Interpolating Sequences for
the Bergman Space

KEHE ZHU

1. Introduction

Let D be the open unit disk in the complex plane C, and let dA4 denote the
normalized area measure on D. The Bergman space L2(D) consists of ana-
lytic functions f in D such that

If17= Smlf(z)l2 dA(2) < +o.

L2(D) is clearly a Hilbert space with inner product
Sor=| /@R, fgeliD).
D

Throughout the paper, || || and ¢, ) will always denote the above norm and
inner product in L2(D).

Let A={a,} be a sequence of points in D. We say that A is a sequence
of interpolation for L3(D) if, for every sequence {w,} of complex numbers
satisfying

> (1= @) | wa|* < +o0,
n=1

there exists a function f in L2(D) such that f(a,)=w, for all n=1. Se-
quences of interpolation for L2(D) are studied and characterized in [2; 6; 7].
In particular, it is well known that every sequence of interpolation for L2(D)
must be separated in the pseudohyperbolic metric. Thus we assume through-
out the paper that the points in the sequence A ={a,} are all distinct. It is
clear that if A4 is a sequence of interpolation for L2(D), then so is every sub-
sequence of A. It is also easy to see that every sequence of interpolation for
L%(D) is a zero set for Lg(D); that is, there exists a nontrivial function f in
L2(D) which vanishes on the sequence. Zero sets in this paper will always be
assumed to be simple; namely, each zero set consists of distinct points in D.

Suppose A = {a,} is a zero set for L2(D). The space

Hy={feLiD): f(a,)=0,n=1}
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is a nontrivial closed subspace of L2(D). Thus H  is a Hilbert space-with the
inner product inherited from LE(D). We let K4(z, w) denote the reproducing
kernel for the space H,. We can now state the main results of the paper.

THEOREM A. Suppose A={a,} is a sequence of interpolation for L3(D).
Then there exists a unique sequence {,,} in L2(D) such that the kernel func-
tion K 4(z, w) admits the following partial fraction expansion:

_ 1 & da(w)
KA(Z,W)—m ngl—(l—énz)z’ z,weD.

Moreover, the functions ¥, have the following additional properties:

(1) ¥,(a,)=1and y,(a,)=0 for all n,m=1 and n+ m.
(2) For each compact set K in D there exists a positive constant Cy such
that

[¥n(2)| = Cx(1—]a,|*)¥?, zeK, n=1.

(3) There is a constant C >0 such that 1—|a,|> <||y,||< C(1—|a,|*) for
all n=1.

THEOREM B. Suppose that A= {a,} is a sequence of interpolation for L3(D)
and that {y,} is the sequence from Theorem A. If {w,} is a sequence of
complex numbers satisfying

E (l—lanlz)zlwnlz< + 00,
n=1

then the series X5_ w,¥,(z) converges to a function in LE(D) which uniquely
solves the minimal interpolation problem inf{| f|: f(a,)=w,, n=1]}.

We note that the sequence {y,} is given by

K, (2, ay)

, z€D, n=1,
KA,,(an,an)

\bn(z) =
where A, = A—{a,} for all n=1. It is then clear that

1
||¢l1 ” - \/Km ’
and property (1) in Theorem A is obvious.
When A = {a,} is a sequence of interpolation for L2(D), we call the oper-
ator 7 defined by

n=1,

)@ = 3 wid(2), z€D,

the minimal interpolation operator for L2(D). For each fw,] satisfying

> (1= a,[*)?|w,|* < +oo
n=1
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we have
ITa(twad)l| = min]| 1 f(ay) = wy, n=13.

The main results of the paper are proved in [9] in the special case when
A={a,} is a classical interpolating sequence, namely, when A satisfies

§=inf T

n k+n

ar—ay

> 0.

1— dk ap

It follows from results in [7] that every classical interpolating sequence is
a sequence of interpolation for L2(D). The corresponding results for the
Hardy space H?(D) are also proved in [9].

The author wishes to thank Kristian Seip for useful conversations and
suggestions.

2. Minimal Interpolation

Recall that for each L2(D)-zero set A = {a,} we denote by K 4(z, w) the repro-
ducing kernel of

Hy={feLiD): f(a,)=0,n=1}.

K 4(z, w) is the unique function on D X D satisfying the following two con-
ditions:

(1) K4(-,w)isin H, for every we D.

2) (f, K4(-,w))=f(w) for all fin Hy and we D.
The kernel function K4 has the following additional properties:

(3) K4(z,w)=K4(w,z) for all z and w in D.

(4) K4(z,w)=0if and only if z or w is in A. Moreover, if w is not in A4,

then K 4(z, w) has simple zeros at z =aq, for each n=1.
(5) If {e,}is any orthonormal basis for H 4, then

Ki(z,w)= §J e (z2)e,(w), z,weD.

n=1

(6) If ¢: D— D is a M6bius map, then

' (2) K, 4)(p(2), o(W)) 9’ (W) = K 4(2, W)
for all z and w in D. In particular,

1
Kai(z,w)= mK¢W(A)(¢;v(Z), 0), z,weD,

where ¢, is the involutive Mobius map given by

w—2
ﬁow(z) =

—, z€D.
1—wz

We call this property the transformation law for the reproducing ker-
nel K,4.
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(7) For each we D the function K4(-, w) is the unique solution to the
extremal problem sup{Re f(w): | f||<1, fe H,}.

If A={a,} is a sequence of interpolation for L2(D), then A is necessarily
a zero set for L2(D), and the points in A are necessarily distinct. For each
n=1let A,=A—{a,} and define

KAn(zs an)

, z€D.
KAn(ana an)

‘pn(z) =
Note that by property (4) of the reproducing kernels the denominator
K, (ay, a,) above is always nonzero. By properties (1) and (2) of the kernel
functions we also have

1
”‘%1”2: KA (a,,a )2 <KAH("an)aKA,,(" an))
_ KA,,(art’an) _ 1

B KAn(an’an)z B KAn(an’ an)
forall n=1.

LeEMMA 1. Suppose that A={a,} is a sequence of interpolation for L2(D)
and that {w,}_, is a finite sequence of complex numbers. Then the function

N
h(z)= 2 w,¥,(2), zeD,
n=1

is the unique solution to the following extremal problem:

inf{|| f|: f(a,)=w,, 1=n=<N, f(a,)=0,n>N}.

Proof. Since A is a sequence of interpolation for L2(D), there exist func-
tions f in L2(D) such that f(a,)=w, for 1<n<N and f(a,) =0 for n>N.
Let f be such a function. It is clear that f— 4 is a function in H 4. Fix a point
w in D — A. Then there exists an analytic function g in D such that

f(R)—h(z)=K4(z,w)g(z), ze€D.
This implies that

|FIP=]A+K4(, wgl
= |||+ || K4(-, w)g|*+2Re{K (-, w)g, h).
Note that

N —_

Wy
(K4(-,W)g, h) = ’El W(KA( yW)8, K4, (+5a,))

and K (-, w)g is in H, . Thus, by the reproducing property of K, , we have

N w
(K (-, W)g, h) = —  _K.(a,,w)g(a,)=0.
a(-,w)g ’zl Ko (s ) A( Yg(ay)

Therefore,
IAIZ = 1412+ KaC-, well,



Interpolating Sequences for the Bergman Space 77

and hence # is the unique solution to the extremal problem

inf{|| fl|: f(@,)=w,, 1=n=<N, f(a,)=0,n>N}. |

LEMMA 2. Suppose A ={a,} is a sequence of interpolation for LX(D). Then
there exists a constant C > 0 such that

inf(| £2: f(@n) =Wy n=11=C 3 (1=|a, )2 w,[?

n=1

for every sequence {w,} with 5_(1—|a,|*)?|wu|* < +oo.

Proof. Suppose A is a sequence of interpolation for L2(D). It is well known
(see [6; 7]) that the operator

fel=|a,?) f(ay))

is a bounded linear operator from L2(D) onto /2 The desired result then
follows from the open mapping theorem. O

We can now prove the main result of this section.

THEOREM 3. Suppose that A ={a,} is a sequence of interpolation for L*(D)
and that A,=A—{a,} forn=1. Let

KAH(Zs an)
K, (ay,a,)’

l/’n(z) =

zeD, n=1.
Then, for each sequence {w,} with Zu_;(1—|a,|*)*|w,|? < +o, the series
h(z) = E Wn‘lbn(z)
n=1

converges in L2(D), and h is the unigue solution to the minimal interpola-
tion problem

inf(|f]|: £(a,) = w,, n=1},

Proof. Given e > 0, there exists a positive integer /Ny such that
N+p €
S (I=|a, 2| waP<—=, N=N,, p=1,
n=N C

where C is the constant from Lemma 2. Let w;=w, for N<=n<N+p and
w,, = 0 otherwise. It follows from Lemma 1 that

N+p
ENWn% =inf{| f|: f(a,)=w,, n=1}.
By Lemma 2,
N+p 2 oo
Y Wt =C X (1—|a,*)?|wil?
n=N n=1

NEp 232 2
=C 3 (I—|a,|)*|w,
n=N

<e€
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for all N=Njand p=1. Thus
h(z)= 2 w,¥n(z)

n=1
converges in L2(D). It is clear that 4 has the property h(a,)=w, for n=1.
Suppose f is another function in L2(D) with the property f(a,)=w, for
n=1. Then
S(z)—h(z)=K4(z,w)g(z), zeD,

for some analytic function g in D, where w is any point in D — A (g depends
on w). Using exactly the same arguments as in the proof of Lemma 1, we
can prove that

I/ IZ =181+ [ Kal, wygl.
Thus || f|| = || #]|, and so # solves the following minimal interpolation problem:

lnf{“f” fla,)=wy, n=1}.

The uniqueness of the solution to the above problem follows from gen-
eral functional analysis. In fact, the set of functions f in L2(D) satisfying
Sf(a,)=w, (n=1) is closed and convex, and so must have a unique element
of minimal norm. 1

COROLLARY 4. Suppose that A is a sequence of interpolation for L*(D)
and that
KA,,(Za an)

—— n=1, zeD,
KA,,(an, an)

\bn(z) =

where A, = A—{a,} for n=1. Then the series

$ ¥n(2)]?

n=1 (1=]a,[?)?

converges uniformly on every compact subset of D.

Proof. Note that convergence in L2(D) implies uniform convergence on
compact subsets of D. By Theorem 3, the series

i ¥nu(2)

> (A —|a,yw, —=

n=1 l—lanlz

converges uniformly on compact subsets of D for all {w,} with

S (1—|a,|*)?|w,|> < +o0.
n=1

In other words,

® Yn(2)
b el
n§=:1 " l_lanlz
converges uniformly on compact subsets of D for all {,} in /2. Thus the
series
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$ Vu(z)?

n=1 (1—=]a,|*)?

converges uniformly on compact subsets of D. O

3. Further Estimates on {{,}

It follows from Corollary 4 that if A ={a,} is a sequence of interpolation for
L%(D) and if X is a compact subset of D then there exists a constant Cx >0
such that |¢,,(z)| = Cx(1—|a,|*) for all z in K and n = 1. The purpose of this
section is to improve this estimate; we show that. |,(z)| < Cx (1—|a,|*)*?
for n=1 and ze€ K. To achieve this estimate we need to introduce certain
notions of uniform density for sequences in D.

Let A={a,} be a sequence of distinct points in D. We say that A is sepa-
rated if there exists a constant 6 > 0 such that p(a,,a,,)>6 for all n,m=1
with n# m, where p is the pseudohyperbolic metric on D defined by.

z—
1—zw’

p(z, W) =|o (W)|, @ (W)= z,weD.
Note that ¢, is the involutive Mébius map of D which interchanges 0 and z.
Suppose A ={a,} is a separated sequence in D. For each 1/2 <r <1 let

1 1 1
D(A,r)=2{logm 5<|ak|<r}/log 11—,

The lower and upper uniform densities of A are th¢n defined, respectively, as

D™ (A) =liminf inf D(e,(A),r)
r—-17 zeD
and

D™*(A) =limsup sup D(¢,(A), r).

r—-1- zeD

By Theorem 6.2 of [7], A={a,} is a sequence of interpolation for L2(D)
if and only if A is separated and D*(A) < 3. Note that if A is a classical
interpolating sequence then D*(A) = 0. Clearly such a sequence is also sepa-
rated. Thus every classical interpolating sequence is a sequence of interpola-
tion for L2(D).

It is clear that both the upper and lower densities are MObius invariant;
that is,

D™ (p(A)=D"(A) and D™ (p(A4))=D (A)
whenever ¢ is a Mobius map of the disk. It is also clear that
DY(A)=D*(B) and D (A)=D (B)
whenever A contains B. It follows from these observations that

D*(A4)=D*(A,) and D (A)=D (A4))
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for all n=1, where

Ay= ﬂoa”(An) = {Soa,,(ak) tk=l, k#n}, n=l.

LeEmMMA 5. Suppose that A={a,} is a sequence of interpolation for Lf,(D)
and that A, = ¢, (A,) (see the previous paragraph). Then there exists a con-
stant o > 0 such that 0 <K 4,(0,0) <1 for all n=1.

Proof. By the reproducing property of the kernel functions we have

K 4:(0,0) =sup{| f(O)*: || fI|<1, fe Hy}, n=L
Since | f(0)]<| f| for all fe L3(D), we see that K4, (0,0)=<1 for all n=1.
Using standard Hilbert space arguments we can write

KA',,(O’ O)= _}1‘, nle

n
where

L=inf{| f[?: f(0) =1, fe Hy}.

Thus we need to show that the sequence {7,,} is bounded.
Since 4 is a sequence of interpolation for L2(D), by Theorem 6.2 of [7]
we have

6(A)=inf{p(a,b):a,be A,a+b}>0
and D*(A) < 3. Using Mébius invariance, we also have

0(A,)=6(A)>0, n=1,
and
D+(A;)SD+(A)<§, n=1.

By Lemma 5.7 of [7] there exists e >0 such that for each n>=1 there is an
analytic function g, in D with the following properties:

(1) g,(0)=1and g,(z)=0 for all ze A4;,, and

) |g.(z)|=C(1—|z)*)~2*¢ for all ze D,
where C >0 is a constant depending only on §(A4), D*(A), and € (but not
on n). It follows that

Ins”g,,”zsCzS (1—|z) 2 dAz), n=1.
D

This finishes the proof of Lemma 5. ]

Recall that ||V, =K (a,,a,) 2 for all n=1. By the transformation law
for the kernel functions K4 and the estimate in Lemma 35, there exists a con-
stant C > 0 such that

l_lanlzs IMHH = C(l _]anlz)
for all n>=1.
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THEOREM 6. Suppose that A = {a,} is a sequence of interpolation for L2(D)
and that

KA,,(Zs an)
KA,,(ana an) ’
where A,=A—{a,} (n=1). There exists a constant C >0 such that

C(l___lan|2)3/2
[1—a,z|V1—|z|?

Yn(2) =

zeD, n=1,

|¥n(z)| <

SforallzeD and n=1.

Proof. By the transformation law for the kernel function K4, we can write
1 ——|a,,|2)2 K 41(24,(2), 0)
l—dnz KA;(O, 0) ’

where A= g, (A,) = {eq (@) k=1, k#n) and ¢,(z) = (a—z)/(1—az).
Since the function

zeD, n=1,

¢n(z) = (

G (Z)—M zeD
A VK4(0,0) !

solves the extremal problem

sup{Re f(0): fe H,, | /] =13,
Corollary 4.5 of [3] implies that
1—|a 212 1
1-a,z | V1—|p, (2)]* VK (0, 0)
or :
(l_lan|2)3/2
Yn(2)| = , zeD, n=1.
¥a(2)] |1—a,z|V1—|z|> VK 4.(0,0)
The desired result now follows from Lemma 5. 1

CoroLLARY 7. If A={a,} is a sequence of interpolation for Lﬁ(D) and
K is a compact set in D, there exists a constant Cx >0 such that |y, (z)| <
Cx(1—|a,)*)¥? for all ze K and n=1.

COROLLARY 8. If A={a,} is a sequence of interpolation for L3(D), then
the series 57 1|Y,(2)| converges uniformly on each compact subset of D.

Proof. By Corollary 7, it suffices to show that

> (1—|a,*)*? < +oo.

n=1

But this is true for every L2(D)-zero set A4; see [4] and [5]. il

Note that Corollary 8 also follows from Corollary 4, the Cauchy-Schwarz
inequality, and the fact that
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> (1—|a,[*)? < +oo.

n=1

The convergence of X - (1 —-|a,,|2)" (p>1) for sequences of interpolation
for L2(D) can be proved elementarily without appealing to the theory of
zero sets. In fact, if

r=1inf{p(a,,a,): n+ m)

then D(a,,r)={zeD: p(z,a,) <r} are disjoint disks in D. By 4.3 of [10]
there exists a constant C > 0 such that

(1—|a,,|2)~”sCS (1—|z|)?~2dA(z), n=1,
D(a,,r)
and hence

i (1-|a,)? < CS (1—|z|*)?~2dA(z) < +oo,
n=1 D

4. Partial Fraction Expansion for Reproducing Kernels

Let A be a sequence of interpolation for L2(D). In this section we derive a
partial fraction representation for the kernel function K 4(z, w). The expan-
sion will be in terms of the sequence of functions {y,}.

THEOREM 9. Suppose A=1{a,} is a sequence of interpolation for L3(D).
Then

_ 12 Yaw)
RaeW) = ~ 2 U=a,07

for all zand w in D.

Proof. Define a function K; on D XD as follows:

12 da(2)
KEW =~ 2 ey @D

By Corollary 8, the above series converges absolutely and uniformly if both
z and w are restricted to a compact subset of D. In particular, K;(z, w) is
analytic in z and conjugate analytic in w. Fix we D and let

1
= aw)?

It is clear that {w,} is a bounded sequence. In particular,

n=1.

> (=], wal? < +o0

n=1

(recall that %_(1—]|a,[*)* < +oo for every L2(D)-zero set A; see the last
paragraph in the previous section). By Theorem 3, the series
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h(z) = i M

, z€D,
n=1 (l_anw)z

converges to a function in L2(D). Thus K (-, w) belongs to L2(D) for each w
in D. Since ¢,(a,)=1 and y¥,(a,,) =0 for all n, m =1 and n # m, we see that
K,(-, w) belongs to H 4 for every w in D. Furthermore, if f is in H 4 then f is
in each H, , and hence

S f(z)‘¢n_(z)dA(z)=;§ £(2) K a (a: 2) dAZ)
D Ky (ay,a,) Jp

_ fa)

B KA,,(ans an) .
Therefore,

LK W)y = SD F@) K@, W) dA(z)
_S f(2)dA(Z) & 1
CJp (1-wz)?2 2 (1—-a,w)?
= f(w)

for every w in D. By uniqueness of the reproducing kernel, we must have

SD £(2)¥n @) dA(Z)

Ka(z, w)=K(z,w), z,weD.
Since K 4 is symmetric, that is, K 4(z, w) = K 4(w, z), we conclude that

e TR -~ O
Kalz, w)=Ki(w, 2) = (1—zw)?  ,2) (1-a,2)*

for all z and w in D. |

CoROLLARY 10. Suppose A= {a,} is a sequence of interpolation for L3(D).
For every w in D, the kernel function K 4(-, w) extends analytically across
each arc of aD which does not contain any accumulation points of {a,}.

Note that the above corollary is established in [3] for every L2(D)-zero set

A. Related extension theorems for extremal functions can be found in [1]
and [8].

CoroOLLARY 11. Suppose that A={a,} is a sequence of interpolation for
L(D) and that H & is the orthogonal complement of H 4 in L2(D). The re-
producing kernel for Hf is given by

D)

KAL(Z: W) = E

—, zZ,weD.
n=1 (1"‘1'nz)2

Proof. Let {e,} be an orthonormal basis for H, and let {o,} be an ortho-
normal basis for H}. Then {e,}U{s,} is an orthonormal basis for L2(D).
Recall that (1—zw) ™2 is the reproducing kernel for L3(D). Thus
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(I——Iéw—)f = e (2)e,(W)+ 3 0,(2) 0, (W)
=KA(Z, W) +KAJ-(Z’ W),

and the desired result follows from the expansion for K, given in Theo-
rem 9. [

ReMARK. It is difficult to see directly that the function

ad ¢Il(w)
Kar(z,w)= ) ————
n=1 (l_anz)z
is symmetric. As a consequence of the known symmetry we obtain the fol-
lowing interesting identity:

i ¥n(2) _§: Yn(w)

— = —, 2zZ,WweD.

n=1 (1_anW)2 n=1 (l—anz)z

COROLLgRY 12. Suppose A= {a,} is a sequence of interpolation for L2(D).
For each function fin Hx, we have

f@)=3 fla)¥n(z), zeD.

n=1

Proof. By the proof of Theorem 10, each function y,, belongs to Hz. If fis
in Hz then the function

F()=f(z)— S f(an)vn(z), zeD,

n=1

belongs to both H, and HZ, and hence it must be the zero function. 0

It is clear that the sequence {y,} is linearly independent in H%. Thus the
above corollary shows that ¥y, ¥», ..., ¥,, ... form a basis for H3. Note that
the functions in {y,,} are not mutually orthogonal.

The following is an atomic decomposition theorem for functions in H3
when A is a sequence of interpolation for L2(D). See [10] for more infor-
mation on the atomic decomposition of general functions in the Bergman
space.

TueEOREM 13.  Suppose A ={a,) is a sequence of interpolation for L2(D).
(1) For every sequence {c,} in I?, the series
— 1— lan |2
c —— e
ngl " (1 - ﬁn Z)z

converges in norm to a function in Hj.
(2) For every function f in HZ, there exists a unique sequence {c,} in I*
such that
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[o) 1_ 2
f(z)= E Cn—ﬂ_

, Z€D,
n=1 (1'_‘:7112:)2

and the convergence is in norm.
(3) There is a constant C > 0 such that

§: c, 1_|an|2 2

C_l S C ZSS PP EE——
n§l| nl n=1 (1—a,,z)2

dA(z)=C 3 |c,[?
D n=1

for all sequences {c,} in I>.

Proof. Define a linear operator T: Hf — 2 by

Tf={(1-|a,|?) f(a,)}.

We first show that the operator 7 is bounded, one-to-one, and onto.

That 7 is bounded is well known,; it follows from the fact that {a,,} is sepa-
rated (see e.g. [10, Lemma 4.4.2]). The operator 7 is one-to-one because the
intersection of H, and H consists of the zero function only. To see that T is
onto, let {c,} be a sequence in /2 and write c,=(1 —-la,,|2)w,,. Since A ={a,}
is a sequence of interpolation for L2(D), there exists a function F in Li(D)
such that F(a,)=w, for n=1. Let f be the orthogonal projection of F in
H; then we have Tf = {c,].

Let T*: [> - H3 be the adjoint of 7. It is easy to check that 7* is given by
the following formula:

< 1—|a,*

T*{c,}(z) = E Cn

R eD.
2 0=a,? ©

The desired results now follow from the fact that 7* is bounded, one-to-
one, and onto (and hence its inverse is also bounded by the open mapping
theorem). This completes the proof of Theorem 13. L]

REMARK. Suppose that A={a,} is a sequence of interpolation for L2(D)
and that T: H3 — [? is the linear operator defined in the proof of the above
theorem. Then the inverse of T is given by the following formula:

[oo}

—1 - Cn
T {c"}(Z)—zzll_ian|2¢n(Z)’ zeD.

This is simply the minimal interpolation operator.

COROLLARY 14. Suppose A={a,} is a sequence of interpolation for L3(D).
Then
& (v
f(z) = E #

, eD,
=g, °

Sfor every function f in H%. Moreover, the above series converges in norm
in LA (D).
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Proof. Suppose f is in HZ. By Theorem 13, there exists a sequence {c,} such
that
= 1-]a,
S)=>c _ zeD,
n=1 " (1 _anz)2

with the series converging in norm in L2(D). It follows that

o dA
(f, I:bk)z" E Cn(l_lanlz) SD ‘bfl(i)d Z;f)

n=1

= El Cn(l—lanlz)\bk(an)
n=
= cp(1—|ar]?)
for all k=1, or

_ <.f, ¢k>

= , k=1,2,.... ]
T 1 ay 2
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