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0. Introduction

The purpose of this paper is to study the infinite Nielsen kernel for certain
noncompact and complete hyperbolic surfaces. The precise description of
the infinite Nielsen kernel for an open surface was first introduced by Bers
[Be] (see Definition 0.1 below). For any given open Riemann surface X of
constant negative curvature with a finitely generated fundamental group, we
can assign the infinite Nielsen kernel N*(X) to X such that N*(X) is the
limiting set of a nested sequence of certain Riemann surfaces {N¥(X NrE
associated with X. We shall show in this paper that the infinite Nielsen ker-
nel N®(X) of an open surface X has no interior points. Furthermore, we
will prove that the infinite Nielsen kernel is equal to the limit of a sequence
of homeomorphic 1-dimensional graphs in a given surface X, with respect
to the Gromov-Hausdorff distance function on the space of all subsets in X.

In order to develop a theory to study the Teichmiiller space 3(S) for a
noncompact surface S, Bers [Be] in 1976 called for an investigation of the
Nielsen kernel. Let X be a Riemann surface of finite type (n, k, m), with
m=1. This means that X can be conformally embedded in a closed Rie-
mann surface Y of genus n so that Y\ X consists of m =1 disjoint closed
disks and k£ = 0 additional points, called the punctures (or cusps) of X. It is
well known that there is a unique, conformally equivalent, complete hyper-
bolic metric on X (cf. [Ne; G1]) which has m expanding tubes provided that
2n—2+k+m>0. In fact, the condition 2n—2+ k+ m > 0 ensures that the
Euler number e(X) of the surface X is negative, and hence the universal
cover of X with the lifted metric is conformal to the unit disk with the Poin-
caré metric, a metric of constant curvature. Therefore, in what follows we
always assume that the Riemann surface X is of type (n, k, m) with2n—2+
k+m> 0, and that X has a complete hyperbolic metric of constant negative
curvature —1.

For each expanding tube in X, there is a boundary loop C; that is freely
homotopic in X = X U X (o) to a unique simple closed geodesic C”,- in X, and
Ci and C'j are disjoint if 1 <i# j<m (cf. [Th, §5.3.3]). The Nielsen kernel
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N(X) of X is the interior of the Riemann surface with boundary obtained
from X by removing the m annuli bounded by pairs C; and C,- forl<i<m.
It is known that the Nielsen kernel N(X) is the smallest open, non-empty
convex subset of X with respect to the hyperbolic metric.

Moreover, N(X) has the same finite type (n, k, m) as X. One can therefore
iterate the construction above, forming the nested sequence of Riemann sur-
faces {N*(X)}}=, where N'(X) = N(X), N¥+(X) = N(N*(X)), and

N XYCNMX)c---cN(X)c X
fork=1,2,....

DEFINITION 0.1 [Be]. Let X be a Riemann surface and let N(X), N?(X),
...,N¥(X) be as above. Then the set N®(X)=N¢_, N¥(X) is called the
infinite Nielsen kernel of X.

The infinite Nielsen kernel has been studied extensively by Bers, Wason, Hal-
pern, Earle and others (cf. [Wa; H1; H2; E1; E2]). The study of the infinite
Nielsen kernel can provide some useful information about the Teichmiiller
space 3, . of type (n, k, m), where 3, ;. ,, is the set of all open hyperbolic
surfaces of type (n, k, m).

Earle [E2] recently computed the infinite Nielsen kernel N*(X') explicitly
for a number of special cases in which N®(X) turns out to be a 1-dimensional
spline consisting of geodesic arcs. However, for an arbitrary Riemann sur-
face X we know very little about the structure of N*(X). For instance, it is
still not known whether the Hausdorff dimension of N*(X) is equal to 1 for
an arbitrary open surface X. Our main results in this paper will indicate that
the infinite Nielsen kernel N*(X) is a very thin subset in X. In the first part
of this paper we will prove the following theorem.

THEOREM A. Let X be a Riemann surface of finite type (n, k, m) with m = |
and 2n—2+k+m> 0. Then the infinite Nielsen kernel N*(X) of X has no
interior points.

In order to describe further geometric and topological properties of N (X)),
we would like to recall the definition of the Gromov-Hausdorff distance
function introduced by Gromov [G2, p. 144]. For a subset 4 of a metric
space X, we denote the e-neighborhood of 4 by U,(A). The Gromov-Haus-
dorff distance between subsets 4 and B is given by

dx(A, B) = inf{e|U(A) D B, U(B) D A}. (0.1)

In the second part of this paper, we will show that the infinite Nielsen kernel
is the limit of a sequence of 1-dimensional graphs in the Gromov-Hausdorfl
topology described here.

Let X be a complete Riemann surface of type (n, k, m) with 2n—2+k +
m > 0. Suppose that X has constant negative curvature —1. We are particu-
larly interested in I-dimensional graphs that are “cut loci” of certain geodesic
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cycles in X. If A is a subset of a hyperbolic surface X, then the cut locus
cut(A) of 4 in X is simply the set of all x in X for which there are at least
two geometrically distinct length-minimizing geodesics joining x and A. This
definition is given in [CE], where some geometric properties of the cut locus
can also be found.

In the early 1970s, Cheeger and Gromoll [CG] carried out an extensive
study of the structure of a complete manifold X of nonnegative curvature.
They assigned a lower-dimensional, compact, totally geodesic submanifold
S to each noncompact, complete manifold X of nonnegative curvature. The
lower-dimensional submanifold S in X above is called a soul/ of the given
manifold X, according to Cheeger and Gromoll. One of the theorems in
[CG] asserts that the soul S is a strong deformation retraction of the man-
ifold X. Inspired by Bers [Be] and Cheeger-Gromoll [CG], we would like
to find appropriate 1-dimensional souls for 2-dimensional open surfaces of
negative curvature. Hence, we would like to introduce the following defini-
tion of the soul of a surface X.

DerINITION 0.2. Let X be a complete hyperbolic surface of type (n, k, m)
with 2n—2+k+m >0, and let C‘l, cees C’m be m disjoint, simple closed geo-
desics corresponding to m expanding tubes. The cut locus of the subset ¢ =
UjiL, (:‘j is said to be the soul/ of X, denoted by S(X), and

S(X) = cut(o). (0.2)

There are several reasons for us to introduce the notion of “soul”. First, for
a given surface X, we are trying to find a smaller-dimensional set of X in
a relatively canonical way which carries a lot of the topology and is distin-
guished geometrically. For instance, our soul S(X) of X has the same nega-
tive Euler number as X does, and S(X) is a spline consisting of geodesic arcs
in X. Second, our construction of souls of open hyperbolic surfaces is simi-
lar to the construction of souls of [CG], because it uses iterated intersections
of compact sets to reduce the manifold X to the smaller representative sub-
spaces. Third, for a given hyperbolic surface X, we note that its soul S(X)
has interesting properties by comparing with the results of [CG]. For exam-
ple, there is one and only one soul S(X') for a given hyperbolic surface X.
Furthermore, the soul S(X) is a strong deformation retraction of surface X.
The soul S(X) is a compact graph if X .has no cusp points. A careful inspec-
tion shows that, for the examples of Riemann surface X described by Earle
in [E2, §4], the infinite Nielsen kernel N*(X) coincides with the soul of X,

For an arbitrary Riemann surface X, we note that one can construct a
useful sequence of souls as follows. Let the metric g; be the complete and
conformal hyperbolic metric defined on the jth Nielsen kernel N/(X) and
let S;(X), the jth soul of X, be the soul of the Riemann surface (N/(X), gj)
That is,

S;(X)=S(N/(X)). (0.3)
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It will be shown in Section 3 that all of the souls S;(X') have the same topo-
logical structure and are 1-dimensional splines consisting of geodesic arcs.

There are interesting relations between souls and the infinite Nielsen ker-
nel, which can be described by the following theorem.

THEOREM B. Let X be an open surface of finite type (n,0, m) with m=1
and without any cusp points. Then the infinite Nielsen kernel of X is equal
to the limit of souls

lim dx(N*(X),S;(X))=0, (0.9

Jj— 4o

where S;(X) is the jth soul of X and dy is the distance function of X.

We would like to make some comments on Theorem B. Suppose that g, is a
metric on X and that L;= L, (S;(X)) is the 1-dimensional Hausdorff mea-
sure of S;(X') with respect to the metric gy. It is still unknown whether or not
the terms of {L;}7Z are uniformly bounded. If one could find a uniform up-
per bound for the L;, then using Theorem B one could show that (i) the in-
finite Nielsen kernel N*(X) is a 1-dimensional rectifiable set and (ii) N*(X)
is Lipschitz homeomorphic to S;(X).

If an open hyperbolic surface X has finitely many cusps, then it will also
be shown in Section 4 that

lim dy(N®(X)NF,S;(X)NF)=0 (0.5)
j— 4o
for each bounded compact set FC X.

The paper follows this plan: Section 1 will investigate a singular elliptic
problem for a Nielsen kernel; Section 2 considers the so-called Fermi radius
and conformal changes on a Nielsen kernel. We also derive some estimates
for the conformal factor in terms of the Fermi radius. Sections 3 and 4 con-
tain the proofs of Theorems B and A, respectively.

Throughout the paper, we always assume that the surface X has the nega-
tive Euler number of type (n, k, m) with m expanding tubes, where m = 1.

1. A Singular 'Elliptic Problem for the Nielsen Kernel

In this section, we will set the stage for the study of Nielsen kernels by intro-
ducing a singular elliptic problem. '

Let us begin with the canonical, complete hyperbolic metric gy on a given
surface X of finite type (n, k£, m). Suppose that g, is the canonical, complete
hyperbolic metric on the Nielsen kernel N(X), which is conformal to g.
Then there exists a function u defined on N(.X) so that g; = e*“g,. Since both
metrics gy and g; have the constant curvature —1, it is known that the con-
formal factor e?” satisfies the differential equation (cf. [KW])

Agu=e*"—1, (1.1)
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where A, is the Laplacian operator on the metric go. Our Laplacian has the
sign so that Au = +u” for all functions u# on R'.

Note that the subset dN(X) is a compact subset in (X, go). As (N(X), g¢)
is a complete and noncompact metric space, our solution u of (1.1) is un-
bounded on N(X'). More precisely, for any g€ IN(X)C X, lim,_, ,u(p) =
+oo. All known a priori estimates of (1.1) are only applied to bounded,
smooth solutions on closed manifolds. Therefore, we need to make addi-
tional efforts to derive some totally new estimates for solutions «# of (1.1),
which depend only on the topological structure of X and its injectivity radius.

First, let us recall an elementary but useful estimate for singular solutions
of (1.1).

1.1. The Schwarz Lemma

LemMma 1.1. Let (X, go) and (N(X), g,) be complete hyperbolic surfaces
with g, = e*"g, and N(X) C X. Then

@) > 1 (1.2)
forall gin N(X).

Proof. In order to illustrate why Lemma 1.1 is true, we will present a short
proof for a special case.

Special case: The surface X does not have any cusp points.

Let dN(X') denote the boundary of N(X) in X with respect to the metric
go- Since (N(X), g;) is a complete Riemannian metric space, the conformal
factor e2* must be infinity along AN(X). Recall that, for any g € IN(X) C X,
lim,_, , u(p) = +oo. Therefore, the minimum points of « lie in the interior of
N(X). Suppose that g, is a minimum point of # such that u(gy) = min{u(q)|
q € N(X)}. Then we notice that

0=Au|q,= e?(@) 1,
It follows that Lemma 1.1 is true if X does not have any cusp points. O

The proof of Lemma 1.1 for the general case uses a version of the Schwarz
lemma, which was conveyed to me by Professor Clifford Earle.

General case: The Riemann surface X may have some cusp points.

We represent X as D/I", where D is the open unit disk with the Poincaré
metric and I = 7;(M). On the unit circle S!, there is an open set G = Ugeals
of S! such that each open arc Iz corresponds to some expanding tube of X.
In fact, for each Iz, the statA)ilizer Gg of I in m(X) is generated by a hyper-
bolic element whose axis Cg=A(f) is a simple closed geodesic on an ex-
pandi~ng tube. We denote by Bg the hyperbolic half-plane bounded by Ig
and A(B). See Figure 1.

The convex set~ﬂﬁe A(D—Bg) is called the Nielsen region of X. It is not
hard to see that N= (g 2(D— Bg) is the universal cover of N(X) with the
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Figure 1

lifted metric gy. The Riemann mapping theorem tells us that there is a unique
biholomorphic map f: N— D.

A simple computation shows that the lifted conformal factor e is exactly
equal to the function

@I -]z
h(z)= —IJQF

It is sufficient to show that
_ h(z)=1 (1.3)
for all ze N.

Since the Mo6bius transforms are isometries of the Poincaré disk of D, and
act on D transitively, we need only verify (1.3) for the special case f(0) = 0.
In this case, we observe that

fD->NcD
is also a holomorphic function. It follows from the Schwarz lemma that
1 |df!
| /(0] dz

h0)=|f'(0)|=1. 1.3%)

Equality holds if and only if N= D. This completes the proof of (1.3) and
the inequality of the lemma

<l1.

(0)

Hence, we obtain

e’ =1 (1.2%)
for all g e N(X). Ol
The following corollary strengthens the result of Lemma 1.1.

CorOLLARY 1.1. Let W, C W, be two simply connected open domains in the
Poincaré disk with its usual hyperbolic metric g,. Suppose that f is a biholo-
morphic map from W, to W5. Then f is a distance-increasing map, which
means that ‘
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de,(f(D), [(q)) = dg, (P, q) (1.4)

Sfor all p and q in W,. In particular, the pull-back metric g,= f*go=e*"g,
satisfies the inequality e*¥'? =1 for all g € W,. Equality holds if and only if
Wl = Wz.

Proof. Let F: W, — D be a biholomorphic map given by the Riemann map-
ping theorem, and let F*g, be the pull-back metric defined on W, via the
map F. Hence, F*g, can be written as

2u
F*gy=e2g,
since F is conformal. For the same reason, we have

(Fof)*gol,=e*"1gol,

for all g € W,. Notice that the Riemann surface (W,, F*g,) is isometric to the
Poincaré disk. Applying Lemma 1.1 to the map f: (W, F*gy) = (W>, F*gp),
one sees that e =e?"1742) = 0 for all ge W;. O

To illustrate the usefulness of Lemma 1.1, we present the following appli-
cation.

CoRrOLLARY 1.2. Let (X, go) and (N(X), g,) be as in Lemma 1.1. Then the
inclusion map i: N(X) < X is a distance-decreasing map, that is,

de (P, q) = dg (D, q) (1.5)
Jor all p,qe N(X), where d, is the distance function of the metric g.

We will derive more refined estimates for the conformal scalar function e
in Sections 2 and 3. At the moment, we would like to make some observa-
tions on relations between the infinite Nielsen kernel and a priori estimates
of e?¥ in order to demonstrate the main strategy for our approach.

1.2. Estimates of Conformal Factors and
the Infinite Nielsen Kernel

In this subsection, we shall discuss the geometrical interpretations of a priori
estimates for the conformal scalar functions. Specifically, we will use esti-
mates to study the structure of the infinite Nielsen kernel.

For simplicity, we denote the canonical, complete hyperbolic metric on
the jth Nielsen kernel N/(X) by g; and its conformal scalar factor by e,
so that

gj=eig;_ (1.6)
forj=1,2,....

Our approach is motivated by the following observation.

THEOREM 1.3.  Let X, N(X), ..., N/(X), g, and u; be as above. If there is
a constant number C > 1 such that
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e? D> C>1 (1.7)

for all ge NX(X) and j=1,2,..., then the infinite Nielsen kernel N*(X)
has no interior points.

Proof. Suppose, to the contrary, there were an interior point g, € N°(X).
Then there would be a non-empty open subset U C N®(X).

Let A;=area(U, g;) stand for the area of U with respect to the metric g;.
By assumption

Af:g e dA,, (1.8)
U

where dA, | is the area element of the metric g;_,. It follows immediately
from (1.8) that _
A;j=C'A,. (1.9)

On the other hand, we notice that

A;=area(U, g;)
<area(N/*!(X), g))
= 27|e(X)] (1.10)

by the Gauss-Bonnet formula, where e(X) is the Euler number of X.
Combining (1.9) and (1.10) we would have

2 2leX)]
Ay

for all j =1, which contradicts our assumption that C > 1. [l

2. The Fermi Radius and Conformal Factors
of the Nielsen Kernel

We will introduce the notion of the Fermi radius in order to measure the
thickness of the Nielsen kernel. Some relevant a priori estimates for the
conformal factors on Nielsen kernels will be derived in terms of the Fermi
radius.

DEerINITION 2.1. Let W be a domain of a Riemann surface (Y, g). Then the
Fermi radius v,(W) of W is given by

V(W) =supldy(q,dW)|qge W}. (2.1)

The name “Fermi” came into Definition 2.1 because the geometric quantity
v.(W) is clearly related to the Fermi coordinate chart along the boundary
aw.

For applications of the Fermi radius in this paper, the domain W will be
the Nielsen kernel of X. If a complete hyperbolic surface X has k cusps, it is
easy to see that v,(/N(X)) = +oo. Therefore, we need to treat two separate
cases of complete hyperbolic surfaces.
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Case 1: A hyperbolic surface is of type (n, 0, m), which means that the
surface does not have any cusp points. Equivalently, a hyperbolic surface X
satisfies the condition v,(N(X)) <+, where N(X) is the Nielsen kernel.
When X does not have any cusp points, its fundamental group (X)) is an
axial group.

Case 2: A hyperbolic surface X is of type (n, k, m) with k=1, which
means that the surface has at least one cusp point. In this case, the hyper-
bolic surface X also satisfies the condition v,(N(X)) = +o0. When X has a
cusp point, its fundamental group 7;(X) has at least one parabolic element.

For relevant background, see [G1]. In order to use the Fermi radius, we must
develop some preliminaries.

2.1. The Fermi Radius and Estimates for
Conformal Scalar Functions

Let us recall that the structure of the infinite Nielsen kernel N*(X) is re-

lated to the uniform estimates for the conformal functions (cf. Theorem 1.3).

The purpose of this subsection is to derive some a priori estimates for con-

formal functions in terms of our new geometric quantity—the Fermi radius.
One of our basic estimates is given in the following theorem.

THEOREM 2.1. Let (X, go) be a complete, hyperbolic surface of type
(p,0,m) and let N(X) be its Nielsen kernel. Suppose that the metric g, is
the complete, conformal, hyperbolic metric on N(X) with g, =e*"g,. Then

"D >1+4e2% (2.2)
Jor all q in N(X), where vy = vg,(N(X)), the Fermi radius of N(X).
Prcof. Given any point g in N(X), there is a simple closed g, geodésic aC
dN(X) such that
dg,(0, @) = g,(N(X)) = 0. (2.3)

In order to prove that e?*{?) = 14-4e72%_ we use the universal cover X of X
with lifted metric g,. For simplicity, we may choose X to be the Poincaré
upper half-plane so that the positive y-axis covers the geodesic ¢ and the
second quadrant covers the expanding tube corresponding to o. Therefore,
the first quadrant contains the Nielsen region N(X'), which is the universal
cover of N(X). By assumption, there is a lift § of ¢ with

dz (G, 0) =dg(q, 0). (2.4)

If g, is the lifted metric of g then it is clear that ,(g) =e**("®g,, where

u(q)=u(w(q)) and 7: X — X is the covering map. It is sufficient to verify
that

e™D = 14+ 4e-2%, (2.5)

The verification of assertion (2.5) takes two steps. First, we let F: N(X) > X
be the biholomorphic map given by the Riemann mapping theorem. It is
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easy to see that )
g1=F*gy=e*"§, (2.6)

where F*g, is the pull-back Poincaré metric via the map F. See Figure 2.
Following Bers and Halpern (cf. [Be; H1]), we can decompose the Rie-
mann map F as F= fief5:

Nx) 202 %,
where Q is the first quadrant, X is the Poincaré upper half-plane, and f,:
Q — X is given by z — z2. The map f,: N(X) — Q is biholomorphic. The
existence of maps f; and f, is guaranteed by the Riemann mapping theorem
(cf. [Ne]).
It follows from Corollary 1.1 that f;: (N(X), &) — (O, &) is a distance-
increasing map. In particular, the pull-back metric f;*g, has the property
fi8o=e*"g, (2.7)
with
2@ =1 (2.8)
for all § e N(X).
Notice that F*§y,= (fi°/f2)*80=f>f1"8 = f5 8. Hence, it is sufficient to
show that f58,=e?g, satisfies the condition

. 2y
V@ > J1+__4e ’ (2.9)

(8270—1)2

for the lifted point g. It is easy to see that #=v+w, w=0.
Now, we can evaluate the conformal factor e?*? in terms of § explicitly,
since f,(z) = z2 for z € O. A simple calculation shows that

RUC) - | f3(2)]

“Tm o) 7
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_ 2lzly
2xy

=14+ (y/x)?
=1+ [cot(6,)]2, (2.10)

where § =z=x+1iy, x=nsinf,, and y =ycosf, for some > 0.

The angle §,= n/2 —arg g is clearly related to the hyperbolic distance be-
tween ¢ and the positive y-axis &. Recall that d; (g, ) <+, and observe that
one can choose the non-arclength parameterized geodesic « joining § and &
given by

a(0) = (nsinb, ncosB)

for 0 =0 <46,. Furthermore, a calculation shows that

Yo = dg()(&! Q)

0o
= |l @z, a0

9 ’
:__S > l’(®)[|w: do
0 Im 01(0)
b do
B So cos
= log|cot[5(m/2—6))]]. (2.11)
It follows from (2.11) that the following inequalities are true:
cot[3(w/2—0;)] < e, (2.12)
2(w/2—0p) = cot~1(eM), (2.13)
and
0o <2 cot™l(e")—7x/2, (2.14)

where cot™! = arccot is the inverse of the cotangent function satisfying
—7/2 <cot™N(x) < w/2 for all xe R.
Using (2.14), one can see that

cot 6y = cot[2 cot ~}(e?) — 7/2]
=tan[2 cot~!(e")]
_ 2tan[cot™!e]
~ 1—{tan[cot—!ev]}2

2e—70
e (2.15)

Combining (2.10) and (2.15), we finally get
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o) = (@)
4e*r0
. \/H_.__(em_l)z
>V1+4e—27,
This completes the proof of Theorem 2.1. W

2.2. Open Hyperbolic Surfaces without Cusp Points

We shall estimate the Fermi radius of the Nielsen kernel by a method which
we learned from C. Croke (cf. [Cr, p. 428]).

When an open and complete hyperbolic surface X is of type (n, 0, m), the
surface X does not have any cusp points. Furthermore, the injectivity radius
of X is given by

p(X)=inj(X) = I min{L(0)]o is a closed geodesic of X}
(see [CE, p. 95]), where by L(0) we mean the length of o.

LemMma 2.3. Let (X, gy) be an open complete hyperbolic surface of type
(n,0, m) with N(X) its Nielsen kernel. Then the Fermi radius vy, (N(X)) of
N(X) has an upper bound

Te(N(X)) = 16]e(X)|[1+1/p], (2.16)

where e(x) is the Euler number of X.

Proof. Let d(x,y) denote the distance between x aﬁd yin X. Since N(X) is
a compact subset of X, we can choose a point g € N(X) such that

d(qo, IN) = v, (N(X))
=max{d(q, IN(X))|q e N(X)}.

As we pointed out earlier, N(X) is a convex subset of X. Hence there is a
length-minimizing geodesic o: [0, L] — N(X) joining dN(X) and q,, where
L =L(o)=d(qq,0N) and o is arclength parameterized. '

We divide our proof into two separate cases.

Case 1: The injectivity radius p(X) of X is at least 1.

If vg,(N(X)) =<1, the estimate (2.16) clearly holds. Let k be the integer
such that k+1=v, (N(X))=L=k=1. Choose a(0)=qo, qy,---, @ =0(L)
along ¢ such that dg(g;, g;+1) =1. Then the geodesic balls By,,(g;) will be
disjoint and have area at least 37 (3)? = #/8. Thus, we see that the following
is true:

2w |e(X)| = area(N(X), go)
= (k+1)(7/8) = (7/8)yo(N(X)).
This shows that
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Yg,(N(X)) =16|e(X)|. (2.17)

Case 2: The injectivity radius is at most 1.

We may assume that L =+, (N(X)) = p; otherwise, yg (N(X))=p=1<
16 and (2.16) holds. Therefore, we may choose & to be the integer with k+1=
L/p = k = 1. Pick a(0) = gy, qy, ---, qx = 0(L) along ¢ so that d(q;, q; 1) =
p(X). Then the geodesic balls B,,,(g;) will be disjoint and have area at least
1x(p/2)%. Thus we also have

27|e(X)| = (k+1)(x/8) p* = (L/p)(w/8) p*

= Ygo(N(X))(mp/8),
and hence
Ve (N(X)) = (16/p)|e(X)|.
This completes the proof of Lemma 2.2. 0

The following theorem follows from Lemmas 1.1 and 2.3.

TueorReM 2.4. Let X be an open complete hyperbolic surface of type
(n,0, m) with N/(X) its jth Nielsen kernel. Then there is a uniform estimate

v, (N (X)) < 16]e(X)|{1+1/p}

Sor all j =0, where e(X)=2—-2n—m<0, m=1, and p is the injectivity
radius of X.

Proof. It follows from Lemma 1.1 that
pj+1=p(NTTH(X), g) = p(N’(X), gj-1) = (X, g0) = p.
Using Lemma 2.3, one has
Ye(N7HH(X)) < 16]e(N/(X))|[1 +1/pj 4]
<16|e(X)|[1+1/p]. U

Now we are ready to give a uniform estimate for all the conformal scalar
functions e**, where g;=e*"ig;_,.

CoRrROLLARY 2.5. Let (X, gy) be a complete hyperbolic surface of type
(n, 0, m) with g; the conformal, complete, hyperbolic metric on its jth Niel-
sen kernel N/(X). Suppose that g;=e*“g;_,. Then

e P =>C>1 (2.18)
forallge NY(X), j=1,2,..., where C>1 and C is independent of j and q.
Proof. It follows from Theorem 2.1 that
e?( D =14 4e72n,

where v; = vg,_ (N/(X)) is the Fermi radius of N/(X) in the surface
N H(X), g;-1)-
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Now Theorem 2.4 says that there is a uniform upper bound for v;, namely
vj = 16|e(X)|(1+1/p).

Hence we choose C=1+4exp[—32|e(X)|(1+1/p)]>1 as the desired con-
stant. ]

3. Souls of Open Surfaces

In this section we shall discuss the relations between the infinite Nielsen ker-
nel and the limit of souls. We will make some additional comments after the
completion of the proof of Theorem B.

3.1. Proof of Theorem B

Let (X, go) be a complete hyperbolic surface of type (n, 0, m) with g; the
conformal, complete, hyperbolic metric on its jth Nielsen kernel N/(X).
Hence, g;= e*"ig, for some smooth function w; defined on NY(X). It fol-
lows from Corollary 2.5 that

This is to say
eVl = p2Zh-1ti > O (3.2)

for all g € N(X), where C>1 and C is a constant number independent of
Jj=12,....

Recall that the Hausdorff distance dy with respect to the metric g, is given
by

dx (A, B)=inf{e|dy(x, B) <e¢,dy(A,y)<eforall xe A4, y € B}.

For any given integer j, it is easy to see that both N ®(X) and the (j+ 1)th
soul §;41(X) are contained in N/ +1(X). Thus, it is clear that

dx(N*(X), §;11(X)) < 27g, (N7 1(X)) = (2/C7)yg (N1 (X)). (3.3)
It follows immediately from Theorem 2.4 and (3.3) that
dx(N®(X), S;+1(X)) < (32/C7)|e(X)|{1+1/p}, (3.4)

where p is the injectivity radius of (X, go) and e(X) is the Euler number
of X.
By letting j — +o in (3.4), we have

lim dx(N%(X),S;1(X)=0

J— 4o

since C > 1. This finishes the proof of Theorem B. L1

3.2. Lipschitz Convergence and the Hausdorff Dimension

We would like to address a problem that is related to the Hausdorff dimen-
sion of the infinite Nielsen kernel. It will be shown that all souls S;(X) are
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1-dimensional rectifiable subsets of X, and that all have the same topologi-
cal structure.

ProposiTioN 3.1. (i) Let o and n be two geodesics in the Poincaré disk. The
set E={q|d(q,0)=d(q,n)} forms either a geodesic or the union of two
geodesics.

(ii) If X is an open hyperbolic surface of type (n, k, m), then S(X) is
the union of finitely many geodesic segments. Hence, S(X) is a rectifiable
subset. Furthermore, the number of geodesic segments in S(X) is at most
48k +2m+1)(dk+ m).

Proof. (i) We may assume that both ¢ and 5 have unit speed. It follows
from the convexity of the distance function that ¢ and 7 intersect in at most
one interior point (or a point at infinity) unless ¢ = 1.

Case 1: ¢ and n meet at an interior point p.
In this case, E is the union of two geodesics which pass through p and
have equal angles with ¢ and 7.

Case 2: o and y meet a point at infinity.

Let o be an arc on a horocycle with center o(o0) = 7() so that « is con-
nected with ¢ and 5. Then E is the geodesic line perpendicular to «, which
passes through the midpoint of «.

Case 3: o and » form a hyperbolic strip with a positive width.

Let « be the shortest geodesic segment joining ¢ and 5, L(a) =d(a, ).
Then E is the unique geodesic which is perpendicular to « at the midpoint
of .

(ii) The second assertion is an easy consequence of (i). ]

4. Hyperbolic Surfaces with Cusps

We shall modify our approach in order to carry out the proof of Theorem A
for hyperbolic surfaces with cusps. Before getting into the details of the
proof, we make the following observation on a characterization of interior
points.

A subset U is said to be precompact in X if U is compact in X. A subset
N* of X has no interior points if and only if N*NU has no interior points
for any precompact open set U in X. Therefore, for any compact set F'in X,
we would like to introduce partial estimates, a partial Fermi radius, and a
partial injectivity radius of F. The higher-dimensional cut-off technique is
related to the Margulis-Jorgensen decomposition (cf. [G1]).

4.1. Estimates on a Part of a Surface

Let (X, gy) be a hyperbolic surface of type (n, k, m) with km=1. Thus X
has k cusps. In what follows, we will play the same game as in Sections 1-3
on a given compact domain F, with some alterations.
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DEerFINITION 4.1. Let W be an arbitrary domain with boundary aW, and let
F be a compact subset in the metric space (Y, g). The partial Fermi radius
of W restricted to F is denoted by

Ye(W|p) =max{de (q,0W)|ge WNF]}. (4.1)

DEerINITION 4.2. (i) Let (Y, g) be a complete Riemann surface with nega-
tive curvature. For any point g € Y, the injectivity radius of ¢ is given by
(cf. [CE])

p.(q)=inf{L(o)|o is a geodesic loop based on g},

where L(o) denotes the length of o.
(ii) The injectivity radius of F is defined to be

pg(F)=inf{p,(y)|y e F}. (4.2)

With the terminology of Definitions 4.1 and 4.2, we can strengthen Theo-
rem 1.3 in the following way.

PropOSITION 4.3. Let X, N(X), ..., N/ (X), gj, and u; be as in Theorem
1.3, and let F be a compact domain with interior U. If there is a constant
number C = Cgr > 1, which depends on F, such that

e? D= C>1 (4.3)
forallge N(X)NFandj=1,2,..., then the infinite Nielsen kernel N*(X)

has no interior points which lie on U.

The proof of Proposition 4.3 is identical to the proof of Theorem 1.3. Hence
we omit it here.

ProrosiTioN 4.4. Let (X, go) be a complete, hyperbolic surface of type
(n, k, m) and let N(X) be its Nielsen kernel. Suppose that g, is the complete,
conformal and hyperbolic metric on N(X) with g, =e**g, and that F is a
compact domain of X. Then

e @ > 1+ 4e~ 0 (4.4)
Jor all ge N(X)NF, where o= v¢,(N(X)|F), the partial Fermi radius of
N(X) restricted to F.

For a proof of Proposition 4.4, we refer to the proof of Theorem 2.1.

ProprosiTION 4.5. Let X be an open complete hyperbolic surface of type
(n, k, m) with N/(X) its jth Nielsen kernel. Suppose that F is a compact
domain of X. Then there is a uniform estimate of F such that

Ye,(N/TU(X) | p) < 16]e(X)|{1+1/pF) (4.5)

Jor all j =0, where e(X)=2—2n+k+m)<0, m=1, and pr is the injec-
tivity radius of X restricted to F.
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The proof of Proposition 4.5 follows that of Theorem 2.4.
After this lengthy preparation, we are ready to prove Theorem A.

4.2. Proof of Theorem A

For any given compact domain F with interior U, one can show by using
Propositions 4.3-4.5 that the infinite Nielsen kernel N®(X) does not have
any interior point within U.

Let us choose a filtration, or a sequence of compact domains F1C F, C -+,
such that

X = int(F) (4.6)
i=1
and
F; Cint(Fj ).

It follows from the argument above that N*(X) has no interior points in
each F;. Therefore, N*(X) does not have any interior points in X. This
completes the proof of Theorem A. ]

ReMARK. It follows from Proposition 4.5 and the proof of Theorem B (cf.
Section 3.1) that

lim dy(N®(X)NF,S{(X)NF)=0

J—o 4o

for all compact domains F'C X, where S;(X) is the jth soul of the surface X.
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