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1. Introduction

In this paper we consider self-similar solutions to the nonlinear Schrodinger
equation

iu,+ Au+e|lul*u=0, (1.1)

where v =u(t, x) is a complex-valued function of 1 € R (or a subset of R)
and x e R”, « is a positive real number, and e:= 1. It is known that if e =
—1land a <4/(n—2), or if e = +1 and « < 4/n, then all solutions (in H(R")
for example) are global. If e =+1 and 4/n <« <4/(n—2), then there exist
nonglobal solutions. From this point of view, the value « =4/n in (1.1) is
called the critical power.

If u(t, x) is a solution of (1.1), then for all A > 0, the rescaled function

uy(t, x):= A" 22y (X2, A x), (1.2)

where w € R is fixed, is also a solution of (1.1). A solution u of (1.1) is self-
similar with respect to rescaling if v = u, for all A > 0 (and some fixed choice
of weR). It is straightforward to check that u, defined for > 0, is a self-
similar solution (with respect to rescaling) of (1.1) if and only if u is of the
form

u(t,x) =t 9?"Vey(x/Nt), (1.3)

where v: R" — C satisfies
Av—L y-Vv+—2iv —3v+e|v|"‘v=0. (1.4)
2 o 2

The function v is called the profile of the self-similar solution u. Self-similar
solutions of (1.1) have played an important role in the study of the blow-up
behavior of nonglobal solutions to (1.1) with e=1 (see [11; 12; 13; 14; 16]).
Just recently, Johnson and Pan [9] and Kopell and Landman [10] have rig-
orously analyzed the asymptotic behavior for large |y| of the profiles of
such self-similar solutions. In particular, Kopell and Landman [10] treat the
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supercritical powers, while Johnson and Pan [9] treat both the critical and
supercritical powers.

In the first part of this paper, we present an analysis of the asymptotic
behavior of (radially symmetric) solutions to (1.4) for the critical power a =
4/n and e =1, that is,

i n w

Av——|y-Vo+—v)——

2 <y 2 ) 2

where v=v(y):=v(r) for yeR", r:=|y|, and weR is a parameter. Qur
principal result concerning (1.5) is the following.

v+ v =0, (1.5)

1.1. THEOREM. Let v:R"—>C (n=1) be a nontrivial radially symmetric
regular solution of equation (1.5). Then there exists a nonzero complex num-
ber c and a real number 6 such that

(ry= ﬁ—n/z-"_z—l ' +0)+O(——1
v(r)=cexp 2 r Sin 3 wa?\E F(n/2)+2

as r — oo, Furthermore, the error estimate O(1/r™»*2) cannot in general
be improved.

This result is close to Theorem 1 in Johnson and Pan [9]. The essential dif-
ferences are that the methods here apply to all dimensions, including n =1,
and that a slightly better error estimate is obtained. (Theorem 1 of [9] gives
O(1/rWA+2-2/My a5 the error term.) Also, though this is probably not
essential, we consider all real values of the parameter w, not just positive
values. Finally, the treatment here is perhaps less technical than in [9], and
the asymptotic form of a solution appears naturally in an integral formula-
tion of a second-order ordinary differential equation; see (3.9) and (3.10)
below. The most technical part of our proof of Theorem 1.1 is Section 3b,
where we show, by explicitly calculating the leading term in the asymptotic
expansion of the integal in (3.9), that the error estimate O(1/¢) in (3.10)
cannot in general be improved. Here, we were inspired by work of Li [15]
and Gui, Ni, and Wang [7], who analyzed the asymptotic behavior of posi-
tive solutions to certain elliptic equations in R”.

It is well known (cf. Ginibre and Velo [6], Weinstein [20]) that the non-
linear Schrodinger equation (1.1) with the critical power oo = 4/n, that is,

i+ Au+elul|*"u=0, (1.6)
admits a special conservation law, called the pseudo-conformal conserva-
tion law, and is invariant under a corresponding transformation. More pre-

cisely, and we use here the formulation in Section 3 of Weinstein [20], if
u=u(t,x) is a solution of (1.6), defined for ¢ in some subset of the real

numbers and all xe R”, and if A= (ﬁ g) € SL,([R), the set of real matrices
with determinant 1, then (Au)(¢, x) is likewise a solution, where

. _an, [CHdt  x ib|x[* )
(Au)(t,x):=(a+ bt) u(a+bt , a+bt)eXp(4(a+bt) . (1.7)
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In other words, formula (1.7) defines a group action of SL,(R) on complex-
valued functions u(?, x), leaving invariant the set of solutions to (1.6). By
abuse of notation, we denote this action simply by Au, where A € SL,(R).
In addition, multiplying # by a complex number of modulus one also leaves
invariant the set of solutions to (1.6); and so we obtain a group action of
SL,(R) X S! on the set of solutions to (1.6). This action includes the trans-
formation (1.2).

The existence of a larger class of transformations leaving the set of solu-
tions invariant suggests a broader definition of self-similar solutions. Roughly
speaking, by a self-similar solution to (1.6) we will mean a solution # which
is fixed by a 1-parameter subgroup of SL,(R) xS!. Recall that the Lie alge-
bra of SL,([R) is 8[,(R), the set of traceless 2 X 2 real matrices.

1.2. DEFINITION. ‘ Let B e 8l,(R), B+ 0. A solution u of (1.6) is called self-
similar with respect to B if there exists w € R such that e*2u = e*“u for all
seR.

It turns out, as we shall prove in Section 5, that such self-similar solutions of
(1.6) fall into three classes (up to transformation by A € SL,([R)): those given
by (1.3); standmg wave solutions (i.e. solutions such as u(¢, x):= e’ o(x),
where Ap —wep +¢€|p|“p = 0); and solutions of the form

- it|x 2 iw ar X ‘
u(t,x):=(1+t2) n/4 exp<4(T|+lt—27)e Ctant¢<m>, (1.8)

where ¢: R" — C satisfies the elliptic equation
—Ap+ 3| yPo+wp=¢lp|"e. 1.9)

Solutions to (1.6) of the form (1.9) are analogous to the solutions of the heat
equation given in Olver [17, ex. 3.17, p. 212].

Unlike (1.5), it is not true that all solutions of (1.9) exhibit essentially the
same asymptotic behavior; and so we look for solutions which are well-
behaved as |y|— co. One also has the choice of seeking radially symmetric
solutions by classical “shooting” type arguments for ODEs, or of variational
methods; it is this latter approach that we take here. This has the advantage
of giving solutions to (1.9) with both signs e = +1. Also, one obtains rather
easily a sharp condition for the existence of a positive solution, as well as
the existence of an infinite family of solutions. In addition, as we shall see,
one obtains solutions to (1.9) when R” is replaced with an open cone Q and
with ¢ satisfying a Dirichlet or Neumann boundary condition on d€2..

1.3. THEOREM. If e=1, then for all fixed w e R, equation (1.9) has an in-
finite sequence of solutions in C%(R") and having exponential decay as
| ¥| = o0. Moreover, there exists a positive solution if and only if w>—n/2
(in which case this solution is in C%). Furthermore, when n=1o0or n=2, all
such solutions are in C=(R").
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1.4. THEOREM. If €= —1, then for all fixed w € R such that w < —n/2, equa-
tion (1.9) has a unique positive solution in H'(R"). Moreover, this solution
is in C* and has exponential decay as |y|— o. Equation (1.9) with e = -1
does not have any nontrivial solution in H(R") when v = —n/2.

If w<—n/2—k+1 for some integer k=1, then (1.9) with e=—1 has at

least my, pairs of solutions in H'(R"), where my:= Ele("';iz). All these

solutions are in C*(R") and have an exponential decay as |y| > oo, (When
n=1or n=2 all these solutions are in C*(R").)

The rest of the paper is organized as follows. Theorem 1.1 is proved in Sec-
tions 2, 3, and 4. In Section 2 we make various transformations of equation
(1.5) to arrive at an equation which lends itself more easily to analysis, which
we carry out in Section 3. In Section 3a, we show essentially that the con-
stant ¢ in Theorem 1.1 is not equal to zero if the solution v is nontrivial. (We
show the equivalent statement for the “reduced” equation studied in Section
3.) In Section 3b, again in terms of this other equation, we calculate ex-
plicitly the second term in the asymptotic expansion, showing in particular
that the decay rate of the error term is in general sharp. As indicated in Sec-
tion 4, this information translates into a higher-order expansion for both
v(r) and v’(r), which we do not make explicit. We remark that it is only at
the very end of Section 4 that regularity of v at r =0 is used; all the results
in Sections 2, 3, and 4 up through formula (4.2) are correct for radially
symmetric solutions of (1.5) defined for » > 0, or (with trivial modification)
for r sufficiently large. If n=1, then (4.2) gives the asymptotic behavior of
solutions of (1.5) for either y >0 or y <0 with r =| y| sufficiently large.

In Section 5 we study the broader definition of self-similar solutions given
above, and in particular we show that all such solutions belong to one of the
three classes mentioned (see Proposition 5.2). In Section 6 we describe the
variational formulation of (1.9) and give the proofs of Theorems 1.3 and 1.4,
as well as some additional information. The variational arguments we use are
completely standard. The only novelty lies, perhaps, in that we apply them to
equation (1.9). As a result, at times we omit some of the details of the proofs.

Finally, in Section 7 we make some remarks on the Schrédinger evolution
equation associated with (1.9), that is,

ivs+Av—5|y[*v+elv]*"v=0 (1.10)

for s € R (or an interval of R) and y € R”. We exhibit some interesting features
of solutions to (1.10) and their interpretation in terms of solutions to (1.6).

It is a pleasure to thank Th. Cazenave, J. Ginibre, B. McLeod, and W. Troy
for their helpful remarks and suggestions.

2. Preliminary Reductions and Estimates for
Equation (1.5)

Setting
v(y)=exp(i|y[*/8)¢(»), (2.1)
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we see that equation (1.5) for v is equivalent to the following equation for ¢:

Iylz 4/n
A —p— =0. 2.2
o+ ¢ 2so+|<P| @ (2.2)

We consider radial solutions of (2.2) and so we set, by abuse of notation,
o(r)=¢(y), where r =|y|. Equation (2.2) then becomes
2
”(r)+—so (r) +—qo(f‘)——qo(l‘)+|so(r)|4/"so(r) = (2.3)
Finally, we set
o(r)=r"z(r’/8), (2.4)

where oo = 0 is to be determined. A tedious but straightforward calculation
shows that equation (2.3) for ¢ is equivalent to

n—2
z”(r)+(——o—llz’(t)+z(t)—ﬂz(t)
2t t
a(n—a—2) 2 |z()Y"z() _
- 412 z(H)+ §2a/n ) t1+Qaln) =0. (2.5)
If we set
1 2 1 2 w 2
E (t,z,7):=—|7’ — —_—
o(t:2,27):= |2 + 2|2l = 2]
a(n—a-2) 2 g+
_ | |2 2] (2.6)

812 (2+4/n)82a/n ) tl+(2a/n) ?

then a solution z(#) of equation (2.5) verifies the relation

4a ’ _(n=20) 24 2
dt Ea(ta Z(t),z (t))_ T, | (t)l t2 ]Z(t)|
a(n—oa—2) > 2(1+2a/n)  |z()P+em
T 4¢3 |Z(I)| (2+4/n)82a/n $2+Qa/n)

(2.7

Note that E,(¢, z,z’) is bounded below (for ¢ = ;> 0); thus it follows from
(2.6) and (2.7) that if « <n/2 then a solution of (2.5) can not blow up in
finite time. Indeed, if either |z(¢)| or |z’(¢)| goes to infinity at a finite time
then so does E,(¢,z(%),z’(¢)). On the other hand, if either |z(¢)] or |z°(¢)|
goes to infinity at a finite time then E (%, z(t), z'(t)) stays bounded above
near the blow-up time, which makes 1t impossible for E,(¢, z(¢), 2'(¢)) to go
to infinity. Thus, any local solution of (2.5), say on (0, #,), can be continued
for all # > 0; so any local solution of (2.3) on (0, ry) can be continued for all
r>0.

Now let ¢ be a solution of equation (2.3) on (0, o), and, for each =0,
let z:= z,, be given by the relation (2.4). Thus, z,(¢) satisfies equations (2.5)
and (2.7), with of course the same value of «. First consider o =0. It is
clear from equation (2.7) that there exists A4 > 0 such that if |zy(z)|= A4,
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then ZEy(¢,z0(t),z4(£)) =0. In other words, ZEy(t,z,(t),z4(¢))=0 only
where |zo(?)| < A. It follows immediately from (2.7) that the positive part of
d—“;Eo(t,zo(t),z()(t)) is integrable on (1, ). Since E, is bounded below, it
follows also that the negative part of %Eo(t,zo(t),z()(t))) is integrable on
(1, o). Since -;"—IEO(I, Zo(1), 24(2)) is therefore integrable on (1, =), it follows
that Ey(t, zo(t), zg(2)) has a limit as ¢ — oo, and in particular that zy(¢) is
bounded on (1, o). From (2.4), with « =0, we see that ¢ is bounded on
(1, ) and therefore that |z,(¢)|< Ct%? on (1, ) for all « = 0. Thus, if 0<
a <1 then the three last terms in (2.7), with z=z,, are all integrable on
(1,). As long as a < n/2, it follows as above that E (¢, z,(¢), z.(¢)) has a
limit as # —» oo, and in particular that |z, (¢)|is bounded on (1, ). From (2.4)
we see, as long as 0 <o <1 and a < n/2, that r*|e(r)| is bounded on (1, ).
Again from (2.4), this gives a better estimate on each of the z,s, which can
be used again in (2.7) to show that z,, is bounded for even larger values of a.
This argument can be iterated until we get to oo = n/2, allowing us to con-
clude that E, ,5(t, z2,/2(t), Z27/2(¢)) has a limit as £ — oo, This implies in par-
ticular the following crucial result.

2.1. ProposITION. If 2,/ is a solution of (2.5) with a =n/2, then z,,,(t)
and z,,,,(t) are bounded on (1, o).
3. Asymptotic Analysis of z in the Case a=n/2

In what follows, we drop the subscript «, and consider only o = n/2; so z is
as in (2.4) with a =n/2:

o(r)y=r"""z(r*/8), z(t):=2zun(?). (3.1)
If ¢ is a solution of equation (2.3), then
W n(n—4) |2(0)|*"z(8)
" Nl — =U. .2
z2"(t)+z(¢) p z(1) 62 z(1)+ 172 0 (3.2)

We wish to write equation (3.2) as a system of two first order ODEs, but
instead of taking z and z’ as the unknown functions, we consider the system
in z and y where

y=[1--
Z(t)—(l 2t)y(t‘). (3.3)

We thus obtain the following system of ODEs, equivalent to equation (3.2):

d [z _ 0 1—w/2¢ z o —l.—l_ 0
57<y>_<—1+w/2t 0 )(y>+<1 2t) t2<F(z’y)), (3.4)

where

— 2
F(z,y)=<n(n s +2 )

_2 ___1_ 4/n
T 1 )¢ y 4|z| Z, (3.5)

2
and where ¢ is sufficiently large so that 1 —w/2¢ # 0.
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Next we let U(¢) denote the unitary group of matrices

¢t sint
U(t) =( cost s ) (3.6)
—sin{ cost
and we set
T(t,r)= U(t—r—% log ;) = U(t—-;i log t)U(—r+% log r). 3.7)

Indeed, T(-, -) is the propagator associated with the “unperturbed” part of
system (3.4). It is straightforward to check, using (3.4), (3.6), and (3.7), that

i)l ) st
drT‘S”’(y(r)>‘T‘S”’(l 2r) TE\F@r), y(r))

and therefore

2O\ _[z)), [ __w_‘l_l_( 0 )
T(S’t)(y(t)>—<y(5)>+ssT(S’r)<l 2r) r2\ F(z(r), y(r)) dr. (3.8)

Since the T'(s, r) are all unitary matrices and F(z(r), y(r)) is bounded as

r — oo, it follows that
Iim 7°(s, t =
1 ’(y(r) b

exists (in C?). In fact, we have the formula

z(1) _ AN o @ —1—1_ 0
(y(t))—T(t,s)(b) gt T(t,r)<l Zr) rZ(F(z(r),y(r))>dr' (3.9)

In particular,
z(1)\ a\_ (1 oo
(y(t)) T(t,s)(b>— O(z‘) as ¢ . (3.10)

Of course the complex numbers ¢ and b depend on the particular choice of
s, and we are free to choose any convenient sufficiently large value for s. For
simplicity, we require that s—(w/2)logs be an integer multiple of 27; it
follows that 7(¢,s)=U(t—(w/2)logt). Formula (3.10), along with (3.3),
then translates as

2 =a cos<z‘——% log t)+b sin(t—% log r)+o<%); (3.11)

1
!

w . w w 1
, _ _9y —Zlogt)+0O[=).
4 (t)-—(l 2t>J’(t) asm(t > og t>+b cos(t > log ) O(t)

y({)=—a sin(.t—-;i log t)+b cos(t—% log z‘>+ O( ); (3.12)

(3.13)

To show that formula (3.10) gives the correct asymptotic behavior of z, we
need to show two things: that the constants @ and b are not both zero (un-
less z=0); and that the estimate O(1/¢) can not be improved.
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3a. The Constants a and b

To show that ¢ and b cannot both be equal to zero, we make yet another
transformation, setting

o(r)y=r="=D"2x(r); (3.14)
hence
2

x(r)= r—”zz(g), (3.15)
and

’ —1 —3/2 I’2 r”z 4w r2

=— — |+—(1—— — . 1

X(ry=—-r Z(8+4 2 )\ g (3.16)

Equation (2.3) for ¢ is then equivalent to
2
. re w (n—1)(n-3) 1 4/

X (")+[ﬁ—5— 1,2 ]x(r)+m|x(r)| "x(r)=0. (3.17)

If we let

AU T
H(r, x,x ):=5|x |2+§.|x|2—%|x|2

(n'_'l)(n"‘3) 5 1 |x|2+(4/n)
a 8r2 X[+ 2+4/n r2n=0/n’ (3.18)
then a solution x(¢) of (3.17) satisfies
d o [ r  (n=D)(n=3) (n—=1) |x(r)|*"
5 Hrx(r), x (r) =|x(r)| T 1,3 T (nt2) rGom|
(3.19)

Suppose that z(#) is a nontrivial solution of (3.2), and so x(r) given by (3.14)
or (3.15) is a nontrivial solution of (3.17). Since (by Proposition 2.1) z(#) is
bounded as ¢ — oo, it follows from (3.15) that x(r) decays to zero as r — oo. [t
then follows from (3.19) that d~";H(r, x(r), x’(r)) >0 for r sufficiently large.
Moreover, it is clear that for r sufficiently large, H(r, x(r), x’(r)) > 0. Thus
H(r,x(r), x’(r)) converges to a strictly positive (finite or infinite) limit as
r — oo, On the other hand, if the constants ¢ and b in (3.10) are both zero,
we see from (3.15) and (3.16) that H(r, x(r), x’(r)) decays to zero as r — oo.
This contradiction shows that @ and b cannot both be equal to zero. W

3b. A More Precise Asymptotic Estimate

In this section we wish to analyze the integral term in (3.9). Since by formula
(3.7) ‘

T(t,r)=U<t——(2ilogt>U<—r+%logr),
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the matrix in # can be removed from the integral. Thus, it suffices to deter-
mine the asymptotic behavior of

o w w ~1 1 0
S, U(“"*?l"g’)(‘"i) Tf(F(z(r),y(r)))dr' (320

Using (3.5), (3.11), and (3.12), and the fact that z is bounded as r — oo, we
rewrite F(z(r), y(r)) as

F(z(r), y(r)) =F<Z<r— % log r), Y(r— % log r>>+ 0(%), (3.21)
where
Z(s):=acoss+bsins, Y(s):=—asins+bcoss.

The term O(1/r) in (3.21), when substituted into the integral (3.20), gives a
total contribution to the integral of the order O(1/r?). The remaining part
of the integral is precisely

@ 1) o\ 1 0
g, U("’J“ 7 log r)(l —5) ﬁ(F(Z(r—(w/z) log r), Y(r — (w/2) log r)))d"'

We immediately make the change of variables s:=r —(w/2) log r, which yields

e 1 0 logt>
U(—s)— ds+0 . 3.22
St—(w/Z)logt (=) 52 (F(Z(S),Y(S))) st ( t? G.22)

To determine the asymptotic behavior of the integral in (3.22), we make use
of the following elementary result.

3.1. LemMA. Let h:R— R be a continuous periodic function whose mean
value over a single period is equal to m. It follows that, as T — oo,

S h(s) fl'_i_ = ﬂ-i-0<i2>.
T S T T

Proof. Let h(s) =m+ g(s), so that g has mean value zero over a single pe-
riod. If G is a primitive of g, then integration by parts yields

o ds ®ds ds m [G(s)]® o ds
S h(s)—s—2=mST ?+ST g(S)F=7+[ S ]T+2ST G(s) 25

T

The result follows, since the assumptions imply that G is bounded. O

It follows from this lemma, and from the definitions (3.5) and (3.6) of F and
U(s) respectively, that

had 1 0
S, v(=s) F(F(Z(s), Y(s))) @

_1(n(n—=4) o?>(=b\ w(a\ (—bAa,b) 1
“7[ 32 ?< a) ?(b)J“( aB,(a, b) )Iw(?f)' -
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where

A 1 27/ sin2
(i) =3 1, (oo Yacossvpsinstas. a2
n ’ 0

Note that the constants A, (a, b) and B, (a, b) are positive, as long as a and
b are not both zero.
Using (3.23) to estimate (3.22), and keeping in mind that

1 1 0 log ¢
t t—(w/2)logt (2 )

we obtain the following more refined consequence of formula (3.9):

z(¢) a\ 1 w n(n-4)_w2 b w/a
(o)~ o(5)=7o(-50e) {52 - )( 2+ 5(5)

bA,(a, b) logt
+(—aBn(a,b))}+O( 2 )

(3.25)

as t — oo, The point of all this is to show that the O(1/¢) term in (3.10) cannot
in general be improved. While it is possible to imagine just the right combi-
nation of parameters so that all the terms on the right side of (3.25) before
the O((log t)/t?) in fact cancel each other, this will not happen all the time.
Indeed, if n =4 and w = 0, and if the solution is nontrivial so that a®>+ b2 # 0,
then these terms do not all cancel. Though we do not offer a proof, it seems
quite likely that the cancellation of all these terms is the exception rather
than the rule.

Writing (3.25) out in its two components, and grouping the various con-
stants together, we obtain

zZ(H)=a cos(t — % log t)—i- b sin(t— % log t)

c w d . w logt
+7cos(t——5logt)+751n<t——310gt>+0( w ), (3.26)

y(t)=—a sin(t — % log t) +b cos(t — % log t)

logt
—-%sin(t—g—logt)+%cos(t—%logt)+0( Ot% ); 3.27)

2t

= —a(l — —;—t> sin(t — % log t) + b(l - %) cos(t — % log t)

c . w d w logt
- —— +— ——1 + . 3.28
tsm(t > logt) y cos(t > ogt) O( 2 ) ( )

/(1) =(1——"’—>y(t)
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4. Conclusion of the Proof of Theorem 1.1

It is a simple matter to translate the results of the previous section to give
the asymptotic behavior for ¢ and for v. Taking into account only (3.11), we
obtain

<p(r)=r””’2{a cos(r—z-—wlog —f—)+bsm(r—2—wlog )}
8 2v2 8 2V2

1
+O(,2+(n/2)); @D
- 2 2
v(ry=r—"2%ex (—lr—>[acos<r———wlo —f—)+bsm(i—— lo )}
(r) PR 8 Sz g gsz
1

(Recall that ¢ and b are complex numbers.) These estimates can be carried
out to the next order by using (3.26) instead of (3.11). Also, asymptotic esti-
mates for the derivatives ¢’(r) and v’(r) can be obtained from (3.1), (2.1),
and either (3.13) or (3.28). We leave it to the reader to make these formulas
explicit.

One might be tempted to express the cosine and sine using the exponential
function, thereby giving

)
v(r)y=aq'r"2tie prpni2-ie exp(%—) + 0(72+—1W2—)> (4.3)

This seems to imply that v(r) could exhibit two strikingly different types of
behavior. For regular (radially symmetric) solutions of (1.5) in R”, n=2,
this conclusion is not correct. Indeed, if v is a regular radially symmetric
solution of (1.5), then ¢, given by (2.1), satisfies the initial value problem
associated to (2.3) with data ¢(0) =¢o€C and ¢’(0) =0. Since equation
(2.3) is invariant under multiplication by a complex number of modulus
one, and since ¢y € R implies that ¢(r) € R for all » > 0, it follows that ¢ is
always a fixed complex multiple of a real-valued function. Thus, the con-
stants ¢ and b in (4.1) must be the same complex multiple of two real num-
bers. This implies that neither ¢’ nor b’ in (4.3) can equal zero (for nontrivial
solutions). Furthermore, factoring out the common complex divisor of ¢
and b and using trigonometric identities, one can rewrite (4.1) as

2
_ . r r 1 ,
(‘p(r) =cor n/2 sm(? — log m + 0)+ O(m), (44)

where c is a nonzero complex number (since ¢ and b are not both zero if the
solution is nontrival) and € is a real number. If n=1 then this reasoning is
correct only if we require that ¢’(0) =0 (which is the case for a symmetric
solution), or more generally that ¢(0) and ¢’(0) be the same complex mul-
tiple of two real numbers.
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5. Pseudo-Conformal Self-Similar Solutions

In this section we study the notion of self-similar solution as given by Defi-
nition 1.2. One immediately verifies the following proposition.

5.1. ProrosiTION. The solution u of (1.6) is self-similar with respect to Be
81,(R) if and only if P "'u is a self-similar solution with respect to P ~'BPe
8[,(R) for all P € SL,(R). Furthermore, if u is a self-similar solution of (1.6)
with respect to B € 31,(R), then u is a self-similar solution with respect to
kB for all nonzero k e R. '

Two self-similar solutions # and v such that = Pv for some P € SL,([R) are
called pseudo-conformally equivalent. To identify all self-similar solutions
of (1.6), it suffices to identify all equivalence classes of pseudo-conformally
equivalent self-similar solutions. By the previous proposition, this amounts
to identifying the equivalence classes in 8[,([R) under the relation

A~B & 3PeSL,(R) and k€ R\{0} such that A=kP'BP. (5.1)

It is easy to see that the self-similar solutions considered earlier in this

paper - that is, such that ¥ = u, where u, is given by (1.2) - are in fact self-

-1 0

similar with respect to BI:=( 0 1)' Moreover, self-similar solutions with

respect to B, := (8 3) are precisely standing wave solutions of (1.6) - that is,

solutions of the form e“/¢(x), where Ap —wy +¢€|o|*" = 0. (This, by the
way, shows that the blowing up solution of (1.6) obtained from a stand-
ing wave by a pseudo-conformal transformation is indeed a self-similar so-
lution.) It turns out that all self-similar solutions are pseudo-conformally
equivalent either to one of these two examples or else to a third example
which we discuss below.

5.2. ProrositioN. Every Be 8[,(IR), B+#0, is related under ~ to one of
the following three matrices:

-1 0 0 1 0 —1
B:= B,:= = .
l<01>’ 2(0 0)’33 (1 0)

Proof. In order to determine the equivalence classes of matrices in 3[,([R)
under the relation A ~ B defined in (5.1), we use the “real version” of the
Jordan canonical form of a matrix; we refer the reader to Chapter 6 of
Hirsch and Smale [8] for an excellent discussion of this canonical form (in
particular Theorem 2 of Section 4). One remark before we begin. When
one considers putting a matrix B in canonical form, one means finding an
invertible matrix P such that P ~'BP has the desired form. Multiplying P by
a suitable scalar allows us to assume that det P = +1. Since the relation ~ is
less restrictive than similitude of matrices, we will see below that further

conjugation by the matrix J= ( (1) _(1)) will enable us to choose P € SL,(R).
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Let Be 8l,(R), B+0. Since tr B=0, it follows that the eigenvalues of B
are +A. If det B< 0, then A is a nonzero real number and the Jordan form of

B is (g _g). Since this matrix is unchanged by conjugation with the matrix

J, we may assume that the matrix P used to put B in its canonical form is of
determinant 1. Thus B ~ Bj.

Suppose next that det B=0, and so A =0. The Jordan canonical form of
B is then precisely B,. Since J ~'B,J= —B,, it follows that B ~ B,.

Finally, if det B> 0 then A =iy, where v is a nonzero real number. The
real canonical form of B is then vB;. Again, since J ~'B3J = —B;, it follows
that B ~ B;. This completes the proof. O

Thus, to identify all the self-similar solutions of (1.6), it remains only to

study self-similar solutions with respect to B;. The 1-parameter subgroup
of SL,(R) generated by Bj is precisely (gﬁfj _z:)"si ) Thus, u(t,x) is self-
similar with respect to Bj if there exists w € R such that

. 12
sins+7coss X x —i|x|* sins
coss—tsins’ coss—¢sins 4(coss—t sins)

(coss—t sins)‘"’2u<

=e"u(t,x) (5.2)

for all s, € R and x € R”. In particular, if we set 1:= —tans, where —#/2 <
s < w/2, then (5.2) reduces to

u(t x)_(1+t2)—n/4 lt|X|2 iwarctan¢ 0 X
N “P\aa+ny)° )

On the other hand, one verifies that a function of the form

_ it|xP \ ; X
u(t, = 1+t2 n/4 ! iwarctant .

(t, x):=( ) exp(————4(1+t2) e \xo)) (5.3)
where ¢: R" —» C, does indeed satisfy the invariance condition (5.2). Finally,
a mildly unpleasant calculation shows that u(z, x) of the form (5.3) is a solu-
tion of (1.6) if and only if ¢ is a solution of (1.9).

6. The Variational Problem

We denote by X the Hilbert space of real-valued functions
X:={u;ue H(R"),|-|lue L*(R")}, (6.1)

endowed with the norm ||u||3:=||Vu|]*+]|/(1+]-[*)""?u||? (here | - | denotes the
function x~ | x| and ||-| is the classical norm in L2(R")). By abuse of nota-
tion, we will write xu for the function x~ xu(x). Throughout this section
(-, -)is the inner product on L?(R"). The norm in L?(R") will be designated
by ||-||,- We begin by collecting the properties of X which we shall need.
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6.1. ProrosiTION. Let X be defined by (6.1).
(i) The embedding of X into LP(R") is compact for all p =2 such that

(n—2)p<2n.

(i) The constant c,:=inf{||Vu|?+|xu|*; ue X, |u|*=1} is achieved
and ¢, = n.

(iii) The norm defined by

luall = 11Vee][* + 3] (6.2)

is an equivalent norm on X.
(iv) Let p>2ifn=1,20r pe(2,2n/(n—2)] if n=3. For all e >0 there
exists C, such that for all u e X,

el = Cellull7+ el - (6.3)

Proof. (i) For p=2 and any R>0, one has {|x g|u(x)|* dx < R™?||xu|.
Since for a fixed R > 0, H'([| x| < R]) is compactly embedded in L([| x| < R]),
one can easily conclude that the embedding X C L?(R") is compact. On the
other hand, as X C H'(R"), the Sobolev embedding theorem implies X C
LI(R") for g>2 and (n—2)g<2n. Choosing 2< p<gq and interpolating
between L2(R") and LY(R"), we conclude that the embedding X C LP(R") is
compact.

(ii) If (1), is a sequence in X such that ||u;||=1and ||Vu;|>+| xu;|* | cs, by
the compactness of the embedding X C L?(R") we may assume that u;—Yyin
X-weak and u; —> ¢ in L*(R"). As ||V, [*+ | x¥;||* < ¢« and || ¢, || =1, we con-
clude that c, is achieved. (In fact, one can easily check that —Ay;+|x|*y, =
¢y, and conclude that ¢, =n and ¥,(x)=cy exp(——|x|2/2), as we shall see
below for an analogous equation.)

(iii) This is an immediate consequence of (ii).

(iv) If u € X then by the Sobolev embedding theorem one has u € L°(R");
next we choose R> 0 so that R~2=¢, and write:

u?(x) dx+§ u?(x)dx

|x|<R

SR” u*(x)dx = S

|x|=R
SES |x[2u?(x) dx +meas([| x| < RI)' 27| ul|?,
jxi=R
from which one gets (6.3) with C,:= C(n)R"1~2/P), O

Next, on L*([R") we define an unbounded self-adjoint operator L by setting
D(L)={ueX; Lu:=—Au+ 3| x|*ue L}(R")}.

In other words, for u e D(L), Lu is the unique element of L?(R”) such that
(Vu, Voy+5{xu, xv) ={Lu, v) for all ve X. Since X endowed with the inner
product {Vu, Vv)+3{xu, xvy is a Hilbert space, dense in L?(R"), it follows
that L is a nonnegative self-adjoint operator on L*(R”) with D(L) dense in
both L?(R”) and X. This operator L is in fact the classical Aarmonic oscillator
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operator. (The reader can consult Chapter 2 of Faris [5] as a reference for
self-adjoint operators defined via sesquilinear forms. In particular, note that
D(L'?)= X.) Furthermore, since D(L) with its graph norm is continuously
embedded in the Hilbert space X, which in turn is compactly embedded in
L*(R™), it follows that the resolvent operator of L is a compact operator
on L?(R"). Thus, the eigenvalues of L form an increasing sequence of non-
negative real numbers, and L?(R") is the direct sum of the corresponding
eigenvalues. Note that {Lu, u) = ||u|)2 for all u e D(L).

6.2. REMARkK. If, instead of the whole space R”, one considers a domain
Q which is a cone with vertex at the origin, it can be easily checked that the
analysis of Section 5 is still valid. In particular one may seek self-similar
solutions to the equation (1.6) which are expressed in the form (5.3), with ¢
satisfying equation (1.9) on Q. If one defines X(Q) (resp. X,(Q)) as the space
of functions u e H'(Q) (resp. H{(Q)) such that |-|ue L*(Q), it is straight-
forward to see that analogous results as in the Proposition 6.1 hold for these
spaces. Therefore, using the same arguments as below, one can prove that
equation (1.9) on Q, with ¢ =1 and homogenous Dirichlet boundary condi-
tions, possesses infinitely many solutions in X,() (or in X(f), with Neu-
mann boundary conditions d¢/dn =0 on 9Q). Similarly, equation (1.9) on
Q, with e=—1 and homogenous Dirichlet boundary conditions, possesses
one positive solution for w < —A;(Q), where A{() is the smallest eigenvalue
of L on Xy(2) (or on X(£), with Neumann boundary conditions d¢/dn=0
on d{2). These are easy adaptations of the arguments we will develop below,
and so we do not give the details here. Nevertheless, it is interesting to note
that the analysis given in Section 7 can also be applied in this case.

6.3. PROPOSITION. The lowest eigenvalue of L is n/2, and the correspond-
ing eigenspace is the span of gol(x):=exp(—|x|2/4). In particular, L is a
strictly positive operator, and for all u e X one has

(n/2)]Ju]* < |lullx.

The eigenvalues of L are the numbers A\, =n/2+k—1 for k=1, having mul-
tiplicity (”:fl 2).
Proof. Let); =0 be the lowest eigenvalue of L. It follows that A,||u||> < ||u|]2,
with equality holding if u is a corresponding eigenfunction. Replacing u
by |u|, one sees that the infimum is realized for a nonnegative function.
Since the eigenspaces corresponding to other eigenvalues are all orthogonal
to the A; eigenspace, it follows that every nonnegative eigenfunction must
have eigenvalue A;. One checks easily that exp(—|x|*/4) is an eigenfunction
of L with eigenvalue n/2 = A,.

As a matter of fact, setting w(y):= exp(|y|2/2) and denoting by L?(w):=
L%(wdy) the weighted Lebesgue space on R” with respect to the measure
w(y) dy, one sees that v+ ¢:=w /2y is a unitary isometry between L(IR")
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and L?(w). Also, one can easily check that if we consider the operator Lq¢ =
—div(wVe) acting on L?*(w) and having the domain D(Ly):= (o € L2(w);
Lo € L*(w)}, then L, is a self-adjoint operator on L?(w); also, the follow-
ing equivalence holds for any (u, v,A) € L*(R") x L*(w) X R:

v=w2yand Lu=Xu & u=w"?vand Lyv=(n/2+)v.

The spectral analysis of Ly, carried out for example in Section 2 of Esco-
bedo and Kavian [4] for an analogous operator, yields the corresponding
analysis for the operator L. The eigenvalues of L, are A;:=n+k—1, with
eigenfunctions &; g(x):= 98 exp(—|x|2/2) where the multi-index 8 € N” has
length || = k —1, each eigenvalue A, having multiplicity (":f ;2> Thus one
can see that all the eigenvalues of L are given by the statement of Proposi-
tion 6.3 (and the corresponding eigenfunctions are the Hermite functions

or. 5(x) = exp(| x|>/4)3P exp(—| x|*/2) with |B| = k—1). O

We define, for p>2 such that (n—2)p <2n and we R, the following two
functionals on X:

Jwy:=uli+olul?,  Fu)=|ul}.
One easily sees that J and F are of class C?(X, R).

6.4. ProrosITION. J satisfies the Palais-Smale condition on the manifold
S:={ueX; F(u)=1}.

In particular, J possesses an infinite sequence of critical values (cy) =1 de-
Jined as
cy:= inf max J(v), (6.4)
AeB, veA
with ®:={h(S*™Y; h: S¥*~! > S continuous and odd}. Moreover, c; 1 +
as k1 oo,

Proof. We prove first that J satisfies the Palais-Smale condition on S. If
(uj, n;); is a sequence in S X R such that J(#;) > ce R and

nji=—Au;+ 5| x[2u; + wu;— pi|u;|P " 2u; - 0 in X,

then we must prove that (u;, p;); contains a convergent subsequence. Calcu-
lating {u;, u;) x-, x one sees that {n;, u;>x- x = J(u;) —p;. We see immediately
that |p;| = C(1+]u;|,) for some constant depending on w. Next, as [[u;]|5=
J(u;) — w||uj|%, using (6.3), with >0 small enough so that e|w|<1/2, we
conclude

113 = CA+[|ug] ),
and finally that (1;); is bounded, as well as (y;);. We may assume therefore

(after extracting a subsequence) that p; — p in R, u; — u in X-weak, and (by
Proposition 6.1(i)) that u; — u strongly in LY(R") for all g=2 such that
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(n—2)q <2n. In particular, noting that Lu; =17, —wuj+pj|uj|”‘2uj and us-
ing the fact that LP?~D(R") is continuously embedded in X, one sees that
Lu; - —wu+ p|lu|P~?u strongly in X’. As L induces an isomorphism be-
tween X and X", we conclude that u; — L™ (—wu+p|u|P~%u) strongly in X.
This proves that J satisfies the Palais-Smale condition on S.

It is now classical that J possesses an infinite sequence of critical values
on S, and that in particular the ¢;s defined by (6.4) are critical values of J on
S and that ¢, — +o0 as k — oo (see e.g. Rabinowitz [19] and Palais [18]). [

We prove now the following corollary, which, upon setting p =2+ 4/n,
establishes in particular Theorem 1.3, except for the regularity and decay
properties.

6.5. CoroLLARY. For all weR and all p>2 such that (n—2)p<2n, the
equation

—Ap+ 3| x]Po+we=|p|’ . (6.5)
possesses an infinite sequence of solutions (V)= , in X such that |||, — oe.

There exists a positive solution of (6.5) if and only if w>—A;=—n/2; in
this case ¢y > 0.

Proof. Let u, be a critical point of J on S such that J(u;) = c; > 0; hence
for some u, e R,

Ly + oy = | ug [Py
Taking the duality product with u,, we get ¢, = J(u;) = pi > 0; thus, setting
vg:=pu¥/ P~ Dy, one verifies that
—Avk-i- ;l;l.X'lek‘*‘ WU, = |Uk|p_21)k.

AS ¢ = ¢ 41, the ¢;s being unbounded, there exists ky =1 such that ¢, >0,
so there are infinitely many solutions to (6.5).

If (6.5) has a positive solution, then taking the duality product with ¢(x) =
e~ x4 yields

A+ )Xo, o)) =(Lo+wp, px, x={e? ", 01} >0,

and so A;+w>0. As J(v) = (A, +w)||v|)? if o> —A,; then ¢; =min, . g J(v) >
0. On the other hand, for all ve S, one has |v|€ S and J(|v]) = J(v); thus
the minimum c, is achieved at a function v =0, satisfying Lv+wv =cjp? .
Then, using the strong maximum principle (for the operator L + w), one con-
cludes that v > 0. This yields a positive solution to (6.5) when w> —A;. [

Incidentally, we have proved that the equation
—Ap+ i xPotwet|p|P 20 =0, (6.6)

has a positive solution in X if and only if w < —A; = —n/2. To see that (6.6)
has no nontrivial solution in X when w = —n/2, it suffices to take the duality
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product of (6.6) with ¢, the alleged solution, and use Proposition 6.3. This
already establishes much of the Theorem 1.4.

Furthermore, denoting by d;:= (":f_ Tz) the dimension of the A; eigen-

space and setting my:= E};l d;, one can check easily that for v < —A; one
has ¢; <0 for all i = my, (c; is defined in (6.4)). This implies in turn that (6.6)
has at least m, pairs of solutions. Indeed, whenever u; is a critical point of
J on S such that J(u;) =c; <0, by the same argument as above we get that
Lu;+ wu; = c;|u;|?~2u;. Hence, if v;:= +|c;|/?~2y; then v; satisfies equation
(6.6). We have therefore proved the following result.

6.6. COROLLARY. For p>2 such that (n—2)p <2n, and for w<
—n/2—k+1=—Ay, equation (6.6) has at least my, pairs of solutions in X,

where my,:= Efzi(”:-:z).

6.7. REMARK. In fact, using for example the same techniques as Clark [3]
(see also Rabinowitz [19, Thm. 9.1] or Escobedo and Kavian [4]), one can
prove directly that the functional

_ 1 2, 1 22 2 1
G(u):= 5 SW(IVu(xH +4|x] u“(x)+wu (x))dx+p SRnlu(x)|pdx

possesses (at least) m;, pairs of critical points if w < —Aj; and p is as in Corol-
lary 6.6. Furthermore, one can prove that for all p > 2, equation (6.6) has a
unique positive solution if and only if w < —n/2 (to get a positive solution in
this case, it suffices to minimize G on XN LP(R"); to see that this positive
solution is unique, see e.g. {4] for an analogous equation).

6.8. REMARK. If ve X satisfies (6.5) then one can prove—by multiplying
(6.5) by {,(x)x-Vu, where ¢, is a cut-off function, and integrating by parts
—that u satisfies

n—2 2 R+2, 2 5 Nw 5 nS
Vul*+ ——|x|*u“+—u“|ldx=—\ |ul’dx;
[ |52+ R e B ax= 2

S [|Vu|2+l|x|2u2+wu2] dx = S |u|? dx.
R” 4 R"
When n=3 and p=2n/(n—2)=:2% the Sobolev critical exponent, one eas-
ily deduces that {g«(2]x|*+ w)u? dx =0. Therefore (6.5) does not have any
nontrivial solution for w = 0. Nevertheless, using the method introduced by
Brezis and Nirenberg (cf. [4, §5]), one can establish the existence of A, with
0 < Ay < A;=n/2 such that for w € (—A;, —A4), equation (6.5) has a posi-
tive solution in X. As this equation is not of interest regarding the pseudo-
conformally invariant Schrédinger equation, we do not give the proof of
this assertion.

We now turn our attention to regularity and the decay rate of the solution
veX to
Lv+wv=c¢|v|P?v. (6.7)
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Standard local regularity results, together with the Sobolev embeddings and
a bootstrap argument, imply that v e C2(R"). In fact, when p—2 is an even
integer so that s~ |s|?~2s is C*, or when the solution v is positive, the same
arguments show that v is C®. As far as solutions to equation (1.9) are con-
sidered, we see that positive solutions are C® for any n =1, and that all
solutions are C* when n=1or n=2.

6.9. ProprosITION. Let (n—2)p<2n, weR, and e=+x1. [fve X is a solu-
tion to (6.7), then ve CZ(R") and

|v(x)|+|Dv(x)|+ |D2v(x)| < C(8) exp(—(1 —8)| x|*/4)

for all xe R" and all 6 € (0,1). Moreover, when e =+1 and w > —n/2 =
—Ay, or when e = —1 and w= —n/2, one can take 6 =0.

(Here we denote by C3(R") the set of functions ¢ € C2(R") such that 3% (x)
goes to zero as | x| — oo, for all multi-indices 8 with |B| =< 2.)

Proof. First we prove that if ve X is a solution to (6.7) then v(x)—0 as
| x| = oo. (This is obvious when n =1, knowing that X C H'(R) C Co(R), the
set of continuous functions on R going to zero at infinity.)

Let {e€ CZ(R") be a cut-off function so that 0<¢ =<1 and {(x)=1 for
| x| =< 1. We begin by noting that - multiplying (6.7) by |v|"~!v{(x/)), inte-
grating, and letting j — oo — one has ve LY(R") for all g € [2, o). In particu-
lar, if he HY(R") is defined by

—Ah+h=|v|P7 + (1 +]|w))|v],

then since |v|P~'+(1+]|w|)|v]e LYR") for 2<g < it follows that he
W24(R") for all such gs. By the Sobolev embedding and Morrey inequali-
ties, choosing ¢ large enough, we conclude that # e Cy(R").

Using Kato’s inequality (i.e., that for ve H'(R") the inequality Alv|=
sign(v)Av holds as distributions on R”) one obtains, upon setting z:=|v|,
the inequality —Az+z < —Ah+ h. Therefore by the maximum principle (for
the operator —A +1) we have z < A, and so z(x) goes to zero as | x| — .

Next we observe that if c(x):=$|x|*+w—¢€|v|P~2, by Kato’s inequality
and (6.7) we have

—Az+c(x)z<0 in D'(R").

On the other hand, if we set ¥.(x):=exp(—(1 —6)|x|2/4) for 0<6<1, then
a straightforward calculation shows that

5(2—8), , n(1—3)
7 M
Now assume that 6 >0, or 6=0 but w> —n/2 when e=1 and w=—n/2
when e = —1. We may choose R > 0 large enough so that for |x|= R we have

c(x)>0 and 9—(422_—(—3—)-|x|2+m

—At//*+c(x)¢*=( +w—e]v|p_2)\,b*.

+w—€jv|P72=0.
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Then choosing C(6):= max |, < g 2(X)/¥x(x) and letting ¥(x):= C(8) Y« (x),
we have

—Az+c(x)z<0=<—AY+c(x)y¥ in D([|x]|> R]);

applying the maximum principle, we conclude that z(x) < y(x) for |x|=R.
(Here we would like to thank the referee for having slightly simplified our
original proof.)

The proof of the proposition is completed by applying the same argu-
ments to the derivatives Dv and D?v (which satisfy analogous elliptic equa-
tions obtained by differentiating (6.7)). L

6.10. REMARK. We conclude this section with the following observation.
It is known that equation (1.6) with ¢ =1 admits positively global solutions
having initial data of arbitrarily large L? norm (see Proposition 2.3 in [2]).
It is not known, however, if equation (1.6) with ¢ =1 admits solutions which
are both positively and negatively (in time) global, and which have initial
data of arbitrarily large L2 norm. On the other hand, for each w € R, a solu-
tion of (1.9) with e=1 is an initial value for the positively and negatively
global solution (5.3) of (1.6). It would be very interesting to find solutions
of (1.9) with e =1 having arbitrarily large L? norm. As a partial result in this
direction, Th. Cazenave (private communication) has shown that for every
r>2, if ¢, is solution of (1.9) with € =1 then one has im, _, .||, || , = c°.

7. Continuation of Global Solutions beyond Infinity

In this section we continue with the notation established in the previous sec-
tions. If u(¢, x) is a solution to (1.6), then one can check (via the same mildly
cumbersome calculation as the one at the end of Section 5) that v(s, ),
defined by
it| x| x
u(t,x)=:(1+1t3""* exp| ———— | v[ arctan ¢, ————), 7.1
(1, %) =:{1+£5 p[4(1+t2)] aryz) D

satisfies v(0, y) =u(0, x) and

v+ Av—E|yPv+elv|[Y"v=0 (7.2)

(where ¢ =tans and x = (1+72)2y). An existence and uniqueness theorem

for solutions in X can be proved for (7.2), provided v(0, -) € X. In particu-
lar, one can prove existence of global solutions to (7.2) for initial data v(0)
having sufficiently small norm in L?(R").

Interestingly, while ¥ and v are defined respectively for re R and se R,
u(t, x) depends on v(s, ) for s defined in an interval of length 7; for exam-
ple, —7/2<s<w/2. In other words, a global solution of # forms only a
small part of what might be a global solution for v. For example, the global
solutions of (1.6) given by (5.3) correspond to global solutions of (7.2) given
by v(s, ¥):=e“Sp(y), that is, standing waves for (7.2). Furthermore, for
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such a standing wave solution of (7.2), the resulting solution u(¢, x) of (1.6)
does not reflect the values of v(s, y) for all s e R, just those of the form s =
arctan ¢. For different branches of the arctan function, different solutions
of (1.6) are obtained from the same solution v of (7.2). More generally, if
the L2(R") norms of the initial values for (1.6) and (7.2) are sufficiently
small, then the resulting solutions # and v are global. Thus again, one solu-
tion v of (7.2) gives rise to an infinity of solutions # of (1.6), one for each
branch of the arctan function. Since the global solution v of (7.2) is deter-
mined by any one of these infinitely many solutions of (1.6), it follows that
any one of these solutions u# of (1.6) can be thought of as a continuation
“beyond infinity” of the others. Note further that while every solution of the
linear version of (7.2), i.e. with e =0, is periodic with period 47, or 27 when
the dimension n is even (as can be seen by its eigenfunction expansion in
X), the standing wave solutions of (7.2) with e = +1 have period 27/|w|.

The fact that transformation (7.1) translates between solutions of (1.6)
and (7.2) has already been observed in the linear case (i.e. e =0) for n=1.
Indeed, this transformation is a special case of formula (1.3) in Theorem 1
of [21], taking into account that the operator L (and the semigroup gen-
erated by L) appear in [21] in a unitarily equivalent form on L? with respect
to a Gauss measure on R.

If one adapts to equation (7.2) the standard calculation used to prove
the existence of nonglobal solutions to (1.6), one obtains (see Remark 9.2.9
in Cazenave [1, p. 206])

F’(s)+F(s)=16E(s),
where F(s):= | yv(s, -)|* and E is the energy of the solution v; that is,

€
at?2

E(s):= %IIVv<s>II2+—;—l|yv(s, WP = — lvsllais,

which is a constant in time s, E(s) = E(0). It follows that
F(s)=4E(0)+ (F(0)—4E(0))cos2s+ 5 F’(0) sin 2s.

The solution of (7.2) cannot be global if F(s) <0 for some value of s; in
particular this is the case if £(0) <0. Unfortunately this does not give any-
thing new for solutions to (1.6), which is not surprising. Indeed, if ¥ and v
are related by (7.1) then || xu(#)||* = (1+¢?)| yv(arctan ¢)||%, and so an explicit
formula for ||xu(¢)||* gives the same information as an explicit formula for
lyv()|*.

Finally, we should point out that the transformation (7.1), and the fact
that classical global solutions of (7.2) are bounded in C([—#/2, w/2], X),
imply that the related global solutions of (1.6) satisfy

()|, = (1+£3)"2P~""4||p(arctan 1), < C(1 + ¢2)"/2P~"/4,

Indeed, further information about global solutions to (1.6) can be culled
from the transformation (7.1); but it seems that such information has already
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been obtained in Cazenave and Weissler [2]. The only novelty is perhaps
the fact that this analysis can be carried out for some other domains than
the whole space R”, namely a domain Q which is a cone with vertex at the
origin.
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