On CR Mappings of
Real Quadric Manifolds

ALEXANDR SUKHOV

0. Introduction

According to the well-known theorem of Alexander [Al], each local CR dif-
feomorphism of the real unit sphere in C”, for n> 1, extends to a complex
rational mapping on all C". This important result was generalized by several
authors in different directions. Thus, Tumanov [ Tu], Tumanov and Henkin
[TH], and Forstneri¢ [Fo] transferred it to CR mappings of real quadric
Cauchy-Riemann manifolds of an arbitrary codimension in C”. In the pres-
ent note we generalize these results. Our main tool is the reflection principle
due to Lewy [Le], Pinchuk [P1], and Webster [W1; W2; W3].
I express my thanks to S. Pinchuk for his interest in this work.

1. Result

We denote coordinates in C” by (z, w), where ze C¥, we C%, k+d=n, and
k,d>0. Let also {(z, {) = E}L 12;§;. Consider in C”" a real generic manifold
of the form

Wi+ W =(L;(2),2)s Jj=1,...,d, (1.1)

where each L;: C*— C* is a C-linear hermitian operator. To simplify the
notation we shall write (1.1) in the form

w+w=<(L(z2),2), (1.2)
setting
(L(Z),z>=(<L1(Z),Z>,-,(Ld(Z), 2)) (13)

A manifold M of the form (1.2) is said to be a quadric Cauchy-Riemann
manifold (in short, quadric) of real codimension d in C”".

Let 7,7(M) denote the complex tangent space of M at pe M. Recall that
T,(M)=T,(M)Ni(T,(M)), where T,(M) is a real tangent space and i/ =
v/—1. The complex dimension of 7;(M) does not depend on p in M, and is
equal to k; it is called the CR dimension of M. The vector-valued (with val-
ues in RY) hermitian quadratic form (1.3), defined on C*¥={(z, w): w=0} =
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T§(M), is the Levi form of M. Each L; is said to be the Levi operator. We
also connect with M a convex cone in R of the form

Co{(L(z),2): z€ C*},

where Co denotes the linearly convex hull; it is called the Levi cone of M.
Together with (1.2) let us consider in C” coordinates (z’, w’), where z’e C¥/,
weC? k'+d’ =n’,and k’, d’> 0. We define a quadric M’C C" of the form

Wi+ Wi =(LIz'), 2", Jj=1,...,d" (1.4)

Here (z’,{’Y = Zj-":l zj{{. By analogy with (1.2), one can represent (1.4) in
the form
w+w' =<(L(z"),Z'Y, (1.5)
where '
(LY(z2"), 7Y =(Li(2), 27 ..., (Lg(27), Z27)).

If F: M — M’ is a mapping of class C!, we denote by dF, the differential
(tangent mapping) of F at p in M.

Our main result is the following theorem.

THEOREM. Let M C C" be a quadric (1.2) and let the Levi cone of M have
a non-empty interior in R%. Let also F: D — M’ be a CR mapping of class
C! from an open connected subset D of M (with 0e D) to a quadric M’
(1.5). Assume that F(0) =0 and

&
_E] LidF(Tg(M))) =To(M"). (1.6)
=

Then F extends to a complex rational mapping on C".

For the comparison with known results recall that a quadric M is said to be
Levi nondegenerate if {L(z), {Y=0 for all { in C* implies z=0.

COROLLARY. Assume that:
(@) M is a quadric (1.2) and the Levi cone of M has non-empty interior;
(b) M’ is a Levi nondegenerate quadric (1.5);
(c) F:DC M- M'isa CR mapping of class C' such that F(0)=0 and
dF, is a linear isomorphism of Tg(M) onto Tg(M’).
Then F extend; to a complex _rat:’onal mapping on C".

This last result was obtained by Forstneri¢ [Fo]; the special case when M=
M’ was considered by Tumanov [Tu], and similar results are in [TH]).
When both M and M’ are strongly pseudoconvex hyperquadrics in C”, we
obtain the classical theorem of Alexander [Al].

Proof. We have
T§M)=Ck={(z,w): w=0} and T{M')=C*={(z’,w’): w =0].



On CR Mappings of Real Quadric Manifolds 145

Since dFj is an isomorphism, dFO(Ck) = CK’. Assume that (1.6) does not
hold. Then there is a vector £ in C¥'\{0} orthogonal (for the standard hermi-
tian scalar product on C*') to 9., L}(C*'). This implies that (L}(£), )’ =
(Lj(n), £)Y =0 for each 5 in C¥, j=1,...,d’. Hence, we obtain a contradic-
tion to the Levi nondegeneracy of M’. Therefore, (1.6) holds and one can
apply the Theorem. O

If dF, is an isomorphism of T3 (M) onto Ty (M), the manifolds M and M’
have the same CR dimension. We emphasize that in the present theorem the
CR dimensions of M and M’ can differ. Indeed, (1.6) requires only the re-
striction d’k = k’. In particular, the difference £’ — k can be arbitrarily large.
An equivalent form of condition (1.6) appeared in [De] as “condition H” in
connection with another problem. (I am thankful to B. Coupet who brought
my attention to this paper.)

REMARK. Of course, the condition F(0) =0 is not essential for the Theo-
rem. Recall that each quadric is affinely homogeneous. This means that the
group of complex linear transformations of C”, preserving a quadric, acts
transitively on this quadric [PS].

2. Tangent Cauchy-Riemann Fields

Recall that a smooth vector field Y = E};I gja/az,-+2;’=1 w,d/0w, on C" is
tangent to M if and only if, for each p in M, its value

d
aw,

k 9 d
Y,=2 E,-(p)a—+ > o (p)
ji=1 Zj r=1

= (£1(D), ---» Ex(D), 01(D)s -+, wa(D))

at p belongs to T,;(M). We call such vector fields Cauchy-Riemann fields
(or CR fields) on M. (For instance, see details in {Ch].) For M of the form
(1.2) we consider CR fields 79, g =1, ..., k, of the form

7 p d k . d
Ti=—+ al,z )—, 2.1

azq jgl(rgl T awj D
where (a,jq) is the matrix of L;. An easy verification shows that vectors T},
qg=1,..., k, generate T;(M) for each p in M.

Complex conjugate vector fields T 7 also are interesting. A function 4 of
class C' on M is said to be a CR function if T?h=0, g=1, ..., k on M; these
are the tangential Cauchy-Riemann equations. Hence, for our mapping F =
(F, ..., F,): D— M’ we have

TqF_'i(Z,w)=0, q=1,""k1 j=1!""n" (2'2)

where (z, w) € D.
Fix € > 0. Let C be an open non-empty convex cone in R%. We denote by
W(M, C, ¢) a domain in C” of the form
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{l(z, w)|<e:w+Ww—(L(z),2)€ C} (2.3)

(a “wedge” with “edge” M). According to [BP; Na], F holomorphically
continues to some wedge (2.3) under the condition that the Levi cone of
M has non-empty interior in R%. Hence, we may assume without loss of
generality that F is holomorphic on some wedge W(M, C, €) of the form
(2.3), and that F is of class C! on W(M, C,e) UM, or more precisely on
W(M,C,e)UD.

3. Condition (1.6)

Let F=(f,g), where f=(f1,.... e ) =T, ....F) and g=(g1 ..., 84") =
(Fyr 415 ..., F,). Since F is CR, the restriction dFy|T§(M) is a C-linear
mapping. This follows directly from (2.1) and (2.2). Hence dF,(C*) c C¥..
Therefore,

do.
28i0y=0, j=1,....d" qg=1,...,k. 3.1)
024

Since F(D)C M’, for (z, w) in D we have

Acting on both sides of (3.2) with tangent operators 79, in view of (2.2)
we obtain, for (z, w) in D,

(Li(TIf), fy= T9%;, q=1,...,k, j=1,...,d’,
where T9f=(Tf,,..., T2f;). Then (2.1) and (3.1) imply that
Li(T7f)(0)=Lj(dFy(e,)), (3.3)

where e,, g=1, ..., k, is a standard basis of C*. Condition (1.6) implies that
the rank of the system of vectors Li(dFy(e,)) (j=1,...,d", g=1,...,k) is
equal to k’. Hence there are couples (j(s), g(s)), s=1,..., k", with1 =< j(s)=<
d’ and 1< g(s) < k such that the vectors (3.3) are linearly independent for
(J,)=(J(s),q(s)), s=1,..., k".
For (z, w) in D we have
(LATf), [y =T7%;;
(J,a)=0i(s),q(s)), s=1,...,k; (3.9)
gj—<Lj(f), f>,= —&j» .]= I,...,d".

Consider (3.4) as a system of linear equations for 7= (f, ). Then its
determinant, evaluated for (z, w) =0, differs from 0. Hence Cramer’s rule
implies that

F}(Z’ W)=RJ‘(Z,Z, W)’ j=1a"'snls (35)

for (z, w) in D. Here each R; is a (real) analytic function on W(M, C, ¢) and
is continuous on W(M, C, ¢)UD. Moreover, each R; is a rational function
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in (Zy, ..., Zx), whose coefficients are holomorphic on W(M, C, ¢) and con-
tinuous on W(M, C,e)UD.

4. Local Holomorphic Continuation
The following proposition is a simple version of the reflection principle.

CLamm. The mapping F holomorphically continues to a full neighborhood
Qof0in C". o

For d =1, this is a consequence of the result in [De]. In the general case this
claim can also be derived from Derridj’s theorem by application of some
special version of the “edge-of-the-wedge theorem” due to Airapetian and
Henkin [AH]. We give an elementary direct proof.

Proof. Consider a real analytic, totally real, n-dimensional submanifold
M* of M defined by the equations

w+w={(L(2),2), z+Z=0.

Then M ™ can be represented in the form z=—z, w=—w+({L(z), 2). Let
Gi(z, w)=Rj(—z,2z,w). Then G=(G,, ..., G,) is a holomorphic mapping
on W(M, C,€) and G is continuous on W(M, C, ¢)UD. Hence (3.5) implies

F(z,w)=G(z,w) (4.1)

for (z,w) in M*NQ. Here Q is some neighborhood of 0 in C”. Since M*
is a real analytic totally real n-dimensional manifold, there is some neigh-
borhood €30 in C” and a biholomorphism ¥: Q — Q with ¥(0) =0 such
that ¥(M*NQ)=R"NQ (see for instance [W1; W3]). Evidently, the image
Y (W(M, C, €)) contains some wedge of the form (R”+iC)NQ where € is an
open non-empty cone in R”. The mappings F(¥ ~ 1(x)) and G(¥ ~1(x)) are
holomorphic for x in (R"+iC)NQ and x in (R"—iC)NQ, respectively. Both
mappings are also continuous on R”N{ and their values coincide on R*N$
in view of (4.1). By the usual “edge-of-the-wedge theorem” [R1], Fo¥ (and,
certainly, ') holomorphically continues to some neighborhood of 0 in C”.

]
ReEMARK. Of course, this claim holds when M and M’ are real analytic
manifolds of the form (1.2) and (1.5), respectively, with the third-degree
terms. The proof is the same with evident modifications; one can use the
implicit function theorem instead of Cramer’s rule. In such a form this claim
generalizes well-known results [Le; P1; W1; W3] on the analytic continua-
tion of holomorphic mappings.

S. Segre Surfaces and Partial Rationality

Fix a point ({, w) in C”, where { € C* and w e C¢, and define an affine linear
subspace of C” of the form
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Q(f& w) = [(Z’ W)E Cn: wH+o= <L(Z)> g-:)}

The subspace is said to be the Segre surface of M corresponding to (¢, v).
(See [Se] and [W2].)
The crucial point of our proof is the following lemma.

LeEMMA. For each ({, w) belonging to some neighborhood of 0 in C", the
restriction F|Q({, w)=F(z,{L(z), {)—&) extends to a rational mapping
inz.

Proof. (1.2) and (3.5) imply that
Fj(z,{L(z), 2y — W) = R;(z, 2, W) (5.1)

for (z,w) in M N{. Here ﬁj(z, Z, W) =R;(Z, z, w). Hereafter we omit the
tilde in this notation.

Since all functions in (5.1) are analytic, functions F;(§, (L(£), {) — &) and
R;(£, {, @) are anti-holomorphic in some neighborhood of 0 in C"**, where
we take £ in C*. Then (5.1) implies that these functions coincide on the
manifold

M={(,§w)eC¥XCxChE=¢, (§,w)e M).

Evidently, M is generic in some neighborhood of 0 in C"**. Hence the
uniqueness theorem of [P2] or [R2] implies that

in some neighborhood of 0 in C"**, Therefore
f?j(zs (L(Z)’ f) _GJ) = Rj(z3 fs (D)

for every fixed (¢, w). But each R;(z, ¢, @) is a rational function in z. E]

6. Completion of the Proof

Using the Lemma, we reduce our proof to the classical theorem on the sepa-
rate rationality [BM]. This idea together with the reflection principle has
been used by several authors (see e.g. [P1] and [Fo].) Below we reproduce
exactly the arguments of Forstneric¢ [Fo].

From the Lemma, choose a neighborhood €30 of the form Q=U XV,
where UC C* and V'C C? Fix ¢* in U. Then Segre surfaces Q({*, w) for
w in V form a family of parallel complex k-dimensional affine subspaces.
These planes fill some full neighborhood of 0 in C”. Let ¢ in Q({*, 0) be an
arbitrary complex line through 0. Then for each p in C” in some neighbor-
hood of 0, the line (p+¢) lies in some Q({*, w). According to the Lemma,
the restriction F |(p+t) extends to a complex rational mapping on (p+!)
for each line (p+1).

Consider a basis 7,({), v=1, ..., k, of the complex linear subspace Q(¢, 0),
where
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1,(§)=(e,[<L(e,), )
= (Oa seey 1: cesy Os <L1(ev)s f): seey <Ld(ev)! E>)'

Here 1 is in the »th position and e,, »=1, ..., k, is a standard basis of C*.
We shall show that the vectors ¢,({), for »=1,..., k and { in U, span C".

Assume that this is not true. Then there exists some « in C"\{0} such that,
for all { and »,

d
(o, LN =0, + D (Lj(e,), f)akﬂ'
j=1

d
=Ol,,+< _21 ak+ij(ev)s §:>=O'
j‘:

Since {in U is arbitrary, we obtain that o, = 0 and Ej-"zl oy jLi(e,)=0for
v=1,..., k. Hence the operators L;, j =1, ..., d, are linearly dependent. This
contradicts the condition that the Levi cone of M has non-empty interior.

Thus, there exist linearly independent complex lines ¢, ..., t" containing 0
and such that each restriction F | (p+ /) extends to a complex rational map-
ping on all of (p+¢/) for every p in some neighborhood of 0. Some nonde-
generate C-linear transformation of coordinates maps the ¢/, j=1,...,n,
onto coordinate lines. Then, by the theorem on the separate rationality, F

extends to a complex rational mapping on all C”. This completes the proof.
O
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