Automorphisms of Negatively Curved
Polygonal Amalgams

JOHN MEIER

1. Introduction

In [13] it was shown that the free product with amalgamation of two “nice”
(e.g. finite) groups has a very rigidly controlled automorphism group. The
argument is based on the action of the amalgamated product on its associated
tree. It is natural to ask if similar results hold for groups acting on higher-
dimensional objects. :

Polygonal amalgams of groups are the 2-dimensional.analogues, of free
products with amalgamation. By studying the actions of negatively curved
polygonal amalgams on their corresponding 1-connected 2-complexes, we are
able to describe the automorphism group of the amalgam group. In particu-
lar, we show that the automorphism group of a negatively curved polygonal
amalgam of finite groups is virtually a negatively curved polygonal amalgam
of finite groups. It follows from our study of automorphisms that the auto-
morphism group of a Coxeter group acting on the hyperbolic plane with
compact fundamental domain has outer automorphism group a finite di-
hedral group (possibly trivial), and the full automorphlsm group is itself a
Coxeter group.

We extend this analysis of automorphisms of negatively curved polygonal
amalgams to the more general case of injective endomorphisms, and show
that negatively curved polygonal amalgams of finite groups are co-Hopfian.
Because polygonal amalgams where the edge groups generate the group are
I-ended, this result supports Gromov’s statement in [11], “T" is not isomor-
phic to any of its proper subgroups. Probably, the same is true for every
word hyperbolic group I' connected at infinity.” (The italics are Gromov’s.)
We believe Gromov’s statement is still an open question for arbitrary 1-ended
word hyperbolic groups. ’

Most of the definitions can be found in Sections 2, 3, and 7. Section 4
describes triangles of groups, and the more general notion of polygons of
groups, in more detail. Sections 5 and 6 establish geometric facts about some
piecewise hyperbolic 2-complexes, analogous to standard results in the geom-
etry of the hyperbolic plane. These are then applied in the final section to
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study automorphisms of groups acting on these complexes. The main theo-
rems are in Section 8.

We note that similar results about automorphisms have been achieved for
polygonal amalgams acting on Euclidean Tits’s buildings [16].

The author thanks Ken Brown, Martin Bridson, André Haefliger, and the
referee for their many helpful comments.

2. Basic Definitions

A geodesic in a metric space (X, d) is an isometry f:I— X, where I is a
closed subinterval of R. A geodesic will often be identified with its image. A
geodesic is a geodesic segment if it is the image of 'a bounded interval. In
this case, let i(f) denote the initial point and 7(f) the terminal point of the
geodesic.

A metric space is geodesic if, for each pair of points x and y in X, there
exists a geodesic segment f with i(f)=x and 7(f)=y. If this geodesic is
unique for each pair of points in X then X is a unique geodesic space.

A geodesic polygon in a metric space (X, d) consists of n distinct points
{P1, P2, .-, D} (the corners) and geodesic segments {ey, e,, ..., e,} (the sides),
with i(e;) = p; and 7(e;) = p;,; (indices taken modulo n). The polygon is
_simple if K= U{e;} forms a simple closed curve.

Following Gromov [11], a geodesic metric space is said to be -hyperbolic
if there exists a 6 = 0 such that for all geodesic triangles in X,

supd(¢t, BUC) <24,

teA
where A, B, and C are the sides of the triangle. For example, the hyperbolic
plane is 6-hyperbolic with best possible constant log(1+Vv2) [18].

A finitely generated group I" with finite generating set S is word hyperbolic
if its Cayley graph, viewed as a metric space (each edge being isometric to
the unit interval), is é-hyperbolic. This is independent of the choice of a
finite generating set. The reader not familiar with Gromov’s notion of hyper-
bolicity is advised to read Ghys’s survey article [9] or the more detailed expo-
sitions [10] or [7]. ,

In addition to Gromov’s §-hyperbolicity, there is another notion of nega-
tive curvature in an arbitrary geodesic metric space which compares triangles
in the metric space and triangles in the hyperbolic plane. We make frequent
reference to the hyperbolic plane and denote it by H.

Let (X, d) be a geodesic metric space and let 7 be a geodesic triangle on
the three points { p;, p,, P3}. A geodesic triangle T* in H is a comparison tri-
angle for T if the side lengths of T and T* are the same. Let -* denote the
map taking the points of 7 to their associated points in 7%

A geodesic triangle T contained in X is said to satisfy the CAT(—1) in-
equality if, for every pair of points p and g of 7, dx(p, q) =dy(p* q™). The
metric space X is said to satisfy the CAT(—1) inequality if every geodesic tri-
angle in X satisfies CAT(—1). '
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A CAT(—1) metric space is 6-hyperbolic, but the converse is false. For de-
tails on the CAT inequality, see [18] or W. Ballman’s article in [10].

3. Negatively Curved Polyhedra

DeriNiTIONS. The standard n-gon (n = 3) §,, is the convex hull of the points
ek2miim [k efl,2,3,...}, in E. These points are the vertices; the lines joining
adjacent vertices are edges. A face is a vertex, an edge, or the entire convex
hull. The term proper face means either a vertex or an edge, but not the
entire convex hull.

An n-polyhedron is a topological space P together with an indexed set of
ordered pairs consisting of subsets A, of P and maps &, with the following
properties.

(1) P=UA,.

(2) &,:A,— S, is a homeomorphism.

(3) If A,NAz+#0 then &,(A,NAg) is the union of proper faces of S,,.
Furthermore, &' ®gla,na,=1d.

(4) The topology of P is the fine topology; that is, a set is open if and
only if its intersection with each cell is open.

The A, are called chambers; the pre-images of vertices and edges of the
standard n-gon are vertices and edges, respectively. Arbitrary points of an
n-polyhedron will be called points, the term “vertices” being reserved for
actual vertices in the above sense.

ExXAMPLES.

(1) Each labelled simplicial 2-complex is a 3-polyhedron. (For a defini-
tion of a labelling see [5].)

(2) The Euclidean plane tiled by regular hexagons is a 6-polyhedron.

(3) S2 can be given the structure of an n-polyhedron for n= 3 by taking
two copies of S, and identifying corresponding points and edges.

A piecewise hyperbolic n-polyhedron, or simply a PH-polyhedron, is an n-
polyhedron P such that every connected component has a complete metric
d inducing the topology of P, provided that:

(1) every component is geodesic;

(2) for each chamber A, there is an isometry from A, to some nondegen-
erate n-gon (with its interior) in A mapping edges to edges and ver-
tices to vertices; and

(3) the number of isometry classes of chambers is finite.

DEeriNiTION. Given any point p in a PH-polyhedron P, there is a natural
space of directions D,, consisting of the geodesics f with i(f) = p, modulo
the relation that f= g if f(f) = g(¢) on some interval [0, €) for e greater than
zero. The space of directions inherits a natural piecewise spherical metric
induced by the piecewise hyperbolic metric on P.
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THE LARGE LINK CoNDITION. A PH-polyhedron P satisfies the large link
condition if, for each vertex v in P, the minimal length of a loop in D, is
greater than or equal to 2.

The following theorem will be used to establish the negative curvature of
complexes we will be using in later sections.

THEOREM 3.1 (W. Ballmann, M. Bridson, M. Gromov). If P is a simply
connected PH-polyhedron satisfying the large link condition, then P satis-
fies CAT(—1) and is a unique geodesic space.

The proof of this theorem can be found in [2].

4. Negatively Curved Polygonal Amalgams

The geometric results of the next section will be applied to negatively curved
polygonal amalgams of groups, which are examples of Haefliger’s more gen-
eral notion of negatively curved complexes of groups [12].

DEFINITION. A polygon of groups is a contravariant functor from the poset
of the faces of a polygon, ordered by inclusion, to the category of groups
and monomorphisms. We make two additional assumptions about our poly-
gons of groups.

(i) A polygon of groups is filled if the intersection of two edge groups in
their associated vertex group is the group of the 2-cell. Our polygons
will always be filled.

(ii) Our polygons will also always be proper, in the sense that the func-
tor takes proper inclusions to proper monomorphisms.

DEeriNiTION. The direct limit of such a diagram of groups is a polygonal
amalgam.

Polygons of groups naturally arise from group actions on n-polyhedra. It
is well known that if a group acts on a 1-connected complex with compact
fundamental domain mapping homeomorphically to the quotient, then the
group is generated by the stabilizers of the faces of the fundamental domain
(see [4]). Thus, if a group acts on a 1-connected n-polyhedron with a cham-
ber mapping homeomorphically to the quotient, it can be presented as the
polygonal amalgam of the stabilizers of the faces of a chamber. When a poly-
gon of groups arises from such an action on a 1-connected n-polyhedron,
the polygon of groups is said to be developable.

Triangles of groups can be a rather pathological method of presenting
groups. For instance, it is not true in general that the vertex groups inject
into the triangular amalgam or that the torsion is contained in the conju-
gates of the vertex groups. It is even possible for a triangle of finite groups
to have a trivial amalgam. For examples of such behavior see [6] or [22].
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Such pathological presentations can be avoided by introducing the Ger-
sten-Stallings angles at a vertex. To clarify the discussion we index the edge
groups and vertex groups of the polygon of groups by 1, ..., n, with the edge
groups E;_; and E; injecting into the vertex group V; (indices taken modulc
n). The group of the 2-cell we denote C.

DerINITION. Into each vertex group V; there is a map, E;_;*c E; — V;. Let
2n be the minimal free product length of an element in the kernel of this
map. Then the Gersten-Stallings angle at V; is defined to be 6, = w/n.

DerINITION. If the sum of the Gersten-Stallings angles of an n-gon of
groups is less than (n—2)w, then the polygon is negatively curved and its
direct limit is a negatively curved polygonal amalgam.

For more details and intuition behind this definition, see Stallings’s paper
[21], which contains the proof of the following theorem in the case of tri-
angles of groups. It is easy to check that the results also hold for polygons
of groups.

THEOREM 4.1 (S. Gersten, J. Stallings). If ® is a negatively curved polygon
of groups then @ is developable. The associated polyhedron P admits a
PH-structure making it a CAT(—1) metric space.

The PH-structure of P is quite natural. Assign to a chamber of P the
metric structure of a polygon in A whose vertex angles are the same as the
Gersten-Stallings angles at each corner of the original polygon of groups,
and use the action of the amalgam group on P}, to extend this metric equi-
variantly to the other chambers. It follows from the definition of the Gersten-
Stallings angle that the complex satisfies the large link condition, so by The-
orem 3.1 the complex P is CAT(—1).

CoroLLARY 4.2. If T' is the direct limit of an n-gon of groups, n> 4, then
the associated complex P admits a PH-structure. Furthermore, if the ver-
tex groups are finite, I is word hyperbolic.

Proof. Because the polygon of groups is proper and filled, the Gersten-
Stallings angles at each vertex are at most w/2; hence, if there are more
than four sides, the polygon of groups is negatively curved. The second sen-
tence follows because I' acts discretely and co-compactly on a 1-connected
CAT(—1) space. ]

The corollary below can be proven using the fact that finite groups acting on
“nonpositively curved spaces” must have fixed points (see [5]). The corollary
follows because the isotropy groups of points in P, are contained in the iso-
tropy groups of the vertices of Py..

CorOLLARY 4.3. If G is a finite subgroup of a negatively curved polygonal
amalgam T, then G must fix a vertex of the associated PH-polyhedron Pp..
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Some examples in Section 7 will exploit the fact (shown below) that, for
n> 3, polygonal amalgams admit nontrivial actions on simplicial trees.

ProrosiTiON 4.4. For n> 3, polygonal amalgams can be represented as
amalgamated free products.

Proof. We can think of “chopping off” two vertex groups, V; and V,, and
forming their amalgamated product G, = V; kg V> and the amalgamated
product of the remaining vertex groups, G, = V3 kg,--- % g _ V. Because we
have assumed that our polygons of groups are filled, there are no “hidden”
intersections of the face groups which are not explicitly presented in the orig-
inal polygon of groups. Hence the intersection of G, and G, is the group gen-
erated by E, and E,. Once again, because the polygon is filled and proper,
this group is simply £, %¢ E,. This gives a presentation of the polygonal
amalgam as the free product of G, and G, along E,; ¢ E,,. U

A triangle of groups cannot be presented in this manner, because the group
generated by two edge groups is not always the free product of the edge
groups along the group of the 2-cell. For instance, if the vertex groups of a
triangle of groups are all finite, then the group generated by two edge groups
must also be finite.

The idea of polygonal amalgamation is not new. There are many Coxeter
groups which act on H with compact polygonal fundamental domain. Re-
sidual properties of some polygonal amalgams have been studied in [1] and
[14], and some Bianchi groups have been given decompositions as direct lim-
its of triangles and rectangles of groups (see [8] or [19]).

S. Mapping Disks

P will always denote a 1-connected PH-polyhedron for the remainder of this
paper.

Intuitively, one thinks of simple polygons in PH-polyhedra as bounding
disks. However, it is easy to construct examples where this is nof the case
(see [15]). Even with this sort of difficulty there is an intuitive notion of the
“interior” of a simple geodesic polygon, which we describe below.

DErFINITION. Given a simple geodesic polygon K in P(, the 1-skeleton of
P, a solid n-gon K is the union of closed chambers occurring in a 2-chain
with K as (homological) boundary cycle. If K were an arbitrary simple poly-
gon in P, not necessarily in the 1-skeleton, then X could also be defined by
subdividing the cells of P by finitely many geodesics and embedding K into
the 1-skeleton of the subdivided complex. Two such geodesic subdivisions
have a common refinement, and it is easily checked that a set K which is a
solid n-gon is still a solid #-gon after a finite refinement.

PROPOSITION 5.1. Let K be a simple polygon. Then K exists and is unique.

Proof. We assume that P has been subdivided so that K is a simple closed
curve in the 1-skeleton. Thus, the set of edges composing K forms a (homo-
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logical) 1-cycle. P is contractible; hence it has the homology of a point, sc
there is a 2-chain with X as boundary. Because P is a 2-complex there are no
3-chains, so K must be unique. O

When the original polygon K is a triangle, X is a topological disk with a
fairly simple description.

PRrorosITION 5.2. Let p be a point contained in a simple geodesic triangle
K, and let e be the union of corners and sides of K whose closure does not
contain p. If T is the union of geodesics from p to e, then T is K.

Proof. To prove the proposition we will first construct a map from a sim-
plex to P. To make the argument more clear, assume that p is a corner of K
so that e is the closure of its opposite side. By Lemma 2 of [3], T is the con-
tinuous image of a 2-simplex in the Euclidean plane, A2, obtained by map-
ping geodesics on the simplex to the corresponding geodesics in P. That is,
let p’ be a vertex of a fixed Euclidean 2-simplex A? and let e’ be the side of
A? opposite p’. Define f to be a constant speed map from e’ to e. The map F
from A? to T is then defined by sending the geodesic between p’ and a point
xee’ in A? to the geodesic between p and f(x) in P.

This map might not be one-to-one, since it is possible for two geodesics in
P to agree for some initial segment and then diverge. Thus the pre-image of
a point in 7'may not be a single point in A%2. However, once two geodesic seg-
ments based at a common point p begin to diverge, they cannot intersect
later by the CAT inequality. Further, since K is a simple geodesic triangle,
no two points on e are on a common geodesic from p. Thus the pre-image
of a point in T will be a connected, piecewise smooth arc in A% Since X is
a simple geodesic triangle, the geodesic segments forming the sides adja-
cent to p intersect only at p. The pre-image of each point in 7 cannot inter-
sect both sides of A2, so the pre-images of points in 7 give a nice cell-like de-
composition of A2. By a famous theorem of Moore [17], it follows that T
is a disk. C

Because arguments are easier when K is a topological disk, we define the
associated notion of a mapping disk.

DEFINITIONS. A combinatorial map is a cellular map between cell complexes
that is a homeomorphism on the closed cells. (Note that this is stronger than
the usual definition of combinatorial map.) Given a combinatorial map from
some n-polyhedron S to a PH-polyhedron P, the chambers of S can be given
the metric structure of their images in P. Such a combinatorial map is locally
large if S with its induced metric structure satisfies the large link condition.

A mapping disk for a simple closed polygon K is a combinatorial map ¢
of D? into P such that:

(1) the image of D? contains K;

(2) ¢ maps S! homeomorphically to K; and
(3) ¢ is locally large.
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Since the mapping disk is locally large, the disk with its PH-structure is a
PH-polyhedron.

ProrosiTION 5.3. Let K be a simple polygon in P. Then K has a mapping
disk. ‘

Proof. Proposition 5.2 shows that geodesic triangles have mapping disks, so
we will piece together mapping disks of triangles to form a mapping disk for
a simple polygon. As a first step, subdivide P so that K is contained in PV,

Let S! map to the polygon K. Add vertices to S! so that the map takes ver-
tices of S! to the corners of K. Add additional edges to S! from a chosen ver-
tex v to the other vertices of S! not adjacent to v. Call this graph S'. Extend
the map from S! to K to a map from S'into P by mapping the new edges of
S'to the geodesics joining the corresponding corners of K. Let K denote this
union of geodesics. After a finite subdivision, we may assume that K is con-
tained in P, ‘

The graph S!is composed of loops of combinatorial length 3 all mapping
to geodesic triangles in P, By filling in each one of these loops in'S! by a
disk, we create a triangulated disk D2. Since geodesic triangles in P have
mapping disks (by Proposition 5.2), there are mapping disks onto the solid
triangles for each of the geodesic triangles composing K. It follows that each
simplex of D? can be given a mapping disk structure.

Because the geodesic triangles of K have mapping disks, each of the sim-
plices in D? can be given a cellular structure along with a map onto the solid
triangles in P. In a slight abuse of notation, we once again use D? to denote
D? with the cellular structure it inherits from the mapping disk structure
on each of the original simplices of D2 Because mapping disks are homeo-
morphisms on their boundaries, these maps are consistent along their bor-
ders and give a combinatorial map from D? to P which is a homeomorphism
on its boundary. The complex D? maps onto K because the homological
boundary of the set of 2-cells in D? is the 1-cycle of edges forming S’.

Mapping disks are locally large, so the map from D? to P is locally large
away from S!. To finish the proof, it remains only to establish that the map
from D? to P is locally large at the vertices mapping to the geodesics in
K\K. The angle between two halves of a geodesic containing a vertex in a
PH-polyhedron is greater than or equal to 7 [2]. By the description of the
solid triangles given in Proposition 5.2, it follows that the angle sum about
any vertex mapping to K \ K must be greater than or equal to 2. Thus this
map is locally large at all the vertices of D2. O

6. Angles

In this section we state two combinatorial Gauss-Bonnet theorems similar
to the Gersten weight tests in [21]. They combinatorially describe the geo-
metric property that as polygons in hyperbolic spaces get bigger, their in-
terior angles become smaller.
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For both propositions the proof proceeds by first finding a mapping disk
for the polygon K contained in the 1-skeleton of a PH-polyhedron. This
gives a PH-disk, and the results follow using standard small cancellation
arguments based on the fact that the Euler number of a sphere is 2.

ProPOSITION 6.1. Let P be a PH-polyhedron where the chambers are all
isometric to the same n-gon in H. Assume that the corner angles of each
chamber sum to A. Let K be a simple geodesic n-gon in the 1-skeleton of P
whose corner angles sum to greater than or equal to A. Then K bounds a
single chamber.

ProPOSITION 6.2. Let P be a PH-polyhedron where the chambers are all
isometric to the same n-gon in H and each vertex is in at least four cham-
bers. Let K be a simple geodesic m-gon in PY. Then m is greater than or
equal to n.

IfTis a negatively curved polygonal amalgam and Pp. its associated PH-
polyhedron, then the condition in Proposition 6.2 that every vertex be in at
least four chambers is always satisfied because the polygon of groups is filled
and proper.

7. Characteristic Actions

Because we study automorphisms by their actions on stabilizers, we need
some condition relating stabilizers to automorphisms. This is the notion of
a “characteristically bounded” action. Proposition 7.1 will be used in study-
ing the automorphisms of polygonal amalgams, since an automorphism is
determined by the image of the generators, and the face groups of a polygon
of groups generate the polygonal amalgam.

DErINITIONS. A set of subgroups of a given group I' is characteristic if
each automorphism induces a permutation of this set of subgroups. The ac-
tion of a group I'" on a negatively curved polyhedron P is characteristically
bounded if the set of subgroups stabilizing #z-cells is characteristic, for every
n. That is, an automorphism takes the isotropy groups of n-cells to the iso-
tropy groups of n-cells.

ProposITION 7.1. Let T' be a negatively curved polygon of groups ‘with
characteristically bounded action on Pp.. Then any automorphism ¢ takes

the stabilizers of the faces of the chamber to the stabilizers of the faces of
a chamber.

Proof. The map ¢ sends vertex stabilizers to vertex stabilizers, so it induces
a bijective map ¢ on the vertices, where ¢: x— F1x(¢(I‘x)) Let {v;} be the
vertices of a chamber A. The images of these vertices, ¢(v;), can then be
connected by geodesics from ¢(v;) to d~>(v,-+1) for all i, giving some new poly-
gon A. Conceivably this might not be simple, and quite possibly it could be
larger than the original chamber.
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Since edge stabilizers are mapped to edge stabilizers, the geodesic sides of
A run in the 1-skeleton of P. No two geodesics in A can intersect in more
than one point. If they did, they would have to share some common edge.
But then either ¢ was not an automorphism, or an isotropy group of an edge
is mapped to a proper subgroup of an isotropy group of an edge, which is
impossible by hypothesis. Thus A cannot be a tree, and it must contain some
geodesic m-gon for m < n. This m-gon is contained in P which, by Propo-
sition 6.2, is impossible unless m = n.

Let v be the vertex where two edges of A meet. The geometric angle be-
tween these two edges cannot be smaller than the Gersten-Stallings angle
associated to the original pair of edge groups. The Gersten-Stallings angle
being equal to w/n implies there is an alternating sequence of 27 elements
coming from the edge groups which is trivial in the group generated by the
edge groups. If the geometric angle is smaller than «/n, then in the space of
directions there would be a circuit of length less than 27, contradicting the
large link condition.

It follows that A contains an n-gon with geometric angles at the corners
greater than or equal to the geometric angles at the corners of a chamber. By
Proposition 6.1, this #-gon must be the boundary of a chamber. By the argu-
ment at the start of the proof, it is impossible for any of the geodesic edges
to overlap in more than a single point, so A is simply the boundary of a
chamber. ]

Having a characteristically bounded action is not uncommon, as the next
two propositions demonstrate. However, it is not always the case that a neg-
atively curved polygonal amalgam has a characteristically bounded action
on its associated polyhedron. For instance, the free group of rank 3 can be
presented as the limit of a negatively curved triangle of groups. Let a, b,
and c be generators for /5 and let the vertex groups be F(a, b), F(b, c¢), and
F(c,a), with edge groups the infinite cyclic groups {a), (b), and {c).

ProrosiTioN 7.2. The action of a negatively curved polygonal amalgam
with finite vertex groups on its associated PH-polyhedron Py, is characteris-
tically bounded.

Proof. Itisimmediate that the set of maximal finite subgroups of I' is char-
acteristic, and it follows from the fact that finite groups fix vertices (Corol-
lary 4.3) that the set of stabilizers of vertices is the set of maximal finite sub-
groups. Thus the set of vertex stabilizers is characteristic.

Let ¢ be an automorphism, and let E be the isotropy group of the edge
between two vertices fixed by the groups V; and V,. Then ¢(E) must fix the
geodesic between the vertices fixed by ¢(V;) and ¢(V,). Because the edge
groups are of larger order than the isotropy groups of the chambers, this
geodesic must be contained in P{". As before, call the n-gon given by these
geodesics A.

The polygon A cannot be a tree. To see this we examine two cases. First,
if the original polygon were a triangle, this would imply that the edges of A
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all shared a common point. But then the group generated by the edge groups,
which is an infinite group, would fix a point, contradicting our assumption
of finite stabilizers. Second, if there are more than three sides, two edge
groups of edges which were not adjacent in the original n-gon of groups
would be mapped into the same edge stabilizer. But because we have as-
sumed that the polygon of groups is filled and proper, the group generated
by nonadjacent edge groups is infinite, so the stabilizer of the edge fixed by
their images would be infinite. However, stabilizers of edges are all finite.
Since A cannot be a tree, it must contain some m-gon for m < n. The re-
mainder of the argument is the same as in Proposition 7.1. [

The arguments above really only used the fact that automorphisms are in-
jective. The following result can be proven by using essentially the same
arguments.

COROLLARY 7.3. Let ¢ be an injective endomorphism of a negatively curved
polygonal amalgam of finite groups. Then ¢ takes the stabilizers of the faces
of a chamber to the stabilizers of the faces of a chamber.

It is not true that the only groups admitting characteristically bounded ac-
tions are the groups with finite stabilizers. For instance, we have the follow-
ing set of examples.

ProrosiTION 7.4. Let T' be the direct limit of a polygon of groups with more
than three sides whose vertex groups are copies of SL3(Z) and with finite
edge groups. The action of T on its space Py. is characteristically bounded.

Proof. By Proposition 4.4, I" can be presented as a free product with amal-
gamation; hence it will admit a nontrivial action on a simplicial tree. We will
be studying I" both as a polygonal amalgam and as a free product with amal-
gamation. To avoid confusion with the terminology (i.e., is it a stabilizer of
a vertex in the tree associated to the decomposition of I' as an amalgamated
free product, or the stabilizer of a vertex in the PH-polyhedron), the terms
“vertex”, “edge”, etc. will always refer to the original polyhedron. When
the tree decomposition is being considered there will be “tree-vertices” and
“tree-edges”. -
Let G be any copy of SL;(Z) inI', not necessarily a vertex group. In [20] it
is shown that G cannot act on a tree without a fixed point, and hence G must
be contained in a tree-vertex stabilizer. The tree-vertex stabilizers are the
fundamental groups of a tree of groups, so once again, since G cannot act
nontrivially on a tree, it must be contained in one of the stabilizers of this
tree of groups. But these are just the original vertex groups of the polygon.
Just as in the previous propositions, this allows us to define a new poly-
gon A. Borrowing the argument from Proposition 7.1, and using the fact
that the edge stabilizers are finite, it can be shown that A is the boundary
of a chamber. From here it is easy to show that the isotropy groups are char-
acteristic. O
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FurTHER ExamMpLES. Essentially the same proof works for polygons of
groups whose vertex stabilizers cannot act on a simplicial tree without a fixed
point and whose edge groups are finite. For instance, if the vertex groups of
an n-gon of groups (n = 4) were copies of G(A), where G is a simple Cheval-
ley group of rank greater than or equal to 2 and A is the ring of integers of
an algebraic number field, then the action of the limit group I" on P, would
be characteristically bounded. See [20], and the references cited there, for
proofs that these groups cannot act on trees without fixing a point.

Another example is given by groups studied in [1], where the vertex groups
are finitely generated free abelian groups and the polygon of groups has
trivial 2-cell group. By a more careful Kurosh subgroup argument than was
used in our Proposition 7.4, it can be shown that these polygonal amalgams
(with five or more sides) have characteristically bounded actions on their
associated polyhedron. For details, see [15].

8. Automorphisms and Injective Endomorphisms

Using Theorem 7.1, it is now easy to establish the main theorems. We denote
the full automorphism group of a group I' by Aut(I') and its outer auto-
morphism group by Out(I").

TueoreM 8.1. If T' is a negatively curved polygonal amalgam whose action
is characteristically bounded, then Aut(I') is virtually a negatively curved
polygonal amalgam.

Proof. Let Con(I') be the subgroup of elements of the automorphism group
which preserve conjugacy classes of vertex groups. Notice that Con(I') con-
tains a copy of I" as the inner automorphisms. Con(I") then acts on P with the
same fundamental domain and a polygon as quotient; hence it is a negatively
curved polygon of groups. Con(I") is normal and gives the exact sequence

1 - Con(I') » Aut(I') > D — 1.

Since I' acts transitively on chambers, Con(I") does too. It follows that D acts
faithfully on a copy of the fundamental chamber and hence is a subgroup of
a finite dihedral group. If the vertex stabilizers are finite then it is easy to sze
that this short exact sequence splits, hence Aut(I') is D X Con(I'). [l

CoroLLARY 8.2. If T is a negatively curved polygonal amalgam with finite
vertex groups, then the outer automorphism group Out(I') is finite.

Proof. The group I'" is generated by the isotropy groups of a chamber’s
vertices. By Theorem 8.1, modulo an inner automorphism, any automorph-
ism will map the vertex stabilizers of a given chamber back to the vertex
stabilizers of that chamber. Thus the vertex groups can only be mapped
amongst themselves, and since they are finite this gives only finitely many
possibilities. 0
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The following corollary is an easy example of the previous statements. It is
also true for Coxeter groups acting on Euclidean space with compact funda-
mental domain [15].

CorOLLARY 8.3. Let T" be a Coxeter group acting on H with a compact
polygon K for fundamental domain. That is, I' has a presentation {ry,r»,
s I | PR =1, (ririp1)™ = 1Y, where the indices are taken modulo n, 2 < m; <
oo, and Xicq, ..., ny(1/m;) < (n—2). Then Aut(T") is isomorphic to a Coxeter
group acting on H with a compact polygon for fundamental domain.

ProrosiTION 8.4. Negatively curved polygonal amalgams of finite groups
are co-Hopfian.

Proof. Recall that a group is co-Hopfian if any injective endomorphism is
an automorphism. Let ¢ be an injective endomorphism. By Proposition 7.3,
¢ will send the stabilizers of the faces of a chamber to the stabilizers of the
faces of a chamber. Since these are finite groups and ¢ is injective, it follows
that ¢ restricted to the stabilizers is an isomorphism between the stabilizers.
Because the stabilizers of the faces of any chamber generate the amalgam
group, an inverse to ¢ can be constructed. O]
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