Noncollarable Ends of 4-Manifolds:
Some Realization Theorems

CrAIG R. GUILBAULT

A fundamental result in manifold theory is Siebenmann’s classification of
collarable ends of noncompact n-manifolds, n =6 (see [Si]). Quinn [Qu] has
extended this result to dimension 5 provided the fundamental group at in-
finity is a Freedman group. Work by Husch and Price [HP] establishes Sie-
benmann’s theorem for 3-manifolds, provided the Poincaré conjecture is
true. Remarkably, Siebenmann’s theorem fails in dimension 4. Counter-
examples are produced by Kwasik and Schultz in [KS]. These examples arise
as quotient spaces of certain free G-actions on S3xR where G is a finite
group of even order. In this note we show that in many cases these exotic
ends may be realized rather naturally as subsets of closed 4-manifolds. In
particular, we show that if E is a 4-dimensional weak collar with 7 (E)=Z,,
and dF is Z-homology equivalent to L(n, 1), then there is a closed 4-mani-
fold Y and a compactum X C Y such that ¥ has the shape of a 2-sphere and
Y has a neighborhood N with N—X homeomorphic to E. Moreover, we
may choose Y to be S2x S?if n is even, and CP%#(—CP?) if n is odd. This
(the finite cyclic) case is especially interesting to us because it provides nega-
tive answers to some questions raised in [LV2]. One such question asks: If X
is a globally 1-alg shape 2-sphere in a 4-manifold Y, must the end of Y—X
be collarable?

Another class of Kwasik-Schultz counterexamples to a 4-dimensional col-
laring theorem contains ends with fundamental group isomorphic to the
Poincaré dodecahedral group. We show that these may be realized as com-
plements of cell-like subsets of S*.

1. Background

All results presented here are topological, as opposed to smooth or PL.
Manifolds are permitted to have boundary unless stated otherwise. Homol-
ogy is with Z-coefficients except where noted to the contrary. Throughout
the paper the symbols = and = represent homeomorphisms and (algebraic)
isomorphisms, respectively.

Our primary source for terminology and results involving noncompact 4-
manifolds will be [FQ, §11.9]. A similar development can be found in [KS].
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A noncompact n-manifold M has a connected end if, whenever C C M is
compact, there exists D D C, also compact, such that M — D is connected. In
this case, a neighborhood of the end is any NC M for which cl(M —N) is
compact. Following the convention of [FQ] (instead of Siebenmann’s origi-
nal definition), we call the-end tame if for some neighborhood of U of the
end there is a proper map f: U X [0, 1) = M which is the identity on U X {0}.
We say that = is stable at infinity if there'is a sequence Ny DN, DN3 D --- of
connected neighborhoods of the end such that () V; =0 and the sequence

A A A
71 (N}, P1) «— T ( Ny, D) ~— (N3, p3) «— -+

induces isomorphisms im(A;) iim()\,-ﬁ) for. all i=1, where A; is the in-
clusion homomorphism followed by a change of base point isomorphism.
When this occurs we say that = (end M) =im(A;) = im{(m(V;, p;), A;)}. The
end of M is collarable if it has a manifold neighborhood N such that N=
dN x[0,1). Siebenmann’s end theorem may be stated as follows.

THEOREM 1.1 ([Si] or [FQ, p. 214]). Suppose M has a connected tame end
with finitely presented fundamental group and dim(M)= 6. Then there is
an obstruction o(end M) € K, o(Z[m(end M)]) which vanishes if and only if
the end of M is collarable.

Work by Quinn [Qu] extends this theorem to dimension 5 when m(end M)
is a Freedman group. A group G is Freedman (called good in [FQ]) pro-
vided Freedman’s disk embedding theorem applies to 4-manifolds with fun-
damental group isomorphic to G. At this time no examples of non-Freedman
groups are known; moreover, all poly-(finite or cyclic) groups are known to
be Freedman (see [FQ, p. 99]).

A weak collar on M is a neighborhood N of the end of M for which there
is a proper map f: Nx [0, 1) > N which is the identity on N X {0}. It is easy to
see that a collar is a weak collar. While the examples produced in [KS] rule
out an extension of Theorem 1.1 to dimension 4 (even for Freedman groups),
we do have the following theorem.

THEOREM 1.2 [FQ, p. 215]. Suppose a 4-manifold M has compact bound-
ary and a connected, tame end with finitely presented Freedman fundamen-
tal group. Then the obstruction o(end M) € Ko(Z [ (end M)]) vanishes if
and only if the end of M is weakly collarable.

Note: In parficular, the Kwasik-Schultz counterexamples to an extension
of Theorem 1.1 to dimension 4 are weakly collarable.
2. Construction of Weak Collars

In this section we review an explicit description of 4-dimensional weak col-
lars found in [FQ]. Let M be a compact 4-manifold, G a finitely presented
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Freedman group, and v: (M) — G a surjective homomorphism with per-
fect kernel. By the “plus construction” (see [FQ, p. 195]), there is a compact
cobordism rel boundary (W, M, M™) with =(W)= G, M C W a simple
Z[G]-homology equivalence, and M C W a simple homotopy equivalence.
Moreover, W is uniquely determined up to homeomorphism rel M. Given
this situation we will denote W by W(M,v) and M+ by M(M, v). By
uniqueness, these objects are well-defined. We now employ the plus con-
struction to build a prototypical weak collar. Let L be a closed 3-manifold
and let v: (L) —» G be a homomorphism onto a Freedman group such that
ker(v) is perfect. For each natural number n, let M} = Mt (L x[n, n+1], v).
Then 0M,f = L x {n, n+1}. Define E(L, v) = Mt UM;FUM; U - -, with M}
attached to M’ ; along L x {k+ 1} for each k. Then E_(L, v) is a weak collar.
(Lemma 4.1 may be used to construct a proper map f: E.(L, v) X[0,1)—
E. (L, v).) Moreover, by the following theorem, all 4-dimensional weak col-
lars with Freedman fundamental group are of this type.

THEOREM 2.1 [FQ, p. 222]. Let E be a 4-dimensional weak collar with
compact connected boundary and finitely presented Freedman fundamental
group. Then 0E C E is a Z[m(E)]-homology equivalence (so i.: w(dW) —
m (W) is surjective with perfect kernel), and E is homeomorphic to
E(0W,1,).

3. The Realization Theorems .

Let E be a 4-dimensional weak collar with closed connected boundary and
m(E)=1Z,. Then H|(0E) = H|(E)=Z,. 1t follows that dF has the same Z-
homology groups as a lens space. We say that 0F is Z-homology equivalent
to the lens space L(n, k) if there is a map f: dE — L(n, k) which induces
Z-homology isomorphisms in all dimensions. By [LS], dE is Z-homology
equivalent to a lens space L(n, k) which is unique up to homotopy type. For
us, the primary significance of Z-homology type is that a homology lens
space J with H(J)=Z, bounds a compact 4-manifold homotopy equiva-
lent to S? if and only if J is Z-homology equivalent to L(#n,1), This fact
may be deduced from [LS] together with general results on 4-manifolds with
boundary found in [Bo], [St], or [Vo]. An elementary exposition of homol-
ogy lens spaces and 4-manifolds homotopy equivalent to S? is presented
in [Gu].

As noted in the introduction, some of our main results involve a shape 2-
sphere—i.e., a compactum with the shape of a 2-sphere. Suppose that K; D
K, D K3 --- 1s a nested sequence of compact n-manifolds each homotopy
equivalent to S2, and suppose that K;,; C K; is a homotopy equivalence for
each i. It is an elementary observation in shape theory that E=MK; is a
shape 2-sphere. For our purposes, those unfamiliar with shape theory may
treat this as a definition. Conversely, if a shape 2-sphere X is defined by
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the intersection of a nested sequence of compact n-manifolds K; D K, D
K3D -, and K; . C K; is a homotopy equivalence for each i =1, then each
K; is homotopy equivalent to S2. See [MS] for a detailed exposition of shape
theory.

We may now state our main results.

THEOREM 3.1. Let E be a connected 4-dimensional weak collar with com-
pact boundary and w(E)=Z,. Then there is a compact 4-manifold X (hav-
ing the homotopy type of S?) and a shape 2-sphere £ C X with X— L =~E
if and only if OF is Z-homology equivalent to L(n,1).

If one prefers closed 4-manifolds we have the following theorem.

THEOREM 3.2. Let E be a connected 4-dimensional weak collar with com-
pact boundary and w(E)=Z,,. Then there is a closed 4-manifold Y, a shape
2-sphere ¥ CY, and a neighborhood N of ¥ with N—X = E if and only if
oF is Z-homology equivalent to L(n,1). Moreover, we may specify Y to be
S?x 82 when n is even and CP*#(—CP?) when n is odd.

Notes. (1) Many of the Kwasik-Schultz counterexamples to a 4-dimen-
sional version of Siebenmann’s theorem may be realized in the above man-
ner. For example, all homology lens spaces with first homology isomorphic
to Z, are Z-homology equivalent to L(2,1). Hence, all weak collars with
fundamental group Z, occur as shape 2-sphere complements. In fact, given
any even integer n, [KS] along with Theorems 3.1 and 3.2 may be used to
produce noncollarable tame ends with 7;(end) = Z, which are realizable as
shape 2-sphere complements.

(2) By a classical result on lens spaces (see e.g. [Co, p. 96]), L(n, k) is
homotopy equivalent to L(n, 1) if and only if X = +£b2(mod n). Thus, by the
converses of Theorems 3.1 and 3.2, many weak collars with finite cyclic fun-
damental group can never be realized as shape 2-sphere complements.

Let A denote the Poincaré dodecahedral group. Since A is finite of even or-
der 120, and since A acts on S, [KS] guarantees the existence of noncollar-
able weak collars (connected and having closed boundary) having funda-
mental group isomorphic to A. Hence, the following result is in the same
spirit as Theorems 3.1 and 3.2.

THEOREM 3.3. Let E be a connected 4-dimensional weak collar with com-
pact boundary and a finitely generated, perfect, Freedman fundamental
group. Then there is a compact contractible 4-manifold C and a cell-like set
ACC with E= C—A. Moreover, C may be realized as a neighborhood of
AcCS4.

4. Proofs

We begin with the following key lemma.
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LeMMmA 4.1. Suppose L is a closed connected 3-manifold, G is a finitely
presented Freedman group, and v: w (L) — G is a surjective homomorphism
with perfect kernel. Let Mt =M*(L x1,v), Mjf=M7*(Lx[0, 5], v), Mj =
M*(Lx[3,11,v), and M UMZ be the union M and Mg along Lx{3}.
Then

(i) M™ is homeomorphic rel L x{0,1} to Mj UM, and

(ii) M} UMY deformation retracts onto M .

Proof. Recall that M7 is one end of the unique “plus construction” co-
bordism rel boundary (W, L x I, M *) having the property that (W) =G,
L xICW is a simple Z[G]-homology equivalence, and M C W is a simple
homotopy equivalence. Similarly, we have cobordisms (W, L X [0, 5], M)
and (W, L X[3,1], M) determining M{ and M} . By gluing W, and Wj to-
gether correctly, we may produce a cobordism (WyUWg, L X I, Mf UMZ)
which has the properties of a plus construction cobordism. By uniqueness,
this cobordism is homeomorphic rel L X I to (W, L X1, M™); hence, M* =
MFPUMF.

To check (ii), note that Wy C WjUW} is a Z[G]-homology equivalence;
because (W) = m(W,UWy) = G, it is also a homotopy equivalence. Thus,
W,UWp deformation retracts onto Wp. Following this with a deformation
of Wy onto My produces a deformation of M; UMz onto Mj. O

Proof of Theorem 3.1. By Theorem 2.1, E=E(0EXI,i,) =M UM UL
M; U-.-, as described earlier. We begin by embedding this infinite union
into M.

By Lemma 4.1, for each i =1 there is a homeomorphism Ah;: M;* UM%, —
M;" which takes dE X {i} and 9E X {i +2} canonically onto 9E X {i} and
OF x {i+1}, respectively. Extend each #4; to

H;: Mi" UM U --- UM > M{F UM U - UM

by letting H; be the identity on M;"UM; U ---UM;t,, and H; | unr,,, = ;.
Next, define fi=H,, fo=ficH,: Mit UM;" UM;" — M;t, and (inductively)
firi=ficHj 1t MiF UM U -« UM% | — M for each i = 1. Note that:
(i) each f; is a homeomorphism;

(ii) for any k=i, fi(x)=fi(x) for all xe Mi* UM, U---UM;*; and

(iii) for each i, cl(M;"— fi(M;F UM U ---UM)) = M, = M.
Now define F: E(0EX I, i) =M UM UM; U--- > M;" by F(x)=fi(x)
whenever x € M;". Using (i) and (ii) above, it is easy to check that F is an
embedding.

Now assume that dF is Z-homology equivalent to L(n, 1). Then, as noted
earlier, dE bounds a compact 4-manifold K homotopy equivalent to S2. Let
X=M{"Uppx K, and let T =X — F(E,(3E, i.)).

Claim 1: X is homotopy equivalent to S*. Examination of the plus con-
struction used to produce M;" reveals that H;(M;",0E x{2})=0 for all i.
Then excision gives H;(X, K) = 0 for all i/, so by the Hurewicz theorem,
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m;(X, K)=0for all i. Thus, K C X is a homotopy equivalence and our claim
is verified.

Claim 2: X is a shape 2-sphere. Let
Ki=cl(M;"— F(M;tUM3 U ---UM;"))UK.
By (iii) above and the definition of F,
cl(M{"—F(M{"UM5 U ---UM;)) = M+

for all i=1. Thus K; =~ M{"UK =X for all i. In particular, for each i, K; is
homotopy equivalent to S? and K C K; is a homotopy equivalence. Then
K;,,CK; is a homotopy equivalence for each i. Now £ =M K; so, by our
earlier discussion, X is a shape 2-sphere.

Conversely, suppose there is a compact 4-manifold X and a shape 2-
sphere ¥ C X with X — X = E. Again by Theorem 2.1, we may view X — X as
MPUMUMU---. Let K;=(M;UM;,;U---)UX. Then Z=NK;, and
an application of Lemma 4.1(ii) shows that K; deformation retracts to K;, ;
for any.i = 1. In particular, K;,; C K; is a homotopy equivalence. Our dis-
cussion of shape theory now implies that each K; is homotopy equivalent to
S2. Since 3F is a homology lens space with H;(dE) = Z, which bounds a 4-
manifold K;, homotopy equivalent to S%, we know that dE is Z-homology
equivalent to L(n, 1). O

Proof of Theorem 3.2. If 0E is Z-homology equivalent to L(n, 1), then let
X be the compact 4-manifold and £ C X the shape 2-sphere promised by
Theorem 3.1. Let Y= X U X~ be the double of X along its boundary (X~ de-
notes a copy of X with reversed orientation) and let N =X C Y. Conversely,
if there is a closed 4-manifold Y, a shape 2-sphere ¥ CY, and a neighbor-
hood N of ¥ with N—X = E, then N satisfies the conditions on X in Theo-
rem 3.1. Hence, dN (= dF) is Z-homology equivalent to L(n, 1).

To complete the proof, we show that X UX ™= S?x S? if n is even and
XUX ™= CP*#(—CP?) if n is odd. This will be accomplished by applying
Freedman’s classification of simply connected 4-manifolds (see [Fr]). The
following facts, which may be found in Lemma 5.1 of [Gu], will help us cal-
culate the intersection pairing of X UX ~:

(i) there is a framed proper immersion of an oriented disk D in X such
that [0D] generates H,(dX) and [ D] generates H,(X, 0.X);

(ii) if SC X is the (oriented) image of a homotopy equivalence g: S?>—
X, then [S] generates H,(X) and the orientation may be chosen so
that the intersection number [S]-[D]=1;

(iii) given a collection {D;}7_, of n distinct parallel copies of D, there is
an oriented surface ACadX with 0A=U adD; and [D, UD2U -U
D,UA]=[S]in Hy(X).

Since XUX ™ is a closed simply connected 4-manifold, H,(XUX7) is
free. Then, by the Mayer-Vietoris sequence
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o Hy(3X) — Hy(X)® Ha(X ™) — Hy(XUX ") 2 H (9X) — 0,

I [
0 7®Z Z,

H,(XUX7) has rank 2 and is generated by {[S],[S ], [DUD™]}. Further-
more,

n[DUD™1=n{DUD~UAU(—A)]
=[(D,UD,U---UD,)U(D;UD;U---UD;)UAUA"]
=[{D,;UD,U---UD,UA]+[D;UD; U---UD;; UA]
=[S]+[S7].

Thus, [ST]=n[DUD™]—[S], so {[S],[DUD ]} is a basis for H,(XUX").

Next we calculate the intersection pairing for X UX ™. By (ii) above, it is
clear that [S]-[DUD ~] =1. Since self-intersection points in D all have corre-
sponding self-intersections in D~ with opposite sign, [DUD™]-{DUD ] =
0. By (iii) above, [S]-[S]1=[S]-[D,UD,U---UD, UA], and since AC d.X,
we may assume SNA=@. Hence, [S]-[S]=n([S]:-[D])=n. The intersec-

tion pairing for X UX ™ can thus be represented by the matrix wy = [(1) ,11] If

n is even and A= [_;/2 ?], then A-(wy)-AT= [? (1)] and so, by Freedman’s

classification theorem, X UX ™= S? x S2. Similarly, when » is odd, wy 1S

1 0
0 -1

nected 4-manifold with this intersection pairing is either CP2#(—CP?), or a
manifold homotopy equivalent to CP2#(—CP?) but with nontrivial Kirby-
Siebenmann invariant. The Kirby-Siebenmann invariant (hereafter denoted
“ks”) lies in Z, and is additive for manifolds joined along a component
of their boundaries (see [FQ, p. 164]), so ks(XUX ") =ks(X)+ks(X )=
2-ks(X)=0 (in Z,). Thus XUX ™= CP%#(—CP?) when n is odd. O

equivalent to [ ] By the classification theorem, a closed, simply con-

Proof of Theorem 3.3. Recall that m(E) perfect means that H,(E)=0.
Since H,(dE) = H|(E), duality and universal coefficients imply that JdE is a
homology 3-sphere. By [Fr], dE bounds a compact contractible 4-manifold
C’. The proof is now a simpler version of the proof of Theorem 3.1, with C’
playing the role of K and C the role of X. In the end, A= C—F(E), where
F:E (=E (0EX1,i,)) - M*(0Ex]I,i,) is an embedding which takes dE
onto dE X {0}, and C=M1OEXI,i,) UsexyC. Now A may be viewed as
the intersection of a nested sequence of compact contractible manifolds,
and is therefore cell-like. To embed C in S*, simply note that the double of
C is a homotopy 4-sphere, and hence homeomorphic to S* by [Fr]. Ol

S. An Application to Embedding Theory

Let X" be an n-manifold, and let AC X". A is globally I-alg in X if for any
neighborhood U of A4 there is a neighborhood V of A, V'C U, such that loops
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that are null-homologous in V' — A are null-homotopic in U— A. This condi-
tion has proven to be valuable for studying complements of certain embed-
dings. For example, if Z*C $” is an embedded k-sphere (or shape k-sphere)
with k <n—3, then S"—X¥= S"—S* if and only if ¥ is globally 1-alg (see
[Du] and [Ve]). Analogous results, but with knotting taken into considera-
tion, are known when kX = n—2. One example, due to Liem and Venema, is
the following.

TueOREM 5.1 [LV1]. Let £2C S* be an embedded shape 2-sphere. Then
S4—x2~ §*— K2 for some locally flat 2-sphere K?, or (equivalently) £? has
a neighborhood N=S?>xD? with N—X?= (S2><S yx [0, 1) if and only if
¥2 is globally 1-alg in S*.

In [LV2], the following question is raised: If £2C X* is a 1-alg shape 2-
sphere in a 4-manifold, does there exist a locally flat 2-sphere K> C X4 with
X*—-X?= X*—K?? Equivalently, one may ask whether every globally 1-alg
shape 2-sphere 2 in a 4-manifold X 4 has a neighborhood N homeomorphic
to a disk bundle D over S2 with N— X2 homeomorphic to D — S3, where S is
the 0-section of D. A weaker version simply asks whether the end of X*—X2
must be collarable. It is easy to check that, when Theorem 3.1 or 3.2 is ap-
plied to a weak collar £ with boundary Z-homology equivalent to L(#, 1),
the resulting shape 2-sphere I is globally 1-alg. Furthermore, when E does
not contain an actual collar (as in the Kwasik-Schultz examples), we have
produced an example that answers the above questions negatively.

6. Questions

It is natural to ask whether the results in this paper are true with actual 2-
spheres taking the place of shape 2-spheres. In particular:

(1) Can all 4-dimensional weak collars with fundamental group iso-
morphic to Z, and boundary Z-homology equivalent to L(n,1) be
realized as complements of (wildly) embedded 2-spheres?

(2) Does there exist a globally 1-alg 2-sphere ¥ in a 4-manifold X 4 for
which the end of X*—X is not collarable, or for which there are not
locally flat 2-spheres K € X* with X4—X = X4—K?
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