Interpolating Sequences for the Bergman Space

Kehe Zhu

1. Introduction

Let **D** be the open unit disk in the complex plane **C**, and let dA denote the normalized area measure on **D**. The Bergman space $L_a^2(\mathbf{D})$ consists of analytic functions f in **D** such that

$$||f||^2 = \int_{\mathbf{D}} |f(z)|^2 dA(z) < +\infty.$$

 $L_a^2(\mathbf{D})$ is clearly a Hilbert space with inner product

$$\langle f, g \rangle = \int_{\mathbf{D}} f(z) \overline{g(z)} \, dA(z), \quad f, g \in L_a^2(\mathbf{D}).$$

Throughout the paper, $\| \|$ and \langle , \rangle will always denote the above norm and inner product in $L_a^2(\mathbf{D})$.

Let $A = \{a_n\}$ be a sequence of points in **D**. We say that A is a sequence of interpolation for $L_a^2(\mathbf{D})$ if, for every sequence $\{w_n\}$ of complex numbers satisfying

$$\sum_{n=1}^{\infty} (1-|a_n|^2)^2 |w_n|^2 < +\infty,$$

there exists a function f in $L_a^2(\mathbf{D})$ such that $f(a_n) = w_n$ for all $n \ge 1$. Sequences of interpolation for $L_a^2(\mathbf{D})$ are studied and characterized in [2; 6; 7]. In particular, it is well known that every sequence of interpolation for $L_a^2(\mathbf{D})$ must be separated in the pseudohyperbolic metric. Thus we assume throughout the paper that the points in the sequence $A = \{a_n\}$ are all distinct. It is clear that if A is a sequence of interpolation for $L_a^2(\mathbf{D})$, then so is every subsequence of A. It is also easy to see that every sequence of interpolation for $L_a^2(\mathbf{D})$ is a zero set for $L_a^2(\mathbf{D})$; that is, there exists a nontrivial function f in $L_a^2(\mathbf{D})$ which vanishes on the sequence. Zero sets in this paper will always be assumed to be simple; namely, each zero set consists of distinct points in \mathbf{D} .

Suppose $A = \{a_n\}$ is a zero set for $L_a^2(\mathbf{D})$. The space

$$H_A = \{ f \in L_a^2(\mathbf{D}) : f(a_n) = 0, n \ge 1 \}$$

Received June 15, 1992. Revision received March 29, 1993. Research supported by the National Science Foundation. Michigan Math. J. 41 (1994).

is a nontrivial closed subspace of $L_a^2(\mathbf{D})$. Thus H_A is a Hilbert space with the inner product inherited from $L_a^2(\mathbf{D})$. We let $K_A(z, w)$ denote the reproducing kernel for the space H_A . We can now state the main results of the paper.

THEOREM A. Suppose $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$. Then there exists a unique sequence $\{\psi_n\}$ in $L_a^2(\mathbf{D})$ such that the kernel function $K_A(z, w)$ admits the following partial fraction expansion:

$$K_A(z, w) = \frac{1}{(1 - z\bar{w})^2} - \sum_{n=1}^{\infty} \frac{\overline{\psi_n(w)}}{(1 - \bar{a}_n z)^2}, \quad z, w \in \mathbf{D}.$$

Moreover, the functions ψ_n have the following additional properties:

- (1) $\psi_n(a_n) = 1$ and $\psi_n(a_m) = 0$ for all $n, m \ge 1$ and $n \ne m$.
- (2) For each compact set K in \mathbf{D} there exists a positive constant C_K such that

$$|\psi_n(z)| \le C_K (1-|a_n|^2)^{3/2}, \quad z \in K, \ n \ge 1.$$

(3) There is a constant C > 0 such that $1 - |a_n|^2 \le ||\psi_n|| \le C(1 - |a_n|^2)$ for all $n \ge 1$.

THEOREM B. Suppose that $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(D)$ and that $\{\psi_n\}$ is the sequence from Theorem A. If $\{w_n\}$ is a sequence of complex numbers satisfying

$$\sum_{n=1}^{\infty} (1-|a_n|^2)^2 |w_n|^2 < +\infty,$$

then the series $\sum_{n=1}^{\infty} w_n \psi_n(z)$ converges to a function in $L_a^2(\mathbf{D})$ which uniquely solves the minimal interpolation problem $\inf\{\|f\|: f(a_n) = w_n, n \ge 1\}$.

We note that the sequence $\{\psi_n\}$ is given by

$$\psi_n(z) = \frac{K_{A_n}(z, a_n)}{K_{A_n}(a_n, a_n)}, \quad z \in \mathbf{D}, \quad n \ge 1,$$

where $A_n = A - \{a_n\}$ for all $n \ge 1$. It is then clear that

$$\|\psi_n\| = \frac{1}{\sqrt{K_{A_n}(a_n, a_n)}}, \quad n \ge 1,$$

and property (1) in Theorem A is obvious.

When $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$, we call the operator T defined by

$$T_A(\lbrace w_n\rbrace)(z) = \sum_{n=1}^{\infty} w_n \psi_n(z), \quad z \in \mathbf{D},$$

the minimal interpolation operator for $L_a^2(\mathbf{D})$. For each $\{w_n\}$ satisfying

$$\sum_{n=1}^{\infty} (1 - |a_n|^2)^2 |w_n|^2 < +\infty$$

we have

$$||T_A(\{w_n\})|| = \min\{||f||: f(a_n) = w_n, n \ge 1\}.$$

The main results of the paper are proved in [9] in the special case when $A = \{a_n\}$ is a classical interpolating sequence, namely, when A satisfies

$$\delta = \inf_{n} \prod_{k \neq n} \left| \frac{a_k - a_n}{1 - \bar{a}_k a_n} \right| > 0.$$

It follows from results in [7] that every classical interpolating sequence is a sequence of interpolation for $L_a^2(\mathbf{D})$. The corresponding results for the Hardy space $H^2(\mathbf{D})$ are also proved in [9].

The author wishes to thank Kristian Seip for useful conversations and suggestions.

2. Minimal Interpolation

Recall that for each $L_a^2(\mathbf{D})$ -zero set $A = \{a_n\}$ we denote by $K_A(z, w)$ the reproducing kernel of

$$H_A = \{ f \in L_a^2(\mathbf{D}) : f(a_n) = 0, n \ge 1 \}.$$

 $K_A(z, w)$ is the unique function on $\mathbf{D} \times \mathbf{D}$ satisfying the following two conditions:

- (1) $K_A(\cdot, w)$ is in H_A for every $w \in \mathbf{D}$.
- (2) $\langle f, K_A(\cdot, w) \rangle = f(w)$ for all f in H_A and $w \in \mathbf{D}$.

The kernel function K_A has the following additional properties:

- (3) $\overline{K_A(z, w)} = K_A(w, z)$ for all z and w in **D**.
- (4) $K_A(z, w) = 0$ if and only if z or w is in A. Moreover, if w is not in A, then $K_A(z, w)$ has simple zeros at $z = a_n$ for each $n \ge 1$.
- (5) If $\{e_n\}$ is any orthonormal basis for H_A , then

$$K_A(z, w) = \sum_{n=1}^{\infty} e_n(z) \overline{e_n(w)}, \quad z, w \in \mathbf{D}.$$

(6) If $\varphi : \mathbf{D} \to \mathbf{D}$ is a Möbius map, then

$$\varphi'(z)K_{\varphi(A)}(\varphi(z),\varphi(w))\overline{\varphi'(w)}=K_A(z,w)$$

for all z and w in D. In particular,

$$K_A(z, w) = \frac{1}{(1 - z\bar{w})^2} K_{\varphi_w(A)}(\varphi_w(z), 0), \quad z, w \in \mathbf{D},$$

where φ_w is the involutive Möbius map given by

$$\varphi_w(z) = \frac{w-z}{1-\bar{w}z}, \quad z \in \mathbf{D}.$$

We call this property the *transformation law* for the reproducing kernel K_A .

(7) For each $w \in \mathbf{D}$ the function $K_A(\cdot, w)$ is the unique solution to the extremal problem $\sup\{\operatorname{Re} f(w): ||f|| \le 1, f \in H_A\}$.

If $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$, then A is necessarily a zero set for $L_a^2(\mathbf{D})$, and the points in A are necessarily distinct. For each $n \ge 1$ let $A_n = A - \{a_n\}$ and define

$$\psi_n(z) = \frac{K_{A_n}(z, a_n)}{K_{A_n}(a_n, a_n)}, \quad z \in \mathbf{D}.$$

Note that by property (4) of the reproducing kernels the denominator $K_{A_n}(a_n, a_n)$ above is always nonzero. By properties (1) and (2) of the kernel functions we also have

$$\|\psi_n\|^2 = \frac{1}{K_{A_n}(a_n, a_n)^2} \langle K_{A_n}(\cdot, a_n), K_{A_n}(\cdot, a_n) \rangle$$
$$= \frac{K_{A_n}(a_n, a_n)}{K_{A_n}(a_n, a_n)^2} = \frac{1}{K_{A_n}(a_n, a_n)}$$

for all $n \ge 1$.

LEMMA 1. Suppose that $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$ and that $\{w_n\}_{n=1}^N$ is a finite sequence of complex numbers. Then the function

$$h(z) = \sum_{n=1}^{N} w_n \psi_n(z), \quad z \in \mathbf{D},$$

is the unique solution to the following extremal problem:

$$\inf\{\|f\|: f(a_n) = w_n, 1 \le n \le N, f(a_n) = 0, n > N\}.$$

Proof. Since A is a sequence of interpolation for $L_a^2(\mathbf{D})$, there exist functions f in $L_a^2(\mathbf{D})$ such that $f(a_n) = w_n$ for $1 \le n \le N$ and $f(a_n) = 0$ for n > N. Let f be such a function. It is clear that f - h is a function in H_A . Fix a point w in $\mathbf{D} - A$. Then there exists an analytic function g in \mathbf{D} such that

$$f(z) - h(z) = K_A(z, w) g(z), \quad z \in \mathbf{D}.$$

This implies that

$$||f||^2 = ||h + K_A(\cdot, w)g||^2$$

= $||h||^2 + ||K_A(\cdot, w)g||^2 + 2\operatorname{Re}\langle K_A(\cdot, w)g, h\rangle.$

Note that

$$\langle K_A(\cdot, w)g, h \rangle = \sum_{n=1}^{N} \frac{\bar{w}_n}{K_{A_n}(a_n, a_n)} \langle K_A(\cdot, w)g, K_{A_n}(\cdot, a_n) \rangle$$

and $K_A(\cdot, w)g$ is in H_{A_n} . Thus, by the reproducing property of K_{A_n} , we have

$$\langle K_A(\cdot, w)g, h \rangle = \sum_{n=1}^N \frac{\bar{w}_n}{K_{A_n}(a_n, a_n)} K_A(a_n, w)g(a_n) = 0.$$

Therefore,

$$||f||^2 = ||h||^2 + ||K_A(\cdot, w)g||^2$$

and hence h is the unique solution to the extremal problem

$$\inf\{\|f\|: f(a_n) = w_n, 1 \le n \le N, f(a_n) = 0, n > N\}.$$

Lemma 2. Suppose $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$. Then there exists a constant C > 0 such that

$$\inf\{\|f\|^2: f(a_n) = w_n, n \ge 1\} \le C \sum_{n=1}^{\infty} (1 - |a_n|^2)^2 |w_n|^2$$

for every sequence $\{w_n\}$ with $\sum_{n=1}^{\infty} (1-|a_n|^2)^2 |w_n|^2 < +\infty$.

Proof. Suppose A is a sequence of interpolation for $L_a^2(\mathbf{D})$. It is well known (see [6; 7]) that the operator

$$f \mapsto \{(1-|a_n|^2) f(a_n)\}$$

is a bounded linear operator from $L_a^2(\mathbf{D})$ onto l^2 . The desired result then follows from the open mapping theorem.

We can now prove the main result of this section.

THEOREM 3. Suppose that $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$ and that $A_n = A - \{a_n\}$ for $n \ge 1$. Let

$$\psi_n(z) = \frac{K_{A_n}(z, a_n)}{K_{A_n}(a_n, a_n)}, \quad z \in \mathbf{D}, \quad n \ge 1.$$

Then, for each sequence $\{w_n\}$ with $\sum_{n=1}^{\infty} (1-|a_n|^2)^2 |w_n|^2 < +\infty$, the series

$$h(z) = \sum_{n=1}^{\infty} w_n \psi_n(z)$$

converges in $L_a^2(\mathbf{D})$, and h is the unique solution to the minimal interpolation problem

$$\inf\{\|f\|: f(a_n) = w_n, n \ge 1\}.$$

Proof. Given $\epsilon > 0$, there exists a positive integer N_0 such that

$$\sum_{n=N}^{N+p} (1-|a_n|^2)^2 |w_n|^2 < \frac{\epsilon}{C}, \quad N \ge N_0, \ p \ge 1,$$

where C is the constant from Lemma 2. Let $w'_n = w_n$ for $N \le n \le N + p$ and $w'_n = 0$ otherwise. It follows from Lemma 1 that

$$\left\| \sum_{n=N}^{N+p} w_n \psi_n \right\| = \inf\{ \|f\| \colon f(a_n) = w_n', \, n \ge 1 \}.$$

By Lemma 2,

$$\left\| \sum_{n=N}^{N+p} w_n \psi_n \right\|^2 \le C \sum_{n=1}^{\infty} (1 - |a_n|^2)^2 |w_n'|^2$$

$$= C \sum_{n=N}^{N+p} (1 - |a_n|^2)^2 |w_n|^2$$

for all $N \ge N_0$ and $p \ge 1$. Thus

$$h(z) = \sum_{n=1}^{\infty} w_n \psi_n(z)$$

converges in $L_a^2(\mathbf{D})$. It is clear that h has the property $h(a_n) = w_n$ for $n \ge 1$. Suppose f is another function in $L_a^2(\mathbf{D})$ with the property $f(a_n) = w_n$ for $n \ge 1$. Then

$$f(z)-h(z)=K_A(z,w)g(z), z \in \mathbf{D},$$

for some analytic function g in \mathbf{D} , where w is any point in $\mathbf{D} - A$ (g depends on w). Using exactly the same arguments as in the proof of Lemma 1, we can prove that

$$||f||^2 = ||h||^2 + ||K_A(\cdot, w)g||^2.$$

Thus $||f|| \ge ||h||$, and so h solves the following minimal interpolation problem:

$$\inf\{\|f\|: f(a_n) = w_n, n \ge 1\}.$$

The uniqueness of the solution to the above problem follows from general functional analysis. In fact, the set of functions f in $L_a^2(\mathbf{D})$ satisfying $f(a_n) = w_n$ $(n \ge 1)$ is closed and convex, and so must have a unique element of minimal norm.

COROLLARY 4. Suppose that A is a sequence of interpolation for $L_a^2(D)$ and that

$$\psi_n(z) = \frac{K_{A_n}(z, a_n)}{K_{A_n}(a_n, a_n)}, \quad n \ge 1, \ z \in \mathbf{D},$$

where $A_n = A - \{a_n\}$ for $n \ge 1$. Then the series

$$\sum_{n=1}^{\infty} \frac{|\psi_n(z)|^2}{(1-|a_n|^2)^2}$$

converges uniformly on every compact subset of D.

Proof. Note that convergence in $L_a^2(\mathbf{D})$ implies uniform convergence on compact subsets of \mathbf{D} . By Theorem 3, the series

$$\sum_{n=1}^{\infty} (1 - |a_n|^2) w_n \frac{\psi_n(z)}{1 - |a_n|^2}$$

converges uniformly on compact subsets of **D** for all $\{w_n\}$ with

$$\sum_{n=1}^{\infty} (1-|a_n|^2)^2 |w_n|^2 < +\infty.$$

In other words,

$$\sum_{n=1}^{\infty} b_n \frac{\psi_n(z)}{1-|a_n|^2}$$

converges uniformly on compact subsets of **D** for all $\{b_n\}$ in l^2 . Thus the series

$$\sum_{n=1}^{\infty} \frac{|\psi_n(z)|^2}{(1-|a_n|^2)^2}$$

converges uniformly on compact subsets of D.

3. Further Estimates on $\{\psi_n\}$

It follows from Corollary 4 that if $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$ and if K is a compact subset of \mathbf{D} then there exists a constant $C_K > 0$ such that $|\psi_n(z)| \le C_K (1-|a_n|^2)$ for all z in K and $n \ge 1$. The purpose of this section is to improve this estimate; we show that $|\psi_n(z)| \le C_K (1-|a_n|^2)^{3/2}$ for $n \ge 1$ and $z \in K$. To achieve this estimate we need to introduce certain notions of uniform density for sequences in \mathbf{D} .

Let $A = \{a_n\}$ be a sequence of distinct points in **D**. We say that A is *separated* if there exists a constant $\delta > 0$ such that $\rho(a_n, a_m) > \delta$ for all $n, m \ge 1$ with $n \ne m$, where ρ is the pseudohyperbolic metric on **D** defined by.

$$\rho(z, w) = |\varphi_z(w)|, \quad \varphi_z(w) = \frac{z - w}{1 - \bar{z}w}, \quad z, w \in \mathbf{D}.$$

Note that φ_z is the involutive Möbius map of **D** which interchanges 0 and z. Suppose $A = \{a_n\}$ is a separated sequence in **D**. For each 1/2 < r < 1 let

$$D(A,r) = \sum \left\{ \log \frac{1}{|a_k|} : \frac{1}{2} < |a_k| < r \right\} / \log \frac{1}{1-r}.$$

The lower and upper uniform densities of A are then defined, respectively, as

$$D^{-}(A) = \liminf_{r \to 1^{-}} \inf_{z \in \mathbf{D}} D(\varphi_{z}(A), r)$$

and

$$D^+(A) = \limsup_{r \to 1^-} \sup_{z \in \mathbf{D}} D(\varphi_z(A), r).$$

By Theorem 6.2 of [7], $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$ if and only if A is separated and $D^+(A) < \frac{1}{2}$. Note that if A is a classical interpolating sequence then $D^+(A) = 0$. Clearly such a sequence is also separated. Thus every classical interpolating sequence is a sequence of interpolation for $L_a^2(\mathbf{D})$.

It is clear that both the upper and lower densities are Möbius invariant; that is,

$$D^{-}(\varphi(A)) = D^{-}(A)$$
 and $D^{+}(\varphi(A)) = D^{+}(A)$

whenever φ is a Möbius map of the disk. It is also clear that

$$D^{+}(A) \ge D^{+}(B)$$
 and $D^{-}(A) \ge D^{-}(B)$

whenever A contains B. It follows from these observations that

$$D^{+}(A) \ge D^{+}(A'_{n})$$
 and $D^{-}(A) \ge D^{-}(A'_{n})$

for all $n \ge 1$, where

$$A'_n = \varphi_{a_n}(A_n) = \{ \varphi_{a_n}(a_k) : k \ge 1, k \ne n \}, n \ge 1.$$

LEMMA 5. Suppose that $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(D)$ and that $A'_n = \varphi_{a_n}(A_n)$ (see the previous paragraph). Then there exists a constant $\sigma > 0$ such that $\sigma \leq K_{A'_n}(0,0) \leq 1$ for all $n \geq 1$.

Proof. By the reproducing property of the kernel functions we have

$$K_{A'_n}(0,0) = \sup\{|f(0)|^2 : ||f|| \le 1, f \in H_{A'_n}\}, n \ge 1.$$

Since $|f(0)| \le ||f||$ for all $f \in L_a^2(\mathbf{D})$, we see that $K_{A'_n}(0,0) \le 1$ for all $n \ge 1$. Using standard Hilbert space arguments we can write

$$K_{A'_n}(0,0) = \frac{1}{I_n}, \quad n \ge 1,$$

where

$$I_n = \inf\{\|f\|^2 : f(0) = 1, f \in H_{A'_n}\}.$$

Thus we need to show that the sequence $\{I_n\}$ is bounded.

Since A is a sequence of interpolation for $L_a^2(\mathbf{D})$, by Theorem 6.2 of [7] we have

$$\delta(A) = \inf \{ \rho(a, b) : a, b \in A, a \neq b \} > 0$$

and $D^+(A) < \frac{1}{2}$. Using Möbius invariance, we also have

$$\delta(A'_n) \ge \delta(A) > 0, \quad n \ge 1,$$

and

$$D^+(A'_n) \le D^+(A) < \frac{1}{2}, \quad n \ge 1.$$

By Lemma 5.7 of [7] there exists $\epsilon > 0$ such that for each $n \ge 1$ there is an analytic function g_n in **D** with the following properties:

- (1) $g_n(0) = 1$ and $g_n(z) = 0$ for all $z \in A'_n$, and (2) $|g_n(z)| \le C(1-|z|^2)^{-1/2+\epsilon}$ for all $z \in \mathbf{D}$,

where C > 0 is a constant depending only on $\delta(A)$, $D^+(A)$, and ϵ (but not on n). It follows that

$$I_n \le ||g_n||^2 \le C^2 \int_{\mathbf{D}} (1-|z|^2)^{-1+2\epsilon} dA(z), \quad n \ge 1.$$

This finishes the proof of Lemma 5.

Recall that $\|\psi_n\| = K_{A_n}(a_n, a_n)^{-1/2}$ for all $n \ge 1$. By the transformation law for the kernel functions K_A and the estimate in Lemma 5, there exists a constant C > 0 such that

$$1 - |a_n|^2 \le ||\psi_n|| \le C(1 - |a_n|^2)$$

for all $n \ge 1$.

THEOREM 6. Suppose that $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$ and that

$$\psi_n(z) = \frac{K_{A_n}(z, a_n)}{K_{A_n}(a_n, a_n)}, \quad z \in \mathbf{D}, \quad n \ge 1,$$

where $A_n = A - \{a_n\}$ $(n \ge 1)$. There exists a constant C > 0 such that

$$|\psi_n(z)| \le \frac{C(1-|a_n|^2)^{3/2}}{|1-\bar{a}_n z|\sqrt{1-|z|^2}}$$

for all $z \in \mathbf{D}$ and $n \ge 1$.

Proof. By the transformation law for the kernel function K_A we can write

$$\psi_n(z) = \left(\frac{1 - |a_n|^2}{1 - \bar{a}_n z}\right)^2 \frac{K_{A'_n}(\varphi_{a_n}(z), 0)}{K_{A'_n}(0, 0)}, \quad z \in \mathbf{D}, \ n \ge 1,$$

where $A'_n = \varphi_{a_n}(A_n) = \{\varphi_{a_n}(a_k) : k \ge 1, k \ne n\}$ and $\varphi_a(z) = (a-z)/(1-\bar{a}z)$. Since the function

$$G_{A'_n}(z) = \frac{K_{A'_n}(z,0)}{\sqrt{K_{A'_n}(0,0)}}, \quad z \in \mathbf{D},$$

solves the extremal problem

$$\sup\{\operatorname{Re} f(0): f \in H_{A'_n}, ||f|| \le 1\},\$$

Corollary 4.5 of [3] implies that

$$|\psi_n(z)| \le \left| \frac{1 - |a_n|^2}{1 - \bar{a}_n z} \right|^2 \frac{1}{\sqrt{1 - |\varphi_{a_n}(z)|^2} \sqrt{K_{A_n'}(0, 0)}}$$

or

$$|\psi_n(z)| \le \frac{(1-|a_n|^2)^{3/2}}{|1-\bar{a}_n z|\sqrt{1-|z|^2}\sqrt{K_{A_n'}(0,0)}}, \quad z \in \mathbf{D}, \ n \ge 1.$$

The desired result now follows from Lemma 5.

COROLLARY 7. If $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$ and K is a compact set in \mathbf{D} , there exists a constant $C_K > 0$ such that $|\psi_n(z)| \le C_K (1-|a_n|^2)^{3/2}$ for all $z \in K$ and $n \ge 1$.

COROLLARY 8. If $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$, then the series $\sum_{n=1}^{\infty} |\psi_n(z)|$ converges uniformly on each compact subset of \mathbf{D} .

Proof. By Corollary 7, it suffices to show that

$$\sum_{n=1}^{\infty} (1-|a_n|^2)^{3/2} < +\infty.$$

But this is true for every $L_a^2(\mathbf{D})$ -zero set A; see [4] and [5].

Note that Corollary 8 also follows from Corollary 4, the Cauchy–Schwarz inequality, and the fact that

$$\sum_{n=1}^{\infty} (1 - |a_n|^2)^2 < +\infty.$$

The convergence of $\sum_{n=1}^{\infty} (1-|a_n|^2)^p$ (p>1) for sequences of interpolation for $L_a^2(\mathbf{D})$ can be proved elementarily without appealing to the theory of zero sets. In fact, if

$$r = \frac{1}{2} \inf \{ \rho(a_n, a_m) : n \neq m \}$$

then $D(a_n, r) = \{z \in \mathbf{D} : \rho(z, a_n) < r\}$ are disjoint disks in **D**. By 4.3 of [10] there exists a constant C > 0 such that

$$(1-|a_n|^2)^p \le C \int_{D(a_n,r)} (1-|z|^2)^{p-2} dA(z), \quad n \ge 1,$$

and hence

$$\sum_{n=1}^{\infty} (1-|a_n|^2)^p \le C \int_{\mathbf{D}} (1-|z|^2)^{p-2} \, dA(z) < +\infty.$$

4. Partial Fraction Expansion for Reproducing Kernels

Let A be a sequence of interpolation for $L_a^2(\mathbf{D})$. In this section we derive a partial fraction representation for the kernel function $K_A(z, w)$. The expansion will be in terms of the sequence of functions $\{\psi_n\}$.

THEOREM 9. Suppose $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$. Then

$$K_A(z, w) = \frac{1}{(1 - z\bar{w})^2} - \sum_{n=1}^{\infty} \frac{\overline{\psi_n(w)}}{(1 - \bar{a}_n z)^2}$$

for all z and w in **D**.

Proof. Define a function K_1 on $\mathbf{D} \times \mathbf{D}$ as follows:

$$K_1(z, w) = \frac{1}{(1 - z\bar{w})^2} - \sum_{n=1}^{\infty} \frac{\psi_n(z)}{(1 - a_n\bar{w})^2}, \quad z, w \in \mathbf{D}.$$

By Corollary 8, the above series converges absolutely and uniformly if both z and w are restricted to a compact subset of \mathbf{D} . In particular, $K_1(z, w)$ is analytic in z and conjugate analytic in w. Fix $w \in \mathbf{D}$ and let

$$w_n = \frac{1}{(1 - a_n \bar{w})^2}, \quad n \ge 1.$$

It is clear that $\{w_n\}$ is a bounded sequence. In particular,

$$\sum_{n=1}^{\infty} (1 - |a_n|^2)^2 |w_n|^2 < +\infty$$

(recall that $\sum_{n=1}^{\infty} (1-|a_n|^2)^2 < +\infty$ for every $L_a^2(\mathbf{D})$ -zero set A; see the last paragraph in the previous section). By Theorem 3, the series

$$h(z) = \sum_{n=1}^{\infty} \frac{\psi_n(z)}{(1 - a_n \bar{w})^2}, \quad z \in \mathbf{D},$$

converges to a function in $L_a^2(\mathbf{D})$. Thus $K_1(\cdot, w)$ belongs to $L_a^2(\mathbf{D})$ for each w in \mathbf{D} . Since $\psi_n(a_n) = 1$ and $\psi_n(a_m) = 0$ for all $n, m \ge 1$ and $n \ne m$, we see that $K_1(\cdot, w)$ belongs to H_A for every w in \mathbf{D} . Furthermore, if f is in H_A then f is in each H_{A_n} , and hence

$$\int_{\mathbf{D}} f(z) \overline{\psi_n(z)} \, dA(z) = \frac{1}{K_{A_n}(a_n, a_n)} \int_{\mathbf{D}} f(z) K_{A_n}(a_n, z) \, dA(z)$$
$$= \frac{f(a_n)}{K_{A_n}(a_n, a_n)} = 0.$$

Therefore,

$$\langle f, K_1(\cdot, w) \rangle = \int_{\mathbf{D}} f(z) \overline{K_1(z, w)} \, dA(z)$$

$$= \int_{\mathbf{D}} \frac{f(z) \, dA(z)}{(1 - w\overline{z})^2} - \sum_{n=1}^{\infty} \frac{1}{(1 - \overline{a}_n w)^2} \int_{\mathbf{D}} f(z) \overline{\psi_n(z)} \, dA(z)$$

$$= f(w)$$

for every w in \mathbf{D} . By uniqueness of the reproducing kernel, we must have

$$K_A(z, w) = K_1(z, w), \quad z, w \in \mathbf{D}.$$

Since K_A is symmetric, that is, $\overline{K_A(z,w)} = K_A(w,z)$, we conclude that

$$K_A(z, w) = \overline{K_1(w, z)} = \frac{1}{(1 - z\overline{w})^2} - \sum_{n=1}^{\infty} \frac{\overline{\psi_n(w)}}{(1 - \overline{a}_n z)^2}$$

for all z and w in \mathbf{D} .

COROLLARY 10. Suppose $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$. For every w in \mathbf{D} , the kernel function $K_A(\cdot, w)$ extends analytically across each arc of $\partial \mathbf{D}$ which does not contain any accumulation points of $\{a_n\}$.

Note that the above corollary is established in [3] for every $L_a^2(\mathbf{D})$ -zero set A. Related extension theorems for extremal functions can be found in [1] and [8].

COROLLARY 11. Suppose that $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$ and that H_A^{\perp} is the orthogonal complement of H_A in $L_a^2(\mathbf{D})$. The reproducing kernel for H_A^{\perp} is given by

$$K_{A^{\perp}}(z, w) = \sum_{n=1}^{\infty} \frac{\overline{\psi_n(w)}}{(1 - \bar{a}_n z)^2}, \quad z, w \in \mathbf{D}.$$

Proof. Let $\{e_n\}$ be an orthonormal basis for H_A and let $\{\sigma_n\}$ be an orthonormal basis for H_A^{\perp} . Then $\{e_n\} \cup \{\sigma_n\}$ is an orthonormal basis for $L_a^2(\mathbf{D})$. Recall that $(1-z\bar{w})^{-2}$ is the reproducing kernel for $L_a^2(\mathbf{D})$. Thus

$$\frac{1}{(1-z\bar{w})^2} = \sum e_n(z)\overline{e_n(w)} + \sum \sigma_n(z)\overline{\sigma_n(w)}$$
$$= K_A(z,w) + K_{A^{\perp}}(z,w),$$

and the desired result follows from the expansion for K_A given in Theorem 9.

REMARK. It is difficult to see directly that the function

$$K_{A^{\perp}}(z, w) = \sum_{n=1}^{\infty} \frac{\overline{\psi_n(w)}}{(1 - \bar{a}_n z)^2}$$

is symmetric. As a consequence of the known symmetry we obtain the following interesting identity:

$$\sum_{n=1}^{\infty} \frac{\psi_n(z)}{(1-a_n\bar{w})^2} = \sum_{n=1}^{\infty} \frac{\overline{\psi_n(w)}}{(1-\bar{a}_nz)^2}, \quad z, w \in \mathbf{D}.$$

COROLLARY 12. Suppose $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$. For each function f in H_A^{\perp} , we have

$$f(z) = \sum_{n=1}^{\infty} f(a_n) \psi_n(z), \quad z \in \mathbf{D}.$$

Proof. By the proof of Theorem 10, each function ψ_n belongs to H_A^{\perp} . If f is in H_A^{\perp} then the function

$$F(z) = f(z) - \sum_{n=1}^{\infty} f(a_n) \psi_n(z), \quad z \in \mathbf{D},$$

belongs to both H_A and H_A^{\perp} , and hence it must be the zero function.

It is clear that the sequence $\{\psi_n\}$ is linearly independent in H_A^{\perp} . Thus the above corollary shows that $\psi_1, \psi_2, ..., \psi_n, ...$ form a basis for H_A^{\perp} . Note that the functions in $\{\psi_n\}$ are not mutually orthogonal.

The following is an atomic decomposition theorem for functions in H_A^1 when A is a sequence of interpolation for $L_a^2(\mathbf{D})$. See [10] for more information on the atomic decomposition of general functions in the Bergman space.

THEOREM 13. Suppose $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$.

(1) For every sequence $\{c_n\}$ in l^2 , the series

$$\sum_{n=1}^{\infty} c_n \frac{1 - |a_n|^2}{(1 - \bar{a}_n z)^2}$$

converges in norm to a function in H_A^{\perp} .

(2) For every function f in H_A^{\perp} , there exists a unique sequence $\{c_n\}$ in l^2 such that

$$f(z) = \sum_{n=1}^{\infty} c_n \frac{1 - |a_n|^2}{(1 - \bar{a}_n z)^2}, \quad z \in \mathbf{D},$$

and the convergence is in norm.

(3) There is a constant C > 0 such that

$$C^{-1} \sum_{n=1}^{\infty} |c_n|^2 \le \int_{\mathbf{D}} \left| \sum_{n=1}^{\infty} c_n \frac{1 - |a_n|^2}{(1 - \bar{a}_n z)^2} \right|^2 dA(z) \le C \sum_{n=1}^{\infty} |c_n|^2$$

for all sequences $\{c_n\}$ in l^2 .

Proof. Define a linear operator $T: H_A^{\perp} \to l^2$ by

$$Tf = \{(1-|a_n|^2) f(a_n)\}.$$

We first show that the operator T is bounded, one-to-one, and onto.

That T is bounded is well known; it follows from the fact that $\{a_n\}$ is separated (see e.g. [10, Lemma 4.4.2]). The operator T is one-to-one because the intersection of H_A and H_A^{\perp} consists of the zero function only. To see that T is onto, let $\{c_n\}$ be a sequence in I^2 and write $c_n = (1-|a_n|^2)w_n$. Since $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$, there exists a function F in $L_a^2(\mathbf{D})$ such that $F(a_n) = w_n$ for $n \ge 1$. Let f be the orthogonal projection of F in H_A^{\perp} ; then we have $Tf = \{c_n\}$.

Let $T^*: l^2 \to H_A^{\perp}$ be the adjoint of T. It is easy to check that T^* is given by the following formula:

$$T^*\{c_n\}(z) = \sum_{n=1}^{\infty} c_n \frac{1 - |a_n|^2}{(1 - \bar{a}_n z)^2}, \quad z \in \mathbf{D}.$$

The desired results now follow from the fact that T^* is bounded, one-to-one, and onto (and hence its inverse is also bounded by the open mapping theorem). This completes the proof of Theorem 13.

REMARK. Suppose that $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$ and that $T: H_A^{\perp} \to l^2$ is the linear operator defined in the proof of the above theorem. Then the inverse of T is given by the following formula:

$$T^{-1}\{c_n\}(z) = \sum_{n=1}^{\infty} \frac{c_n}{1 - |a_n|^2} \psi_n(z), \quad z \in \mathbf{D}.$$

This is simply the minimal interpolation operator.

COROLLARY 14. Suppose $A = \{a_n\}$ is a sequence of interpolation for $L_a^2(\mathbf{D})$. Then

$$f(z) = \sum_{n=1}^{\infty} \frac{\langle f, \psi_n \rangle}{(1 - \bar{a}_n z)^2}, \quad z \in \mathbf{D},$$

for every function f in H_A^{\perp} . Moreover, the above series converges in norm in $L_a^2(\mathbf{D})$.

Proof. Suppose f is in H_A^{\perp} . By Theorem 13, there exists a sequence $\{c_n\}$ such that

$$f(z) = \sum_{n=1}^{\infty} c_n \frac{1 - |a_n|^2}{(1 - \bar{a}_n z)^2}, \quad z \in \mathbf{D},$$

with the series converging in norm in $L_a^2(\mathbf{D})$. It follows that

$$\langle f, \psi_k \rangle = \sum_{n=1}^{\infty} c_n (1 - |a_n|^2) \int_{\mathbf{D}} \frac{\overline{\psi_k(z)} \, dA(z)}{(1 - \bar{a}_n z)^2}$$

$$= \sum_{n=1}^{\infty} c_n (1 - |a_n|^2) \overline{\psi_k(a_n)}$$

$$= c_k (1 - |a_k|^2)$$

for all $k \ge 1$, or

$$c_k = \frac{\langle f, \psi_k \rangle}{1 - |a_k|^2}, \quad k = 1, 2, \dots$$

References

- [1] E. Akutowicz and L. Carleson, *The analytic continuation of interpolatory functions*, J. Analyse Math. 7 (1960), 223–247.
- [2] E. Amar, Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de \mathbb{C}^n , Canad. J. Math. 30 (1978), 711–737.
- [3] H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. Reine Angew. Math. 442 (1991), 45-68.
- [4] C. Horowitz, Zeros of functions in Bergman spaces, Duke Math. J. 41 (1974), 693-710.
- [5] B. Korenblum, An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187–219.
- [6] R. Rochberg, *Interpolation by functions in Bergman spaces*, Michigan Math. J. 29 (1982), 229-236.
- [7] K. Seip, Beurling type density theorems in the unit disk, preprint, 1991.
- [8] H. Shapiro, Overconvergence of sequences of rational functions with sparse poles, Ark. Mat. 7 (1968), 343-349.
- [9] K. Zhu, Reproducing kernels generated by interpolating sequences, preprint, 1991.
- [10] ——, Operator theory in function spaces, Marcel Dekker, New York, 1990.

Department of Mathematics State University of New York Albany, NY 12222