n-Harmonic Morphisms in Space Are Möbius Transformations

Juan J. Manfredi* & Vincenzo Vespri

1. Introduction

Let Ω and Ω' be open subsets of \mathbb{R}^n . A mapping $f: \Omega \to \Omega'$ is a harmonic *motion* if whenever $u: \Omega' \to \mathbb{R}^n$ is a harmonic function so too is $v = u \circ f$. We say that f is a harmonic *morphism* if f is continuous and $u \circ f$ is harmonic in $f^{-1}(\mathbf{D})$ whenever $u: \mathbf{D} \to \mathbf{R}$ is harmonic, where \mathbf{D} is an arbitrary open subset of Ω' . Clearly every harmonic morphism is a harmonic motion.

It is easy to see that in the one dimension n=1, harmonic motions are simply affine functions. When $n \ge 2$, by considering the harmonic functions x_i , $i=1,\ldots,n$, and x_ix_j , $x_i^2-x_j^2$ for $i\ne j$, we obtain that each component f_i of f is harmonic, $\langle \nabla f_i, \nabla f_j \rangle = 0$, and $|\nabla f_i| = |\nabla f_j|$ for $i\ne j$. Therefore the differential of f, Df(x), must be a conformal matrix for all $x \in \Omega$. In two dimensions n=2 we conclude that f is analytic or anti-analytic on each component of Ω .

In higher dimensions $n \ge 3$, a classical theorem of Liouville implies that f must be a Möbius map on each component of Ω . Therefore, f can be expressed as a finite composition of similarities (rotations, translations, and reflections on planes) and inversions on spheres. Since these last inversions are not harmonic we conclude that, on each component of Ω ,

$$f(x) = \lambda \Theta x + b \tag{1}$$

for certain $\lambda \in \mathbb{R}$, $b \in \mathbb{R}^n$, and Θ an orthogonal matrix. In particular, note that in this Euclidean case harmonic motions are also harmonic morphisms.

More details can be found in [GH], where homeomorphic motions are treated and nonpositive metrics are included, and in [Fu] and [Is], where harmonic morphisms between Riemannian manifolds are studied. Motions of linear partial differential equations with constant coefficients are studied in [Ru]. Finally, a treatment of harmonic morphism from the point of view of abstract potential theory is in [CC].

In this paper we study p-harmonic morphisms. These are defined as above by requiring that they preserve p-harmonic functions, which are solutions of the p-Laplace equation

Received August 26, 1992. Revision received January 13, 1993.

^{*}Research partially supported by NSF grant DMS-9101864.

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0, \tag{2}$$

where 1 . A corresponding notion of*p* $-harmonic motion is defined similarly. The functions <math>x_i$, i = 1, ..., n, are still *p*-harmonic and so must be the components of f. It is known that *p*-harmonic motions are $C_{loc}^{1,\alpha}$ (see [Di; Le]). Thus *p*-harmonic motions must have Hölder continuous derivatives. We remark that it is not known to us whether every *p*-harmonic motion is a *p*-harmonic morphism, although one would certainly conjecture so.

Recently, Heinonen, Kilpeläinen, and Martio [HKM] have studied harmonic morphisms in the general framework of nonlinear potential theory, where it was well known that quasiregular mappings provide examples of A_n -harmonic morphisms. We refer to [HKM] for the general definition of A_p -harmonic morphisms. For our purposes it is enough to remark that p-harmonic morphisms in our sense are A_p -harmonic morphisms for $A(x, h) = |h|^{p-2}h$. The striking result proved in [HKM] is that every sense-preserving A_n -harmonic morphism is a K-quasiregular mapping. Moreover, many properties of A_p -harmonic morphisms are discussed. Our main result, Theorem 1 in Section 1, complements the theory developed in [HKM] by proving that sense-preserving n-harmonic morphisms are indeed 1-quasiregular mappings, and thus Möbius transformations if $n \ge 3$.

The key fact used both in [HKM] and in this paper is that $\log(1/|f(x)|)$ must be *n*-harmonic in the complement of $f^{-1}(0)$, since $\log(1/|x|)$ is *n*-harmonic away from 0. One then uses estimates for the growth of singular *n*-harmonic functions near their singularity to derive properties of f. Since the behavior of solutions of (2) is much better known than that of solutions of the A_n -harmonic equation, we are able to obtain more information in that case, allowing us to conclude that K is indeed 1.

In Section 2 we discuss the case $1 . It is proved in [HKM] that general <math>A_p$ -morphisms are open mappings if they are not constants for 1 . In Theorem 2 we establish that discrete <math>p-harmonic morphisms are similarities. Therefore, on each component of Ω they are expressed as in (1). Finally, in Section 3 we extend Theorem 2 to discrete p-harmonic morphisms for p > n.

The authors would like to thank GNAFA (CNR) for supporting the visit of the first author to Italy.

2. The Case p = n

THEOREM 1. Let $f: \Omega \to \Omega'$ be a nonconstant sense-preserving n-harmonic morphism. Then f is a 1-quasiregular mapping. In particular, f is a Möbius transformation if $n \ge 3$.

We have already established that $f \in C^{1,\alpha}_{loc}(\Omega)$, and by [HKM] we know that f is K-quasiregular for some $K \ge 1$. Choose $x \in \Omega$. We will prove that

$$Df(x)^{t}Df(x) = \lambda(x)I, \tag{3}$$

where $\lambda(x) \in \mathbf{R}$. Without loss of generality we may assume that x = 0, f(0) = 0, $0 \in \Omega'$, and Df(0) is not the zero matrix.

Set $u(x) = \log(1/|x|)$ and $v(x) = \log(1/|f(x)|)$. Since u is n-harmonic in $\Omega \setminus \{0\}$, we conclude that v is n-harmonic in $\Omega \setminus f^{-1}(0)$. The set $f^{-1}(0)$ is discrete since f is quasiregular. Therefore we can find a small ball B centered at 0 such that v is a nonnegative n-harmonic function in the punctured ball $B \setminus \{0\}$. Such a v is termed a singular n-harmonic function; its asymptotic behavior at the singularity has been obtained by Kichenassamy and Veron [KV] who extended previous work by Serrin [Se], where it is proven that u/v is bounded at 0. Then, Theorem 1.1 of [KV] implies that there exists $\gamma \in \mathbf{R}$ such that

$$v(x) - \gamma u(x)$$
 is bounded in $B \setminus \{0\}$ (4)

and

$$\lim_{x \to 0} |x| \nabla (v(x) - \gamma u(x)) = 0. \tag{5}$$

Note that necessarily $\gamma \neq 0$ since otherwise 0 would be a removable singularity for v. We now use the particular form of u and v to extract information about f from (4) and (5).

Lemma 1. There exists a constant C > 0 such that

$$\frac{1}{C}|x| \le |f(x)| \le C|x| \tag{6}$$

for $x \in B \setminus \{0\}$. Moreover, the constant γ in (4) is 1.

Proof. By (4) we have

$$\left|\log \frac{1}{|f(x)|} - \gamma \log \frac{1}{|x|}\right| = \left|\log \frac{|x|^{\gamma}}{|f(x)|}\right| \le C_2$$

for some $C_2 > 0$. If $|x|^{\gamma} \ge |f(x)|$ we deduce that

$$1 \le \frac{|x|^{\gamma}}{|f(x)|} \le e^{C_2}.$$

Otherwise $|x|^{\gamma} < |f(x)|$ and we have

$$1 \ge \frac{|x|^{\gamma}}{|f(x)|} \ge e^{-C_2}.$$

Therefore, in either case, we obtain

$$e^{-C_2}|x|^{\gamma} \le |f(x)| \le e^{C_2}|x|^{\gamma}.$$
 (7)

Since f is $C^{1,\alpha}$ at 0, for each β with $0 < \beta < \alpha$ we have

$$f(x) = Df(0) \cdot x + o(|x|^{1+\beta}). \tag{8}$$

Because of the hypothesis $Df(0) \neq 0$, the lemma follows from (7) and (8).

LEMMA 2. For each $x \in \mathbb{R}^n$ we have

$$|D^{t}f(0)Df(0)x||x| = |Df(0)x|^{2}.$$
(9)

Proof. In our situation the limit (5) becomes

$$\lim_{x \to 0} |x| \left| \frac{Df(x)^t \cdot f(x)}{|f(x)|^2} - \frac{x}{|x|^2} \right| = 0.$$
 (10)

Next we calculate and make use of (8). By squaring (10) and using Lemma 1, we obtain

$$\lim_{x \to 0} \frac{|x|^2 |Df(x)^t f(x)|^2 - 2|f(x)|^2 \langle Df(x)^t f(x), x \rangle + |f(x)|^4}{|x|^5} = 0.$$
 (11)

Choosing β so that $0 < \beta < \alpha$, we have

$$Df(x)^{t} = Df(0)^{t} + o(|x|^{\beta}).$$
 (12)

Using (8) and (12), we obtain the following expansions for the numerator in (11):

$$|x|^{2}|Df(x)^{t}f(x)|^{2} = |x|^{2}|D^{t}f(0)Df(0)x|^{2} + o(|x|^{4+\beta}),$$
(13)

$$-2|f(x)|^{2}\langle Df(x)^{t}f(x), x\rangle = -2\langle D^{t}f(0)Df(0)x, x\rangle |Df(0)x|^{2} + o(|x|^{4+\beta}),$$
(14)

and

$$|f(x)|^4 = |Df(0)x|^4 + o(|x|^{4+\beta}).$$
(15)

From (11) we deduce that given $\epsilon > 0$ we can find a small r > 0 such that for 0 < |x| < r,

$$||x|^2|D^t f(x)Df(x)|^2 - 2|f(x)|^2 \langle D^t f(x)f(x), x \rangle + |f(x)|^4| \le \epsilon |x|^5.$$

Using now (13), (14), and (15), we get

$$||x|^{2}|D^{t}f(0)Df(0)x|^{2} - 2\langle D^{t}f(0)Df(0)x, x\rangle|Df(0)x|^{2} - |Df(0)x|^{4}|$$

$$\leq \epsilon |x|^{5} + C_{3}|x|^{4+\ell}$$

for some constant $C_3 > 0$. Therefore we obtain

$$\lim_{x \to 0} \frac{|D^{t}f(0)Df(0)x|^{2}}{|x|^{2}} - 2\frac{\langle D^{t}f(0)Df(0)x, x \rangle}{|\dot{x}|^{4}} |Df(0)x|^{2} + \frac{|Df(0)x|^{4}}{|x|^{4}} = 0.$$
 (16)

Note that $\langle D^t f(0)Df(0)x, x \rangle |Df(0)x|^2 = |Df(0)x|^4$ and that the expression inside the limit in (16) is homogeneous of degree 0 in x to conclude (9).

LEMMA 3. Let A be an $n \times n$ matrix such that

$$|A^tAx||x| = |Ax|^2$$

for all $x \in \mathbb{R}^n$. Then $A^t A = \lambda I$ for some $\lambda \in \mathbb{R}$.

Proof. If $A^t A x \neq 0$ then we must have

$$\frac{\langle A^t A x, x \rangle}{|A^t A x||x|} = 1.$$

Thus either A^tAx is parallel to x or $A^tAx = 0$, which implies $A^tAx = \lambda_x x$ for some scalar $\lambda_x \in \mathbf{R}$ depending on x. Write $A^tA = O^{-1}DO$, where O is an orthogonal matrix and D a diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$. We then have $DOx = \lambda_x Ox$. Therefore, for each $i = 1, \ldots, n, \lambda_i (Ox)_i = \lambda_x (Ox)_i$. Given $x \in \mathbf{R}^n$ not zero, at least one of $(Ox)_i$ must be nonzero. Thus $\lambda_x = \lambda_i$ for some i. Choose $x \in \mathbf{R}^n$ such that $(Ox)_i \neq 0$ for all $i = 1, \ldots, n$. We conclude that $\lambda_i = \lambda_i = \lambda$ for all i and j and that $\lambda_x = \lambda$ for all $x \in \mathbf{R}^n$.

Theorem 1 now follows from Lemmas 1, 2, and 3.

REMARK 1. Our proof uses essentially the fact that f is a discrete mapping. As a matter of fact our proof shows that discrete n-harmonic morphisms are 1-quasiregular mappings. It is not known whether n-harmonic morphisms must be sense-preserving or sense-reversing or whether they are discrete. However, as shown in [HKM] in the range n-1 , <math>n-harmonic morphisms are discrete if and only if they are sense-preserving or sense-reversing.

3. The Case 1

THEOREM 2. Let $f: \Omega \to \Omega'$ be a discrete p-harmonic morphism, where $1 . Then on each component of <math>\Omega$ we have

$$f(x) = \lambda \Theta x + b$$

for certain $\lambda \in \mathbb{R}$, $b \in \mathbb{R}^n$, and Θ an orthogonal matrix.

Proof. The proof of this theorem is similar to the proof of Theorem 1. Without loss of generality we assume that Ω is connected, $0 \in \Omega$, $f(0) = 0 \in \Omega'$. Set $u(x) = |x|^{(p-n)/(p-1)}$ and $v(x) = |f(x)|^{(p-n)/(p-1)}$. Since u is p-harmonic in $\Omega \setminus \{0\}$, we conclude that v is p-harmonic in $\Omega \setminus \{0\}$. By the discreteness hypothesis we can find a small ball B centered at zero such that v is a nonnegative p-harmonic function in the punctured ball $B \setminus \{0\}$. Once again we appeal to Theorem 1.1 in [KV] to infer the existence of $\gamma \in \mathbb{R} \setminus \{0\}$ such that

$$v(x) - \gamma u(x)$$
 is bounded on $B \setminus \{0\}$ (17)

and

$$\lim_{x \to 0} |x|^{(n-1)/(p-1)} |\nabla(v(x) - \gamma u(x))| = 0.$$
 (18)

Note that in this case (17) immediately implies that γ is positive and

$$\lim_{x \to 0} \frac{|f(x)|}{|x|} = \gamma^{(p-1)/(p-n)}.$$
 (19)

The estimate for the gradients (18) now becomes

$$\lim_{x \to 0} |x|^{(n-1)/(p-1)} \left| \left(\frac{p-n}{p-1} \right) |f(x)|^{(p-n)/(p-1)-2} D^t f(x) f(x) - \gamma \left(\frac{p-n}{p-1} \right) |x|^{(p-n)/(p-1)-2} x \right| = 0.$$
 (20)

Using (19), we rewrite (20) as follows:

$$\lim_{x \to 0} \frac{|x|^{2 + (n-p)/(p-1)} Df^{t}(x) \cdot f(x) - \gamma |f(x)|^{2 + (n-p)/(p-1)} x}{|x|^{3 + (n-p)/(p-1)}} = 0.$$

Therefore, given any $\epsilon > 0$, there exists r > 0 such that if 0 < |x| < r we have

$$\left| |x|^{2+(n-p)/(p-1)} Df^{t}(x) f(x) - \gamma |f(x)|^{2+(n-p)/(p-1)} x \right| \le \epsilon |x|^{3+(n-p)/(p-1)},$$

which combined with (8) and (12) becomes

$$||x|^{2+(n-p)/(p-1)}Df^{t}(0)Df(0)x-\gamma|f(x)|^{2+(n-p)/(p-1)}x|$$

$$\leq \epsilon |x|^{3+(n-p)/(p-1)}. \quad (21)$$

Dividing both terms by $|x|^{2+(n-p)/(p-1)}$, we get

$$\left| Df^{t}(0)Df(0)x - \gamma \left(\frac{|f(x)|}{|x|} \right)^{2 + (n-p)/(p-1)} x \right| \le \epsilon |x|. \tag{22}$$

With the help of (19) we conclude that

$$Df'(0)Df(0)x = \gamma^{2((p-1)/(p-n))}x$$

for all $x \in \mathbb{R}^n$. Setting $\mu = \gamma^{(p-1)/(n-p)}$, we deduce that $\mu Df(0)$ is an orthogonal matrix.

We have established that for each $x \in \Omega$ there is a positive number μ_x such that $\mu_x Df(x)$ is an orthogonal matrix. At this point we need the fact that open discrete maps in any dimension are either sense-preserving or sense-reversing [Vä], and we will assume that f is sense-preserving, the other case being similar. Thus, we conclude that f is a 1-quasiregular mapping.

Suppose now that $n \ge 3$. Then f must be a Möbius transformation and thus can be expressed as a finite composition of rotations, translations, and inversions on spheres. Since the composition of two p-harmonic morphisms is again a p-harmonic morphism and the components of an inversion on a sphere are not p-harmonic for $p \ne n$, we conclude that these inversions cannot occur. Therefore f must be a similarity, proving Theorem 2 in this case.

It remains to settle the case n=2. In this case f must be a holomorphic function. Thus the components of f must be both harmonic and p-harmonic, where 1 . Write <math>f = u + iv and rewrite the p-Laplacian as

$$\operatorname{div}|\nabla u|^{p-2}\nabla u = |\nabla u|^{p-2} \left\{ \Delta u + (p-2) \frac{\Delta_{\infty} u}{|\nabla u|^2} \right\},\tag{23}$$

where

$$\Delta_{\infty} u = \sum_{i,j=1}^{2} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \frac{\partial^2 u}{\partial x_i \partial x_j}$$

is the so-called infinite Laplacian. Note that $\nabla u \neq 0$ so that (23) makes sense pointwise. If u is both harmonic and p-harmonic, equality (23) implies that $\Delta_{\infty} u = 0$. Aronsson [Ar, Thm. 2] proves that any function which is both harmonic and infinite-harmonic must be either linear or

$$u(x, y) = a \arctan\left(\frac{y - y_o}{x - x_o}\right) + b$$
 for some $a, b \in \mathbb{R}$ and $(x_o, y_o) \in \mathbb{R}^2$.

In the latter case we may assume without loss of generality that $u(x, y) = \arctan(y/x)$. Therefore $v(x, y) = \log(x^2 + y^2)^{1/2} + c$ for some $c \in \mathbb{R}$, since v is the conjugate function of u. An elementary calculation shows that

$$\operatorname{div}(|\nabla v|^{p-2}\nabla v) = (2-p)(x^2+y^2)^{-p/2}.$$
 (24)

Therefore v cannot be p-harmonic, since $p \neq 2$. We conclude that u and v must both be linear functions, thereby proving Theorem 2.

4. The Case p > n

Theorem 3. Let $f: \Omega \to \Omega'$ be a discrete p-harmonic morphism where p > n. Then on each component of Ω we have

$$f(x) = \lambda \Theta x + b$$

for certain $\lambda \in \mathbb{R}$, $b \in \mathbb{R}^n$, and Θ an orthogonal matrix.

Proof. It follows from Theorem 2.1 in [HKM] that f must be open. As in the proof of Theorem 2, we may assume that Ω is connected, f is orientation-preserving, $0 \in \Omega$, and $f(0) = 0 \in \Omega'$. We define u and v as in the proof of Theorem 2. Observe now that (p-n)/(p-1) > 0, so that u and v are bounded in a neighborhood of zero. It follows from (8) that for some $C_4 > 0$,

$$|f(x)| \leq C_4|x|;$$

hence

$$|v(x)| \le C_4^{(p-n)/(p-1)} |u(x)|.$$

We can now apply the corresponding isotropy result in Remark 1.6 of [KV] to conclude that (19) and (20) also hold in this case. At this point the rest of the proof continues as in Theorem 2.

References

- [Ar] G. Aronsson, On the partial differential equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Ark. Mat. 7 (1968), 395–425.
- [CC] C. Constantinescu and A. Cornea, *Compacitifications of harmonic spaces*, Nagoya Math. J. 25 (1965), 1–57.

- [Di] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827–850.
- [Fu] B. Fuglede, *Harmonic morphisms between Riemannian manifolds*, Ann. Inst. Fourier (Grenoble) 28 (1978), 107-144.
- [GH] F. Gehring and H. Haahti, *The transformations which preserve the harmonic functions*, Ann. Acad. Sci. Fenn. Ser. A I Math. 293 (1960), 1-12.
- [HKM] J. Heinonen, T. Kilpeläinen, and O. Martio, *Harmonic morphisms in non-linear potential theory*, Nagoya Math. J. 125 (1992), 115–140.
 - [Is] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), 215–229.
 - [KV] S. Kichenassamy and L. Veron, Singular solutions of the p-Laplace equation, Math. Ann. 275 (1986), 599-615.
 - [Le] J. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-858.
 - [Ru] L. Rubel, *The motions of a partial differential equation*, J. Differential Equations 48 (1983), 177–188.
 - [Se] J. Serrin, *Isolated singularities of solutions of quasilinear equations*, Acta Math. 113 (1965), 219–240.
 - [Vä] J. Väisälä, *Discrete open mappings on manifolds*, Ann. Acad. Sci. Fenn. Ser. A I Math. 392 (1966), 1-10.

Juan J. Manfredi Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260 Vincenzo Vespri
Dipartimento di Matematica
Università di Pavia
Via Strada Nuova 65
27100 Pavia
Italy