On CR Mappings of Real Quadric Manifolds

ALEXANDR SUKHOV

0. Introduction

According to the well-known theorem of Alexander [Al], each local CR diffeomorphism of the real unit sphere in \mathbb{C}^n , for n > 1, extends to a complex rational mapping on all \mathbb{C}^n . This important result was generalized by several authors in different directions. Thus, Tumanov [Tu], Tumanov and Henkin [TH], and Forstnerič [Fo] transferred it to CR mappings of real quadric Cauchy-Riemann manifolds of an arbitrary codimension in \mathbb{C}^n . In the present note we generalize these results. Our main tool is the reflection principle due to Lewy [Le], Pinchuk [P1], and Webster [W1; W2; W3].

I express my thanks to S. Pinchuk for his interest in this work.

1. Result

We denote coordinates in \mathbb{C}^n by (z, w), where $z \in \mathbb{C}^k$, $w \in \mathbb{C}^d$, k+d=n, and k, d>0. Let also $\langle z, \zeta \rangle = \sum_{j=1}^k z_j \zeta_j$. Consider in \mathbb{C}^n a real generic manifold of the form

$$w_j + \bar{w}_j = \langle L_j(z), \bar{z} \rangle, \quad j = 1, \dots, d, \tag{1.1}$$

where each $L_j: \mathbb{C}^k \to \mathbb{C}^k$ is a C-linear hermitian operator. To simplify the notation we shall write (1.1) in the form

$$w + \bar{w} = \langle L(z), \bar{z} \rangle, \tag{1.2}$$

setting

$$\langle L(z), \bar{z} \rangle = (\langle L_1(z), \bar{z} \rangle, \dots, \langle L_d(z), \bar{z} \rangle). \tag{1.3}$$

A manifold M of the form (1.2) is said to be a *quadric* Cauchy-Riemann manifold (in short, quadric) of real codimension d in \mathbb{C}^n .

Let $T_p^c(M)$ denote the complex tangent space of M at $p \in M$. Recall that $T_p^c(M) = T_p(M) \cap i(T_p(M))$, where $T_p(M)$ is a real tangent space and $i = \sqrt{-1}$. The complex dimension of $T_p^c(M)$ does not depend on p in M, and is equal to k; it is called the CR dimension of M. The vector-valued (with values in \mathbb{R}^d) hermitian quadratic form (1.3), defined on $\mathbb{C}^k \cong \{(z, w) : w = 0\} = 0$

 $T_0^c(M)$, is the *Levi form* of M. Each L_j is said to be the *Levi operator*. We also connect with M a convex cone in \mathbf{R}^d of the form

$$Co\{\langle L(z), \bar{z} \rangle : z \in \mathbb{C}^k\},$$

where Co denotes the linearly convex hull; it is called the *Levi cone* of M. Together with (1.2) let us consider in $\mathbb{C}^{n'}$ coordinates (z', w'), where $z' \in \mathbb{C}^{k'}$, $w' \in \mathbb{C}^{d'}$, k' + d' = n', and k', d' > 0. We define a quadric $M' \subset \mathbb{C}^{n'}$ of the form

$$w'_j + \bar{w}'_j = \langle L'_j(z'), \bar{z}' \rangle', \quad j = 1, ..., d'.$$
 (1.4)

Here $\langle z', \zeta' \rangle' = \sum_{j=1}^{k'} z_j' \zeta_j'$. By analogy with (1.2), one can represent (1.4) in the form

$$w' + \bar{w}' = \langle L'(z'), \bar{z}' \rangle', \tag{1.5}$$

where

$$\langle L'(z'), \bar{z}' \rangle' = (\langle L'_1(z'), \bar{z}' \rangle', \dots, \langle L'_{d'}(z'), \bar{z}' \rangle').$$

If $F: M \to M'$ is a mapping of class C^1 , we denote by dF_p the differential (tangent mapping) of F at p in M.

Our main result is the following theorem.

THEOREM. Let $M \subset \mathbb{C}^n$ be a quadric (1.2) and let the Levi cone of M have a non-empty interior in \mathbb{R}^d . Let also $F: D \to M'$ be a CR mapping of class C^1 from an open connected subset D of M (with $0 \in D$) to a quadric M' (1.5). Assume that F(0) = 0 and

$$\sum_{j=1}^{d'} L'_j(dF_0(T_0^c(M))) = T_0^c(M'). \tag{1.6}$$

Then F extends to a complex rational mapping on \mathbb{C}^n .

For the comparison with known results recall that a quadric M is said to be Levi nondegenerate if $\langle L(z), \bar{\zeta} \rangle = 0$ for all ζ in \mathbb{C}^k implies z = 0.

COROLLARY. Assume that:

- (a) M is a quadric (1.2) and the Levi cone of M has non-empty interior;
- (b) M' is a Levi nondegenerate quadric (1.5);
- (c) $F: D \subset M \to M'$ is a CR mapping of class C^1 such that F(0) = 0 and dF_0 is a linear isomorphism of $T_0^c(M)$ onto $T_0^c(M')$.

Then F extends to a complex rational mapping on \mathbb{C}^n .

This last result was obtained by Forstnerič [Fo]; the special case when M = M' was considered by Tumanov [Tu], and similar results are in [TH]). When both M and M' are strongly pseudoconvex hyperquadrics in \mathbb{C}^n , we obtain the classical theorem of Alexander [Al].

Proof. We have

$$T_0^c(M) = \mathbb{C}^k = \{(z, w) : w = 0\}$$
 and $T_0^c(M') = \mathbb{C}^{k'} = \{(z', w') : w' = 0\}.$

Since dF_0 is an isomorphism, $dF_0(\mathbf{C}^k) = \mathbf{C}^{k'}$. Assume that (1.6) does not hold. Then there is a vector ξ in $\mathbf{C}^{k'}\setminus\{0\}$ orthogonal (for the standard hermitian scalar product on $\mathbf{C}^{k'}$) to $\sum_{j=1}^{d'} L'_j(\mathbf{C}^{k'})$. This implies that $\langle L'_j(\xi), \bar{\eta} \rangle' = \langle \overline{L'_j(\eta), \bar{\xi}} \rangle' = 0$ for each η in $\mathbf{C}^{k'}$, j = 1, ..., d'. Hence, we obtain a contradiction to the Levi nondegeneracy of M'. Therefore, (1.6) holds and one can apply the Theorem.

If dF_0 is an isomorphism of $T_0^c(M)$ onto $T_0^c(M')$, the manifolds M and M' have the same CR dimension. We emphasize that in the present theorem the CR dimensions of M and M' can differ. Indeed, (1.6) requires only the restriction $d'k \ge k'$. In particular, the difference k'-k can be arbitrarily large. An equivalent form of condition (1.6) appeared in [De] as "condition H" in connection with another problem. (I am thankful to B. Coupet who brought my attention to this paper.)

REMARK. Of course, the condition F(0) = 0 is not essential for the Theorem. Recall that each quadric is affinely homogeneous. This means that the group of complex linear transformations of \mathbb{C}^n , preserving a quadric, acts transitively on this quadric [PS].

2. Tangent Cauchy-Riemann Fields

Recall that a smooth vector field $Y = \sum_{j=1}^{k} \xi_j \partial/\partial z_j + \sum_{r=1}^{d} \omega_r \partial/\partial w_r$ on \mathbb{C}^n is tangent to M if and only if, for each p in M, its value

$$Y_{p} = \sum_{j=1}^{k} \xi_{j}(p) \frac{\partial}{\partial z_{j}} + \sum_{r=1}^{d} \omega_{r}(p) \frac{\partial}{\partial w_{r}}$$

$$\cong (\xi_{1}(p), ..., \xi_{k}(p), \omega_{1}(p), ..., \omega_{d}(p))$$

at p belongs to $T_p^c(M)$. We call such vector fields Cauchy-Riemann fields (or CR fields) on M. (For instance, see details in [Ch].) For M of the form (1.2) we consider CR fields T^q , q = 1, ..., k, of the form

$$T^{q} = \frac{\partial}{\partial z_{q}} + \sum_{j=1}^{d} \left(\sum_{r=1}^{k} a_{rq}^{j} \bar{z}_{r} \right) \frac{\partial}{\partial w_{j}}, \tag{2.1}$$

where (a_{rq}^j) is the matrix of L_j . An easy verification shows that vectors T_p^q , q = 1, ..., k, generate $T_p^c(M)$ for each p in M.

Complex conjugate vector fields \overline{T}^q also are interesting. A function h of class C^1 on M is said to be a CR function if $\overline{T}^q h = 0$, q = 1, ..., k on M; these are the tangential Cauchy-Riemann equations. Hence, for our mapping $F = (F_1, ..., F_{n'}): D \to M'$ we have

$$T^q \bar{F}_j(z, w) = 0, \quad q = 1, ..., k, \quad j = 1, ..., n',$$
 (2.2)

where $(z, w) \in D$.

Fix $\epsilon > 0$. Let C be an open non-empty convex cone in \mathbb{R}^d . We denote by $W(M, C, \epsilon)$ a domain in \mathbb{C}^n of the form

$$\{|(z, w)| < \epsilon \colon w + \bar{w} - \langle L(z), \bar{z} \rangle \in C\}$$
 (2.3)

(a "wedge" with "edge" M). According to [BP; Na], F holomorphically continues to some wedge (2.3) under the condition that the Levi cone of M has non-empty interior in \mathbb{R}^d . Hence, we may assume without loss of generality that F is holomorphic on some wedge $W(M, C, \epsilon)$ of the form (2.3), and that F is of class C^1 on $W(M, C, \epsilon) \cup M$, or more precisely on $W(M, C, \epsilon) \cup D$.

3. Condition (1.6)

Let F = (f, g), where $f = (f_1, ..., f_{k'}) = (F_1, ..., F_{k'})$ and $g = (g_1, ..., g_{d'}) = (F_{k'+1}, ..., F_{n'})$. Since F is CR, the restriction $dF_0 \mid T_0^c(M)$ is a C-linear mapping. This follows directly from (2.1) and (2.2). Hence $dF_0(\mathbb{C}^k) \subset \mathbb{C}^{k'}$. Therefore,

$$\frac{\partial g_j}{\partial z_q}(0) = 0, \quad j = 1, ..., d', \quad q = 1, ..., k.$$
 (3.1)

Since $F(D) \subset M'$, for (z, w) in D we have

$$\langle L'_{i}(f), \bar{f} \rangle' = g_{i} + \bar{g}_{i}, \quad j = 1, ..., d'.$$
 (3.2)

Acting on both sides of (3.2) with tangent operators T^q , in view of (2.2) we obtain, for (z, w) in D,

$$\langle L'_{j}(T^{q}f), \bar{f} \rangle' = T^{q}g_{j}, \quad q = 1, ..., k, \ j = 1, ..., d',$$

where $T^{q}f = (T^{q}f_{1}, ..., T^{q}f_{k'})$. Then (2.1) and (3.1) imply that

$$L'_{j}(T^{q}f)(0) = L'_{j}(dF_{0}(e_{q})),$$
 (3.3)

where e_q , q = 1, ..., k, is a standard basis of \mathbb{C}^k . Condition (1.6) implies that the rank of the system of vectors $L'_j(dF_0(e_q))$ (j = 1, ..., d', q = 1, ..., k) is equal to k'. Hence there are couples (j(s), q(s)), s = 1, ..., k', with $1 \le j(s) \le d'$ and $1 \le q(s) \le k$ such that the vectors (3.3) are linearly independent for (j, q) = (j(s), q(s)), s = 1, ..., k'.

For (z, w) in D we have

$$\langle L'_{j}(T^{q}f), \bar{f} \rangle' = T^{q}g_{j};$$

 $(j,q) = (j(s), q(s)), \quad s = 1, ..., k';$
 $\bar{g}_{j} - \langle L'_{j}(f), \bar{f} \rangle' = -g_{j}, \quad j = 1, ..., d'.$
(3.4)

Consider (3.4) as a system of linear equations for $\bar{F} = (\bar{f}, \bar{g})$. Then its determinant, evaluated for (z, w) = 0, differs from 0. Hence Cramer's rule implies that

$$\bar{F}_i(z, w) = R_i(\bar{z}, z, w), \quad j = 1, ..., n',$$
 (3.5)

for (z, w) in D. Here each R_j is a (real) analytic function on $W(M, C, \epsilon)$ and is continuous on $W(M, C, \epsilon) \cup D$. Moreover, each R_j is a rational function

in $(\bar{z}_1, ..., \bar{z}_k)$, whose coefficients are holomorphic on $W(M, C, \epsilon)$ and continuous on $W(M, C, \epsilon) \cup D$.

4. Local Holomorphic Continuation

The following proposition is a simple version of the reflection principle.

CLAIM. The mapping F holomorphically continues to a full neighborhood Ω of 0 in \mathbb{C}^n .

For d=1, this is a consequence of the result in [De]. In the general case this claim can also be derived from Derridj's theorem by application of some special version of the "edge-of-the-wedge theorem" due to Airapetian and Henkin [AH]. We give an elementary direct proof.

Proof. Consider a real analytic, totally real, n-dimensional submanifold M^* of M defined by the equations

$$w + \bar{w} = \langle L(z), \bar{z} \rangle, \quad z + \bar{z} = 0.$$

Then M^* can be represented in the form $\bar{z} = -z$, $\bar{w} = -w + \langle L(z), z \rangle$. Let $G_j(z, w) = R_j(-z, z, w)$. Then $G = (G_1, ..., G_{n'})$ is a holomorphic mapping on $W(M, C, \epsilon)$ and G is continuous on $W(M, C, \epsilon) \cup D$. Hence (3.5) implies

$$\bar{F}(z, w) = G(z, w) \tag{4.1}$$

for (z, w) in $M^* \cap \Omega$. Here Ω is some neighborhood of 0 in \mathbb{C}^n . Since M^* is a real analytic totally real n-dimensional manifold, there is some neighborhood $\tilde{\Omega} \ni 0$ in \mathbb{C}^n and a biholomorphism $\Psi \colon \Omega \to \tilde{\Omega}$ with $\Psi(0) = 0$ such that $\Psi(M^* \cap \Omega) = \mathbb{R}^n \cap \tilde{\Omega}$ (see for instance [W1; W3]). Evidently, the image $\Psi(W(M, C, \epsilon))$ contains some wedge of the form $(\mathbb{R}^n + i\tilde{C}) \cap \tilde{\Omega}$ where \tilde{C} is an open non-empty cone in \mathbb{R}^n . The mappings $F(\Psi^{-1}(x))$ and $\overline{G(\Psi^{-1}(\bar{x}))}$ are holomorphic for x in $(\mathbb{R}^n + i\tilde{C}) \cap \tilde{\Omega}$ and x in $(\mathbb{R}^n - i\tilde{C}) \cap \tilde{\Omega}$, respectively. Both mappings are also continuous on $\mathbb{R}^n \cap \tilde{\Omega}$ and their values coincide on $\mathbb{R}^n \cap \tilde{\Omega}$ in view of (4.1). By the usual "edge-of-the-wedge theorem" [R1], $F \circ \Psi$ (and, certainly, F) holomorphically continues to some neighborhood of 0 in \mathbb{C}^n .

REMARK. Of course, this claim holds when M and M' are real analytic manifolds of the form (1.2) and (1.5), respectively, with the third-degree terms. The proof is the same with evident modifications; one can use the implicit function theorem instead of Cramer's rule. In such a form this claim generalizes well-known results [Le; P1; W1; W3] on the analytic continuation of holomorphic mappings.

5. Segre Surfaces and Partial Rationality

Fix a point (ζ, ω) in \mathbb{C}^n , where $\zeta \in \mathbb{C}^k$ and $\omega \in \mathbb{C}^d$, and define an affine linear subspace of \mathbb{C}^n of the form

$$Q(\zeta, \omega) = \{(z, w) \in \mathbb{C}^n : w + \bar{\omega} = \langle L(z), \bar{\zeta} \rangle \}.$$

The subspace is said to be the Segre surface of M corresponding to (ζ, ω) . (See [Se] and [W2].)

The crucial point of our proof is the following lemma.

LEMMA. For each (ζ, ω) belonging to some neighborhood of 0 in \mathbb{C}^n , the restriction $F | Q(\zeta, \omega) = F(z, \langle L(z), \overline{\zeta} \rangle - \overline{\omega})$ extends to a rational mapping in z.

Proof. (1.2) and (3.5) imply that

$$F_{j}(z,\langle L(z),\bar{z}\rangle - \bar{w}) = \tilde{R}_{j}(z,\bar{z},\bar{w})$$
 (5.1)

for (z, w) in $M \cap \Omega$. Here $\tilde{R}_j(z, \bar{z}, \bar{w}) = \overline{R_j(\bar{z}, z, w)}$. Hereafter we omit the tilde in this notation.

Since all functions in (5.1) are analytic, functions $F_j(\bar{\xi}, \langle L(\bar{\xi}), \bar{\zeta} \rangle - \bar{\omega})$ and $R_j(\bar{\xi}, \bar{\zeta}, \bar{\omega})$ are anti-holomorphic in some neighborhood of 0 in \mathbb{C}^{n+k} , where we take ξ in \mathbb{C}^k . Then (5.1) implies that these functions coincide on the manifold

$$\hat{M} = \{ (\xi, \zeta, \omega) \in \mathbb{C}^k \times \mathbb{C}^k \times \mathbb{C}^d : \bar{\xi} = \zeta, (\zeta, \omega) \in M \}.$$

Evidently, \hat{M} is generic in some neighborhood of 0 in \mathbb{C}^{n+k} . Hence the uniqueness theorem of [P2] or [R2] implies that

$$F_i(\bar{\xi}, \langle L(\bar{\xi}), \bar{\zeta} \rangle - \bar{\omega}) = R_i(\bar{\xi}, \bar{\zeta}, \bar{\omega})$$

in some neighborhood of 0 in \mathbb{C}^{n+k} . Therefore

$$F_i(z, \langle L(z), \bar{\zeta} \rangle - \bar{\omega}) = R_i(z, \bar{\zeta}, \bar{\omega})$$

for every fixed (ζ, ω) . But each $R_i(z, \bar{\zeta}, \bar{\omega})$ is a rational function in z. \square

6. Completion of the Proof

Using the Lemma, we reduce our proof to the classical theorem on the separate rationality [BM]. This idea together with the reflection principle has been used by several authors (see e.g. [P1] and [Fo].) Below we reproduce exactly the arguments of Forstnerič [Fo].

From the Lemma, choose a neighborhood $\Omega \ni 0$ of the form $\Omega = U \times V$, where $U \subset \mathbb{C}^k$ and $V \subset \mathbb{C}^d$. Fix ζ^* in U. Then Segre surfaces $Q(\zeta^*, \omega)$ for ω in V form a family of parallel complex k-dimensional affine subspaces. These planes fill some full neighborhood of 0 in \mathbb{C}^n . Let t in $Q(\zeta^*, 0)$ be an arbitrary complex line through 0. Then for each p in \mathbb{C}^n in some neighborhood of 0, the line (p+t) lies in some $Q(\zeta^*, \omega)$. According to the Lemma, the restriction $F \mid (p+t)$ extends to a complex rational mapping on (p+t) for each line (p+t).

Consider a basis $t_{\nu}(\bar{\zeta})$, $\nu = 1, ..., k$, of the complex linear subspace $Q(\zeta, 0)$, where

$$t_{\nu}(\bar{\zeta}) = (e_{\nu} | \langle L(e_{\nu}), \bar{\zeta} \rangle)$$

= $(0, ..., 1, ..., 0, \langle L_1(e_{\nu}), \bar{\zeta} \rangle, ..., \langle L_d(e_{\nu}), \bar{\zeta} \rangle).$

Here 1 is in the ν th position and e_{ν} , $\nu = 1, ..., k$, is a standard basis of \mathbb{C}^k . We shall show that the vectors $t_{\nu}(\bar{\zeta})$, for $\nu = 1, ..., k$ and ζ in U, span \mathbb{C}^n .

Assume that this is not true. Then there exists some α in $\mathbb{C}^n \setminus \{0\}$ such that, for all ζ and ν ,

$$\begin{split} \langle \alpha, t_{\nu}(\bar{\zeta}) \rangle &= \alpha_{\nu} + \sum_{j=1}^{d} \langle L_{j}(e_{\nu}), \bar{\zeta} \rangle \alpha_{k+j} \\ &= \alpha_{\nu} + \left\langle \sum_{j=1}^{d} \alpha_{k+j} L_{j}(e_{\nu}), \bar{\zeta} \right\rangle = 0. \end{split}$$

Since ζ in U is arbitrary, we obtain that $\alpha_{\nu} = 0$ and $\sum_{j=1}^{d} \alpha_{k+j} L_{j}(e_{\nu}) = 0$ for $\nu = 1, ..., k$. Hence the operators L_{j} , j = 1, ..., d, are linearly dependent. This contradicts the condition that the Levi cone of M has non-empty interior.

Thus, there exist linearly independent complex lines $t^1, ..., t^n$ containing 0 and such that each restriction $F \mid (p+t^j)$ extends to a complex rational mapping on all of $(p+t^j)$ for every p in some neighborhood of 0. Some nondegenerate \mathbf{C} -linear transformation of coordinates maps the t^j , j=1,...,n, onto coordinate lines. Then, by the theorem on the separate rationality, F extends to a complex rational mapping on all \mathbf{C}^n . This completes the proof.

References

- [AH] R. Airapetian and G. Henkin, Analytic continuation of CR functions across "edge of the wedge," Dokl. Akad. Nauk USSR 259 (1981), 777-781 (Russian).
 - [Al] H. Alexander, *Holomorphic mappings from the ball and polydisc*, Math. Ann. 209 (1974), 249–256.
- [BM] S. Bochner and W. T. Martin, *Several complex variables*, Princeton University Press, Princeton, 1948.
- [BP] A. Boggess and J. Polking, *Holomorphic extension of CR functions*, Duke Math. J. 49 (1982), 757–784.
- [Ch] E. Chirka, *Introduction to the geometry of CR manifolds*, Uspekhi Mat. Nauk 46 (1991), 81-164 (Russian).
- [De] M. Derridj, Le principe de reflexion en des points de faible pseudo convexite, pour des applications holomorphes propres, Invent. Math. 79 (1985), 197–215.
- [Fo] F. Forstnerič, *Mappings of quadric Cauchy-Riemann manifolds*, Math. Ann. 292 (1992), 163-180.
- [Le] H. Lewy, On the boundary behavior of holomorphic mappings, Rend. Accad. Naz. Sci. Lincei 35 (1977), 1-8.
- [Na] I. Naruki, Holomorphic extension problem for standard real submanifolds of second kind, Publ. Res. Inst. Math. Sci. 6 (1970), 113-187.
- [PS] I. I. Piatetsky-Shapiro, Géométrie des domains classiques et théorie des fonctions automorphes, Dunod, Paris, 1966.
- [P1] S. Pinchuk, On the analytic continuation of holomorphic mappings, Mat. Sb. (N.S.) 98 (1975), 416-435 (Russian).

- [P2] ——, Boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki 15 (1974), 205–212 (Russian).
- [R1] W. Rudin, Lectures on the edge-of-the-wedge theorem, Regional Conf. Ser. in Math., 6, Amer. Math. Soc., Providence, RI, 1971.
- [R2] ——, Function theory in the unit ball of \mathbb{C}^n , Springer, New York, 1980.
- [Se] B. Segre, Intorno al problema di Poincaré della rappresentazione pseudoconforme, Rend. Accad. d.L. Roma 13 (1931), 676-683.
- [Tu] A. Tumanov, Finite dimensionality of the group of CR automorphisms of standard CR manifolds and proper holomorphic mappings of Siegel domains, Izv. Akad. Nauk USSR Ser. Mat. 52 (1988), 651-659 (Russian).
- [TH] A. Tumanov and G. Henkin, Local characterization of holomorphic automorphisms of Siegel domains, Funktsional. Anal. i Prilozhen 17 (1983), 49-61 (Russian).
- [W1] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26–28.
- [W2] ——, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53-68.
- [W3] ——, Holomorphic mappings of domains with generic corners, Proc. Amer. Math. Soc. 86 (1982), 236–240.

Department of Mathematics Bashkirian State University 450074, Frunze str. 32 Ufa Russia