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for L? CR Functions
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1. Introduction

Let Q be a bounded domain in C” with C2-smooth boundary 5Q. A closed
subset X of bQ is said to be removable for continuous CR functions if, for
each function f continuous on bQ\ X satisfying the tangential Cauchy-Rie-
mann equations in the weak sense on bQ\ X, there exists a function F holo-
morphic in  continuously assuming the boundary values f on bQ\ X. There
have been many interesting results proved recently relating removability to
convexity with respect to various function spaces. For example, define the
O()-hull of X C bQ to be the set X, of all points p e { such that |¢(p)|<
max({|¢(z)|: z € X} for all functions ¢ holomorphic in a neighborhood of Q.
The following result of Stout [10] will be important for us: Let Q be a strictly
pseudoconvex domain in C”, X a compact subset of Q. If f is a continuous
CR function on bQ\ X, then there exists a function holomorphic in Q\ X,
continuous on 0\ X, with F=f on bQ\ X. In particular, Stout’s theorem
implies that if X=X q (we say X is O(Q)-convex) then X is removable. In
C2, the converse is also true: If X is contained in the boundary of a strictly
pseudoconvex domain and X is removable for continuous CR functions,
then X is O(Q)-convex. Stout’s paper [11] gives an excellent survey of results
on removable singularities for CR functions.

We wish to study removable singularities for other classes of CR func-
tions. Fix p, 1 < p<oo, and let ¢ be the induced (2n—1)-dimensional Eu-
clidean measure on b{). Let us say that X C bQ is removable for L* CR func-
tions if, for each fe L?(b{, do) satisfying the tangential Cauchy-Riemann
equations on bQ\ X, there exists F in the Hardy space H”(Q) with boundary
values f o-almost everywhere on bQ\ X. In view of Stout’s theorem above,
it is reasonable to direct our attention first to O(f2)-convex subsets of bQ.
Even in the simplest case, where Q = B is the unit ball in C” and O(Q)-
convexity is equivalent to polynomial convexity, such sets can be quite large
—there exist polynomially convex subsets of bB with positive o-measure (see
[11]). We shall restrict our attention to sets of (2n —1)-dimensional measure
zero. On the other hand, if the Hausdorff dimension of X is sufficiently
small, then the arguments of [11] for the case of L* functions can be adapted
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to show that X is removable for L! CR functions. One notable result on rela-
tively “large” sets is that of Kytmanov [7], who proved that peak sets of
holomorphic functions satisfying a Lipschitz estimate on @ are removable
for L' CR functions. If @ = B, these sets are polynomially convex and have o
measure zero, but can have Hausdorff dimension arbitrarily close to 2n —1.
Another class of such sets is given in Theorem 1 below: polynomially convex
subsets of a totally real submanifold of 5Q are removable for L' CR func-
tions. Both Kytmanov’s result and Theorem 1 are established by showing
that each Z! CR function on bQ\ X is actually a CR function on »#Q. Our
main purpose in this paper is to use a different technique. We consider poly-
nomially convex sets X contained in the intersection of bQ with a family of
analytic varieties. Suppose fe L?(b?) and f is a CR function on bQ\ X.
With the aid of Stout’s theorem we obtain an extension F of f to Q. This
extension is “locally” H? in a sense made precise below. We then estimate
the growth of F near the singularity set by estimating F on each variety,
using classical facts about H” functions in one variable. If X is contained in
a sufficiently small set of these analytic varieties then we can conclude that
Fe HP. In this way we can show that certain relatively large subsets of 5
are removable for L! CR functions. The precise results are given in Theo-
rem 2 and Corollary 1 of Section 3. In Section 2 we collect some basic facts
about H” functions and establish the estimates we need on integration over
families of analytic varieties.

2. Preliminaries

Q will denote a bounded domain in C" with C? boundary »Q. That is, there
exists a real-valued defining function p of class C? in a neighborhood of ©
such that @ ={z: p(z) <0} and dp # 0 on bQ = {z: p(z) = 0}. Let W be a rela-
tively open subset of bQ. A function fe L} .(W) is a CR function on W if
§ S 3¢ =0 for every smooth (n, n—2) form ¢ with compact support in W.
The class of CR functions on W will be denoted CR(W). For ¢ >0, let Q.=
{z: p(z) < —e}. The induced Euclidean measure on b1} (resp. b2,) is denotad
by do (do,). We recall some facts (see [9]) about the Hardy spaces on {:
H?(Q) (1 < p< ) is the set of functions F holomorphic in Q such that

sup S |F(z)|P do(z) < oo.
e>0 JbQ,
The resulting space is independent of the choice of defining function p. If
Fe HP(Q), then lim, _, ( F(z —ev,) exists for o-almost all z € b2, where v, is
the outward-pointing normal to b at z; furthermore,

fim S |F(z—ev,) — f(2)|Pdo(z) = 0. 1)
b

e—0

Conversely, if b€ is strictly pseudoconvex and fe LP(bQ)NCR(HQ), then
there exists F e H”(Q) satisfying (1). This follows from the following cor-
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responding local extension property, which seems to be well known (for a
sketch of the proof in the case of the ball, see [1]): Let g be a point of strict
pseudoconvexity of bQ, V a neighborhood of g in #Q. Then there exists a
neighborhood W of g in C” such that, for each fe L?(V)NCR(V), there
exists a function F holomorphic in WNQ with

supg |F(z)|P do.(z) < oo (2)
e>0YpQ.NW
and ‘
lim S |F(z—ev,) — f(2)|Pdo(z) =0. 3)
e—0YbANW

Let Q¢ be an open subset of Q, U a relatively open subset of bQ, and fe
LP(Q). We say that Fe H(Q,) is a U-local HP extension of f to Q, if for each
g € U there exists a neighborhood W of g in C", with WNQ C 1, and with
WNbQC U, such that (2) and (3) hold. ‘

Now suppose bQ is strictly pseudoconvex, and let X be a closed subset
of bQ. If fe LP(bQ)NCR(HNA\X), then by the remarks above we can con-
struct a local extension £ of f to an open subset of Q whose closure contains
bO\ X. By pulling in the boundary of Q off X, leaving X fixed, we can con-
struct a new strictly pseudoconvex domain Q C ©, with X C 5Q and bQ\ X C
Q, such that F is a continuous CR function on »Q\ X. By Stout’s theorem,
F extends to O\ Xg. Since X5 C X, we obtain an extension to 2\ X,. We
summarize this remark (which appearsin [11] in the context of L™ functions)
as follows.

LEMMA 1. Let Q be a bounded domain in C" with strictly pseudoconvex
boundary bQ of class C2, and let X be a closed subset of bQ. If fe LP(b2)N
CR(bQ\X), then there exists a (bQ\ X)-local HP extension of f to Q\ Xq.

Next we derive an a priori estimate for integrals of holomorphic functions
over families of analytic disks in Q. Let V be an open set in C"~L. A will
denote the unit disk {¢:|¢|<1} in the plane, DA its boundary. We define a
smooth family of analytic disks in Q with parameter space V to be the image
of a map ¥ such that

(i) V¥ is a diffeomorphism of a neighborhood of ¥ x A with an open sub-
set of C”,
(ii) for each ceV, ¥(c, {) is a holomorphic function of ¢ for { € A, and
(iii) ¥ (V,A)CQ, ¥Y(V, bA) C bQ2, and each disk meets b transversally in
the sense that d(p°¥)#0 on VX bA,

where for ACV and BCA, ¥(A; B)={ze€C":z=¥(c, {) for some ce A4,
{ € B}. Incase B=A, we simply write ¥, for ¥(4, A). By abuse of language,
we also refer to V¥ itself as a smooth family of analytic disks.

LEMMA 2. Let Q be a bounded domain with strictly pseudoconvex bound-
ary bQ of class C?, and let ¥ be a smooth family of analytic disks in Q with
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parameter space V. Then for fixed p, 1 < p < o, there exist positive constants
C and ¢y depending on p, ), and ¥ such that for all subsets K of V, all 0<
€ < €g, and all g holomorphic in a neighborhood of ¥,

|lg(z)|Pdo(z)<C S |8(z)|P do(z). 4)

S\I'Kﬂ b, YN0

Proof. Fix a defining function p for Q. For each ce V and ¢=0, set

Ye,c={§ €A: po¥(c, §) = —e).

By assumption (iii) on ¥, bA = v, ., and the gradient field of p-¥ is nonzero
on bA and orthogonal to bA. The integral curves of this field can be used to
construct a diffeomorphism of bA with v, . for all sufficiently small e and all
ceV. Let z(e, ¢, 8) be the unique point in vy, . corresponding to e’ under this
diffeomorphism. Let Sy denote the interior of the triangular region with ver-
tices e?, e’O="Y\2, !0+ ™4)/\[3 We may choose ¢, small enough so that
zZ(e,c,0)e Sy for all e<ey, ceV, and 6€(0,27). For g defined on A, set
Mg(8) =supf|g(z)|: z€ Sp}. Then for 1 < p<oo (see [6, p. 246]) there exists
a constant k depending on p such that for all ge H?(A),

2% 27
S (Mg(0))°db < kg 12(0)|7 db.
0 0

Given g holomorphic in a neighborhood of ¥, go¥(c, ¢) is holomorphic
in A and smooth in A. Thus for each p, 1 < p < o, and for fixed (c, €) €
K x[0,¢ql,

27 27 .
S =¥ (c, z(c, ¢, 0))|P db < S |M(go¥)(c, e®)|Pdb
0 0

2T .
<C S 2= (c, ¢*)[Pdb, (5)
0

where C depends only on p. Now, for any K CV and g holomorphic in a
neighborhood of ¥, we have

2
S |g(z)|Pdo.(z) < S S |go¥(c,z(c, €, 0))|PH(e, c,0)db dc,
¥, MDA, KJo0
where the pull-back of the form o, to {(c, z(e, ¢, 0)): ce K, 6€[0, 27]} is
H{(e, c,0)dfdc, and dc= (1/2xi)"~'dé,dc,---d¢,_,dc,_; is Lebesgue mea-
sure on C"~!, By assumption (iii) again, each disk meets bQ, transversally
for all sufficiently small ¢, and so we can assume there exist positive con-
stants k; and k5, such that k, < H(e,c,0) <k, for all (e¢,c,8) €[0, 0] XK X
[0, 2%]. By (5), the latter integral is less than

27 .
Cklj S |ge¥(c,e’)|Pdodc
K Y0

Ck 27 .
S"__lg S |g=¥(c, z(c, e")|PH(0, c, 0) db dc -
ky JkJo
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_ Ck

p
k> kanbnlg(Z)l do(2).

The proof is complete. 1

3. Main Results

THEOREM 1. Let Q be a bounded domain in C" with boundary bQ of class
C?, M a totally real imbedded submanifold of bQ, and let X be a polynomi-
ally convex subset of M. Then X is removable for L' CR functions.

The following proof was suggested to one of us by an anonymous reviewer
of a grant proposal.

Proof. By the remarks following equation (1), it suffices to show that if fe
LY(bQ)NCR(PQ\ X) then fe CR(bQ), that is, that

S fig=0 ©)
bHQ

for all smooth (n,n—2) forms ¢ on b2, given that it holds for ¢ vanish-
ing in a neighborhood of X. Fix a basis for the (n, n—2) forms on C"; if a
form g has coefficients with respect to this basis which are differentiable in
a neighborhood of a set Y, write || g||;, y for the supremum of the coefficients
and their first derivatives on Y. We claim that it suffices to show that (6) holds
for all ¢ vanishing on X. Let ¢ be an (n, n—2) form supported in a neigh-
borhood of X. By the Range-Siu theorem [8], since M is totally real, there
exists a form ¢, with coefficients holomorphic in a neighborhood of X such
that ||¢ — |1, ar <8, where 6 is a small constant to be determined. By the
Oka-Weil theorem (see [4]), since X is polynomially convex, there exists an
(n,n—2) form ¢p with polynomial coefficients such that ||¢,—p|; x <6.
Let ¢ = ¢ — dp. By Whitney’s extension theorem (see [13, p. 322]) there exists
a form ¢ with coefficients differentiable on C” such that = ¢ on X and
101, cr < C||q§||1,X, where C is a constant depending only on X. Therefore,
given € > 0, we can choose 6 > 0 such that

[, sao-{ raG-w|=|( ras-[ réG-v)

<E€E.

Since Y —¢ = 0 on X, this establishes the claim, and henceforth we may as-
sume that ¢ =0 on X. Now let X, = {z € b}: dist(z, X) <1/n}. Since M is a
proper submanifold of »Q, we have lim,_, . 0(X,)=0. Choose forms x,
with x,=1o0n bQ\ X, x,=0 on X5, and | x,||1, po = O(n). Since x,, is sup-
ported outside X, we have

0= Sw F3(xu$) = Sm Sxnd+ Sbg 16 3% (7)
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The first integral on the right of (7) tends to [bg f0¢ as n— oo, Because ¢
vanishes on X and |dx,| = O(n), the second integral on the right of (7) is
O(fx | f|do), which also tends to zero as n —oo. The proof is complete. [

ExaMmpPLE 1. Let Q be a domain in C? with strictly pseudoconvex boundary
bQ of class C2, and suppose that M C bQ is diffeomorphic to a disk. J6ricke
[5] has proved that if M is totally real then M is removable for continuous
CR functions and hence is O(Q)-convex. If Q is polynomially convex then
M is polynomially convex, and hence by Theorem 1 is removable for L! CR
functions. Recently Forstneri¢ and Stout [3] have shown that under the same
hypotheses on Q, if M C b is diffeomorphic to a disk and M has only finitely
many complex tangents, each of hyperbolic type, then M is polynomially
convex. Note that the proof of Theorem 1 breaks down in this case, since we
cannot have C! approximation of arbitrary smooth functions on M by holo-
morphic functions if M is not totally real. We do not know if such a disk is
removable for L' CR functions.

Our next result, which uses the estimates established in Section 2, allows us
to prove removability for another class of polynomially convex sets, includ-
ing some too large to be imbedded in a disk (see Example 2).

We assume in what follows that the domain (2 is strongly starlike—that is,
forr<1, Q,={zeC": z=rz’ for some z’e b1} is a compact subset of Q. In
what follows, we use the domains ,, 0 <r <1, as approximating domains
(previously denoted Q,).

THEOREM 2. Let Q be a smoothly bounded strongly starlike domain in C",
with strictly pseudoconvex boundary bQ of class C?. Let X be a closed sub-
set of bQ, and assume that there exists a smooth family ¥ of analytic disks
in Q with parameter space VC C"~, and a set K CV of 2n—2 Lebesgue mea-
sure zero, such that X CV(K, bA). If Fis a (bQ\X)-local H? extension of
fe LP(bQ) to Q, then Fe HP(Q).

Proof. We may assume that K ={ceV:¥(c, {) e X for some { e bA}.
Choose a sequence of compact subsets K; of V' with K;,; Cint(K;) and K=
M5=1K;. Given fe L?(bQ), we assume there exists F'e H(Q) such that, for
some neighborhood W of each point in bQ\ X, (2) and (3) hold; that is,

sup| PP do(2) <o )
r<1b0,nw

limS |F(rz) — £(2)|Pdo(z) = 0. ©)
r—190NW

We must show that Fe HP(Q). Write

| IF@pd@=  |F@Pdo 2
b9, K,

r

+S |F(2)|? do, (2). (10)
b2, Ny
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We estimate the first integral on the right of (10). Since XN {bQ\¥x } =0, we
can choose a finite collection W, ..., Wy of open sets so that for all r sufhi-
ciently close to 1,

N
bQ\Yx, C W, and sup |F(z)|Pdo,(z) < oo,
j=1

r<l S W,NbQ,
which implies that

sup S |F(z)|Pdo,(z) < co.
r<1Jpa Ny,
It remains to estimate
L=\ |F@Pdo ().
bR, MYy,

Since the (2n —2)-dimensional Lebesgue measure of K is zero,

lim o,(¥x NbR,)=0;

n—o

hence, for fixed r <1,

1= lim S |F(2)|Pdo, (2).

H— 00 bQ,ﬂ‘I’KI\K"

Thus it suffices to show that

= |[F(2)Pdo, (2)

bR, NYx
is bounded independently of » and r. Fix R <1. By Lemma 2, since F(Rz) is
holomorphic in a neighborhood of Q, there exists C > 0 independent of R
such that

|F(Ro)|Pdo (2)=C | |F(Rz)|Pdo ().

Sbﬂ, N¥xx, bAN Yk,

As R11, for fixed r, F(Rz) converges uniformly on b, to F(z), while (again
by the local H” properties (8) and (9)) F(Rz) converges in L” to f(z) on bQ2N
¥k )k, Thus

Inr=| [P doy(2)=C | |1£@)|Pdo(z)
bR, Mgk, PNk k.

< Cg | f(2)|? do(z).
bR
The proof is complete. O

Combining Theorem 2 with Lemma 2, we obtain the following corollary.

CoroLLARY 1. Let X be a closed polynomially convex subset of bQ2, with
Q and X satisfying the hypotheses of Theorem 2. Then X is removable for
L? CR functions, 1 < p < oo,
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ExampLE 2. Take n=2, and let = be the projection (z, w) > z. Let X be a
closed polynomially convex subset of B such that XN {w=0}=0 and = (X)
has 2-dimensional Lebesgue measure zero. Then we can choose 6 > 0 such
that XN {lw|<é}=0. Consider the map ¥ (A, {)=(A, {V1—|A|?) with pa-
rameter space V'={Ae C:|A|<~1—62}. Then ¥ is a smooth family of ana-
Iytic disks in B, and X C ¥(w(X), bA). By Corollary 1, X is removable for
L' CR functions. Although such sets X must have ¢(X) =0, they can be
quite large in the sense of Hausdorff dimension. Fix o, 0 <a < 1. We con-
struct X C bB such that X is polynomially convex, «(X) has 2-dimensional
measure zero, and X has Hausdorff dimension 3«. The construction is based
on one in [11] for constructing polynomially convex sets of large o-measure.
Let C, denote the nth stage in the construction of the generalized Cantor set
of Hausdorff dimension «; that is, Cy=[0,1] and C, = U C,,j> where
each C, ; is an interval of length £, = 27" and Cpy1is formed from C, by
removmg from each C, ; the open middle interval of length &,—2&, .. If
C == C, then C has Hausdorff dimension « and 1-dimensional Lebesgue
measure zero (see [2, Example 4.5]), as does 3C = {x:2xe C}. The Haus-
dorff dimension of the Cartesian product (3C)* =1Cx3Cx1C is 3« (in
general, the Hausdorff dimension of a product is at least the sum of the
Hausdorff dimensions of the factors; in this case, it can be shown that equal-
ity holds. See [2, pp. 94-95, esp. Example 7.6]). Let

X,={(z,w)ebB: z=x+iy,w=u+iv, (x,y,u) e (:C,)*},

and set X =(5=;X,. Then, since X is the image of (%C)3 under a diffeo-
morphism of [0, 1/2]® with a subset of »B, and Hausdorff dimension is in-
variant under diffeomorphisms (see [2, Cor. 2.4]), X has Hausdorff dimen-
sion 3a. Moreover, w(X) = (%C)2 has 2-dimensional Lebesgue measure zero.
It remains to show that X is polynomially convex. Write each X,, as the
union of 2" disjoint “cubes”

Xn,,G = {(Zs W) € bB: (x’y’ ll) € Cn,Bl X CH,BZX Cn,,33}s

where 8 = (8, 82, 83) and 1 =< §; < 2”. First we claim that X,, = U X',,,B.
To see this, use the fact that if K, ..., K,, are compact subsets of C”, K =
UN_ 1 K;, = denotes the projection of C" onto some fixed coordinate plane,
and 7r(K ) are disjoint polynomially convex subsets of C, then K = UN_ 1 I(
(This follows from Lemma 29.21 of [12].) From this it follows that for ﬁxed
B3=0% Us =8 X 8= Ug;=p9 X,,’B since the projections to the z-plane of
the X, s for fixed 3; are pairwise disjoint squares. The claim is proved by
then noting that the projections of Ug, =9 X, s for distinct B9 to the w-plane
are again disjoint, polynomially convex sets. Next we note that given 6 >0,
for sufficiently large n, each X, 5 (and thus each X n, 5) is contained in the
intersection of B with a ball of radius 6. Thus X\ X =XNB is empty; that
is, X is polynomially convex.

REMARKS. A reasonable conjecture, for which we have no proof as yet,
would be the following: If Q is strictly pseudoconvex with C? boundary 52,
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and X is an O(f)-convex subset of bQ with ¢(X) =0, then X is removable
for L' CR functions.

We also note that the theory of L? removability (say) is quite different
than the L' theory. For example, if B is the unit ball in C?, then X = {(z, w):
z =0} is not removable for L' CR functions (w ' e L(»B)) but is removable
for L? CR functions: every fe L2 (bB)NCR(bB\ X) has an extension F to
B\ {w=0}, which (by estimating on the analytic disks {w = constant}) is L?
with respect to volume measure on B. By a classical result, F extends holo-
morphically (and as an H? function) to B. It would be interesting to give
some conditions on the size of X which would guarantee that X is remov-
able for L? CR functions.
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