H as carr(?Py), and choose a set M’ of n—1 circle centers
approximating S so that the corresponding set of vertices 8’ of H form a
branch set. Theorem 4 yields an n-degree discrete polynomial Eg.. This isn’t
quite the one we want, however. Define the discrete polynomial E’ by

E'(z) = tEz(tz), zeC.
8

Note that the domain packing for E’is tPy (so the pattern of circles in the
domain packing becomes finer as ¢ decreases) and the range packing is tPy g1,
this definition ensures that £/(0) = 0, that (E‘)*(0) = 1, and that the branch
points of E' are precisely the points of M’

THeEOREM 5 [D2, Thm. 5.3]. If p is an n-degree polynomial, then there
exists a sequence {E;} of n-degree discrete polynomials that converges uni-
Jormly on compacta of the plane to p. In particular, if p(0) =0, one may
take E; to be of the form s;E Y for appropriate parameters t;>0, branch
sets 3%, and complex scalars s;, where t;—0, br(E;) —br(p), and |s;| =
| p'(0)] as j— co.

We could formulate a converse, as was done in Theorem 3, but we will not
need that here.

AnaryTIC FUNCTIONS ON D. Our next objective is to show that analytic
functions on D can be approximated uniformly on compacta by circle pack-
ing maps—again, maps associated with the complexes H'. If f is analytic on
D with f(0) =0, it is well known that f can be approximated uniformly on
compacta of D by polynomials p with p(0) = 0. To approximate f, there-
fore, it suffices to approximate p, and by the previous theorem this can be
done with discrete polynomials. Suppose sE' is one of the discrete polyno-
mials involved. Its domain packing is /Py, its range packing is stPy g:, and
it has branch structure B‘. The basic idea is to restrict sE’ to P’, which the
reader will recall consists of the circles of #P; lying in D, and has complex
H'. Let Q' denote the corresponding circles of stPy . The circle packing
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map from P’ to Q' clearly approximates p on D. However, there are techni-
calities to address.

(1) We want the maximal packing P’ rather than P’ to be the domain
packing for our approximations. To that end, replace the restricted
map SE’ | p: by the map Fy: o from P’ to Q. This function, which we
will abbreviate to F’, can be written as a composition

Fi(-) = (sE")(Fp:(+)).

We have previously observed that the functions Fp: converge uniform-
ly on compacta of D to the identity function, so the functions F' ap-
proximate p uniformly on compacta of D.

(2) The branch structure of F' is the intersection of B8‘ with the set of
interior vertices of P’. If p has m branch points in D, we may choose
the branch sets 3 of the approximating discrete polynomials in such
a way that, for sufficiently small ¢, F* will also have m branch points
in D.

(3) Suppose | f(z)| <1, zeD. We may assume the same condition for the
approximating polynomial p. Suppose |p'(z)|]< M <, zeD. By
Theorem 35, the ratio functions (sE’)* are bounded by, say, 2M for
sufficiently small ¢, implying that the circles of the packings Q' have
radii bounded by 2¢M. In particular, there exists e(¢) > 0 which goes
to zero with ¢ so that the circles of (1—e(¢))Q’ will lie in D. Therefore,
in the discussion above, replace F’ by (1 —e(¢))F’; we still have uni-
form convergence to p on compacta, but now the image packings lie
in the hyperbolic plane.

We may summarize as follows.

THEOREM 6. Let f be an analytic function on D with f(0) = 0. There exist
a sequence of parameters {t;} converging to zero and circle packings (P}
Sfor HY whose associated functions Fp, converge uniformly on compacta of
D to f. If the range of f lies in D, the P; may be chosen to lie in D.

We are now in position to prove the inequalities of the classical results stated
in the introduction; we comment on the cases of equality later.

Proof of the Schwarz Inequality. Let f and b be the functions hypothe-
sized, with S =br(b) € br(f). Choose a sequence {P;} of circle packings as
guaranteed by Theorem 6. The functions ij are open, continuous, light-
interior mappings, so one can apply the argument principle, just as with
analytic functions, to conclude that the Fp, have branch sets «; in H ' satis-
fying o; — br(f). Identify subsets 8; C «; of size n—1so that §; — S, and for
each j let B; be the discrete finite Blaschke product associated with H% and
having branch set 8;. By Theorem 3, the sequence {B;} converges uniformly
on compacta to Ab for some unimodular constant A.
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For each #; we have two packings of H Y, namely, the packing P; with
branch set or; and the maximal branched packing B; with branch set 8; € «;.
By Proposition 2, Pj#(O) < Bf(O). In conjunction with Theorem 1, we have

| f7(0)] = lim P/(0) =< lim Bf(0) = |5"(0)|. C
J J

Proof of Distortion Inequality. This can be proven directly from the discrete
version via approximation. However, as in the unbranched case, there is
an easy argument based on the Schwarz lemma and subordination. Assume
without loss of generality that » = 1. Let w be a one-to-one conformal map-
ping of D onto © with w(0) =0, and define f; = few and b, = b~ w. Both of
these are self-maps of D, both fix 0, and both have the same branch set.
Since f is a proper map of D onto D, it is an n-fold finite Blaschke product
for some n > 0. By the branched Schwarz lemma, |5{(0)| <|f{(0)| and we
are done. O

We conclude the proofs by appealing to Nehari’s paper for the case of equal-
ity in the (branched) Schwarz lemma. Following this through the preceding
subordination argument then settles the case of equality in the distortion
lemma. (Alternately, one can rely on classical interpolation results of Omya;
see [Co, p. 711.)

This leaves us with the following interesting open issue: The classical and
discrete statements are precisely parallel regarding cases of equality. Can
one obtain sufficient quantitative information about the discrete inequalities
to prove the classical cases of equality? Quantitative estimates are needed to
carry one through the approximation step.
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