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1. Introduction

Let Q and Q’ be open subsets of R”. A mapping f:  — Q’ is a harmonic mo-
tion if whenever u: Q’— R" is a harmonic function so too is v = u-f. We say
that f is a harmonic morphism if f is continuous and u-f is harmonic in
f~Y(D) whenever u: D — R is harmonic, where D is an arbitrary open sub-
set of (. Clearly every harmonic morphism is a harmonic motion.

It is easy to see that in the one dimension # =1, harmonic motions are
simply affine functions. When n = 2, by considering the harmonic functions
X, i=1,...,n, and x;Xx;, x,-z—xjZ for i + j, we obtain that each component f;
of f is harmonic, {Vf;, Vf;> =0, and | Vf;| =|Vf;| for i # j. Therefore the dif-
ferential of f, Df(x), must be a conformal matrix for all xe Q. In two di-
mensions # =2 we conclude that f is analytic or anti-analytic on each com-
ponent of €.

In higher dimensions n = 3, a classical theorem of Liouville implies that f
must be a Mobius map on each component of Q. Therefore, f can be ex-
pressed as a finite composition of similarities (rotations, translations, and
reflections on planes) and inversions on spheres. Since these last inversions
are not harmonic we conclude that, on each component of ,

S(x)=A6x+b (1)

for certain Ae R, beR”, and O an orthogonal matrix. In particular, note
that in this Euclidean case harmonic motions are also harmonic morphisms.

More details can be found in [GH], where homeomorphic motions are
treated and nonpositive metrics are included, and in [Fu] and [Is], where
harmonic morphisms between Riemannian manifolds are studied. Motions
of linear partial differential equations with constant coeflicients are studied
in [Ru]. Finally, a treatment of harmonic morphism from the point of view
of abstract potential theory is in [CC].

In this paper we study p-harmonic morphisms. These are defined as above
by requiring that they preserve p-harmonic functions, which are solutions
of the p-Laplace equation
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div(|Vu|P~2Vu) =0, (2)

where 1 < p <oo. A corresponding notion of p-harmonic motion is defined
similarly. The functions x;, i =1, ..., n, are still p-harmonic and so must be
the components of f. It is known that p-harmonic motions are C|;2 (see [Di;
Le]). Thus p-harmonic motions must have Holder continuous derivatives.
We remark that it is not known to us whether every p-harmonic motion is a
p-harmonic morphism, although one would certainly conjecture so.

Recently, Heinonen, Kilpeldinen, and Martio [HKM] have studied har-
monic morphisms in the general framework of nonlinear potential theory,
where it was well known that quasiregular mappings provide examples of
A,-harmonic morphisms. We refer to [HKM] for the general definition of
Ap-harmonic morphisms. For our purposes it is enough to remark that p-
harmonic morphisms in our sense are A,-harmonic morphisms for A(x, #) =
|h|P ~2h. The striking result proved in [HKM] is that every sense-preserving
A,-harmonic morphism is a K-quasiregular mapping. Moreover, many prop-
erties of A,-harmonic morphisms are discussed. Our main result, Theorem 1
in Section 1, complements the theory developed in [HKM] by proving that
sense-preserving n-harmonic morphisms are indeed 1-quasiregular mappings,
and thus Mobius transformations if #» = 3.

The key fact used both in [HKM] and in this paper is that log(1/] f(x)|)
must be #-harmonic in the complement of f~1(0), since log(1/ |x|) is n-har-
monic away from 0. One then uses estimates for the growth of singular 7-
harmonic functions near their singularity to derive properties of f. Since the
behavior of solutions of (2) is much better known than that of solutions of
the A,-harmonic equation, we are able to obtain more information in that
case, allowing us to conclude that K is indeed 1. ‘

In Section 2 we discuss the case 1 < p < n. It is proved in [HKM] that gen-
eral A,-morphisms are open mappings if they are not constants for 1< p <n.
In Theorem 2 we establish that discrete p-harmonic morphisms are similar-
ities. Therefore, on each component of Q they are expressed as in (1). Finally,
in Section 3 we extend Theorem 2 to discrete p-harmonic morphisms for
p>n. | : |

The authors would like to thank GNAFA (CNR) for supporting the visit
of the first author to Italy.

2. The Case p=n

THEOREM 1. Let f:Q — Q' be a nonconstant sense-preserving n-harmonic
morphism. Then fis a 1-quasiregular mapping. In particular, fis a M6bius
transformation if n=3.

We have already established that fe CL%(Q), and by [HKM] we know that

loc
[ is K-quasiregular for some K = 1. Choose x € (2. We will prove that

Df(x)'Df(x) =Xx)], 3)
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where A(x) € R. Without loss of generality we may assume that x =0, f(0) =
0, 0 e (Y, and Df(0) is not the zero matrix.

Set u(x)=1log(1/|x|) and v(x)=1log(1/|f(x)]). Since u is n-harmonic in
Q’\ {0}, we conclude that v is n-harmonic in @\ £ ~1(0). The set £ ~!(0) is dis-
crete since f is quasiregular. Therefore we can find a small ball B centered at
0 such that v is a nonnegative n-harmonic function in the punctured ball
B\{0}. Such a v is termed a singular n-harmonic function; its asymptotic
behavior at the singularity has been obtained by Kichenassamy and Veron
[KV] who extended previous work by Serrin [Se], where it is proven that u/v
is bounded at 0. Then, Theorem 1.1 of [KV] implies that there exists y e R
such that

v(x) —~yu(x) is bounded in B\ {0} 4)
and
lim | x| V(v(x) —yu(x)) =0. (5)
x—0

Note that necessarily +y # 0 since otherwise 0 would be a removable singu-
larity for v. We now use the particular form of u# and v to extract informa-
tion about f from (4) and (5).

LeEMMA 1.  There exists a constant C > 0 such that
1
—C—|x|5]f(x)|sC|x| (6)
Jor xe B\{0}. Moreover, the constant vy in (4) is 1.

Proof. By (4) we have

X"

log —— —vlog —|=|log ——
If( )| | | Gl =
for some C, > 0. If |x|*=| f(x)| we deduce that
1< X" _ e
/]
Otherwise | x|Y <| f(x)| and we have
|x|7 > e=Ca.
ST
Therefore, in either case, we obtain
e~ C2 x| < | f(x)| < e x| . (7

Since f is C* at 0, for each 8 with 0 < 8 <« we have ‘
f(x)=Df(0)-x+o(|x|'*?). (8)

Because of the hypothesis Df(0) # 0, the lemma follows from (7) and (8).
O
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LEMMA 2. For each x € R" we have

|D'f(0)Df(0)x||x|=|Df(0)x|% 9)

Proof. In our situation the limit (5) becomes
: Df(x)'-f(x) «x
lim|x — =0. (10)
kvl I TTEe R e

Next we calculate and make use of (8). By squaring (10) and using Lemma 1,
we obtain

i PRS2l f (DS F (), )+ S _
x—0 |x|5
Choosing 8 so that 0 < 8 < «, we have
Df(x)'=Df(0) +o(|x|?). (12)

Using (8) and (12), we obtain the following expansions for the numerator
in (11):

0. (11)

|x)2| Df (x) f(x)|> = IXIle’f(O)Df(O)x|2+O(le“ﬁ), (13)
—2| f(x)|HDf(x)!f(x), xy = —2(D'f(0) Df (0)x, x)| Df (0) x>
+o(|x|**#), (14)
and
| £Co)* = |DfO)x|* +o(|x]**5). (15)

From (11) we deduce that given ¢ > 0 we can find a small r > 0 such that for
o<|x|<r,

||| D f(x) Df(x) |2 = 2] FO)AD F(x).f (x), X3 +| f0)|*| < ] x].
Using now (13), (14), and (15), we get
||X|2|D*£(0) Df (0)x|> — 2¢D*F(0) Df (0)x, x)| Df (0)x|>— | Df (0)x |*|

<e|x]P+ Cs|x|**F
for some constant C; > 0. Therefore we obtain

t 2 t
i 1P f(0|)§{(0)x' 4D f(O)Iglj:(O)x, % Do)l |
x—0 i
Df(0)x|*
A0Sy g

Note that {D'f(0)Df(0)x, x)|Df(0)x|? = |Df(0)x|* and that the expression
inside the limit in (16) is homogeneous of degree 0 in x to conclude (9). [

LEMMA 3. Let A be an nX n matrix such that
|A"Ax||x| = |Ax|*
Sor all x e R". Then A'A =\ for some AeR.
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Proof. If A'Ax # 0 then we must have

(A'Ax, x) _
|A'Ax||x|

Thus either A’Ax is parallel to x or A’Ax =0, which implies A’Ax = A, x for
some scalar A, € R depending on x. Write 4’A= O0~'DO, where O is an or-
thogonal matrix and D a diagonal matrix with entries A,...,A,. We then
have DOx = A, Ox. Therefore, for each i =1, ..., n, A;(Ox); =A,(Ox);. Given
x € R" not zero, at least one of (Ox); must be nonzero. Thus A, = A; for some
i. Choose xeR” such that (Ox);# 0 for all i =1, ..., n. We conclude that A\; =
Aj=Afor all i and j and that A, = for all xe R". ]

Theorem 1 now follows from Lemmas 1, 2, and 3.

REMARK 1. Our proof uses essentially the fact that f is a discrete mapping.
As a matter of fact our proof shows that discrete #n-harmonic morphisms are
1-quasiregular mappings. It is not known whether n-harmonic morphisms
must be sense-preserving or sense-reversing or whether they are discrete.
However, as shown in [HKM] in the range n —1 < p < n, n-harmonic morph-
isms are discrete if and only if they are sense-preserving or sense-reversing.

3. The Case 1< p<n

THEOREM 2. Let f:Q— Y be a discrete p-harmonic morphism, where 1 <
p<n. Then on each component of Q we have

S(x)=A0x+b

for certain \e R, beR", and © an orthogonal matrix.

Proof. The proof of this theorem is similar to the proof of Theorem 1.
Without loss of generality we assume that € is connected, 0 Q, f(0)=0€Q".
Set u(x) =|x| P~ P~ and v(x) =| f(x)|?~™/P=D, Since u is p-harmonic
in 2\ {0}, we conclude that v is p-harmonic in Q\ f(0). By the discreteness
hypothesis we can find a small ball B centered at zero such that v is a non-
negative p-harmonic function in the punctured ball B\ {0}. Once again we
appeal to Theorem 1.1 in [KV] to infer the existence of v € R\ {0} such that

v(x) —~yu(x) is bounded on B\ {0} 17)
and
lim |x |~ D2 =D|v(v(x) —yu(x))| = 0. (18)
x—0

Note that in this case (17) immediately implies that -y is positive and

lim M = ,Y(p—l)/(p—n). (19)
x—0 |x|
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The estimate for the gradients (18) now becomes

limlxl(n—l)/(p—l)

x—0

p—n
-—-fy ——

7 |x|(p"”)/“’“)‘2x‘ =0. (20)

Using (19), we rewrite (20) as follows:

im |XI2+(n—p)/(P—1)fo(x).f(x)_,Y]f(x)|2+(n—p)/(p_1)x _

1 |x|3+(n—p)/(p—l)

x—0

0.

Therefore, given any e > 0, there exists r > 0 such that if 0 <|x|<r we have
|le2+(n—p)/(p—1)th(x)f(x) _,Ylf(x)|2+(n—p)/(p—l)x| < E|x|3+(n—p)/(p—1),
which combined with (8) and (12) becomes

IIx|2+(n-—p)/(p—l)th(O)Df(o)x_,Ylf(x)|2+(n—p)/(p—l)x|
SEIxI3+(n—p)/(p—1)‘ (1)

Dividing both terms by |x|>*"=P/(7=1) " ye get

lf(x)l)“‘"*WW-”

|x|

With the help of (19) we conclude that
DfY(0)Df(0)x = 2p=D/(p=m)y

for all x e R”™. Setting p =P~ V/("=P) we deduce that pDf(0) is an orthogo-
nal matrix.

We have established that for each x € Q there is a positive number p, such
that u, Df(x) is an orthogonal matrix. At this point we need the fact that
open discrete maps in any dimension are either sense-preserving or sense-
reversing [Vi], and we will assume that f is sense-preserving, the other case
being similar. Thus, we conclude that f is a 1-quasiregular mapping.

Suppose now that n=3. Then f must be a Mobius transformation and
thus can be expressed as a finite composition of rotations, translations, and
inversions on spheres. Since the composition of two p-harmonic morphisms
is again a p-harmonic morphism and the components of an inversion on a
sphere are not p-harmonic for p # n, we conclude that these inversions can-
not occur. Therefore f must be a similarity, proving Theorem 2 in this case.

It remains to settle the case n=2. In this case f must be a holomorphic
function. Thus the components of f must be both harmonic and p-harmonic,
where 1 < p < 2. Write f=u+iv and rewrite the p-Laplacian as

Df’(O)Df(O)x—y( x|<elx]|. (22)

A,
div|Vu|?~2Vu = [Vu|P~2  Au+ (p—2) =22 (. 23)
| V|2

where
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2 du ou 9d%u
Apu=
“ ,',J'E___l 6x,- an ax,-axj

is the so-called infinite Laplacian. Note that Vi # 0 so that (23) makes sense
pointwise. If u is both harmonic and p-harmonic, equality (23) implies that
A,u=0. Aronsson [Ar, Thm. 2] proves that any function which is both
harmonic and infinite-harmonic must be either linear or

Y—Xo

u(x,y)=a arctan( )+ b forsomea,beRand (x,,y,) R

xO
In the latter case we may assume without loss of generality that u(x, y)=
arctan(y/x). Therefore v(x, y) = log(x>+y?)"?>+¢ for some ceR, since v
is the conjugate function of u. An elementary calculation shows that

div(|Vo|P~2Vv) = (2 —p)(x2+y?) P2, (24)

Therefore v cannot be p-harmonic, since p # 2. We conclude that # and v
must both be linear functions, thereby proving Theorem 2. d

4. The Case p>n

THEOREM 3. Let f:Q — Q' be a discrete p-harmonic morphism where p > n.
Then on each component of ! we have

f(x)=A6x+b

for certain A\e R, beR", and © an orthogonal matrix.

Proof. It follows from Theorem 2.1 in [HKM] that f must be open. As in
the proof of Theorem 2, we may assume that € is connected, f is orientation-
preserving, 0 € Q, and f(0) =0 € Q’. We define # and v as in the proof of The-
orem 2. Observe now that (p—n)/(p—1) >0, so that ¥ and v are bounded
in a neighborhood of zero. It follows from (8) that for some C,> 0,

| f(x)| = Cy4|x|;
hence
[v(x)| = CP~P=Diy(x)).

We can now apply the corresponding isotropy result in Remark 1.6 of [KV]
to conclude that (19) and (20) also hold in this case. At this point the rest of
the proof continues as in Theorem 2. ]
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