Self-Duality and 4-Manifolds with Nonnegative Curvature on Totally Isotropic 2-Planes

MARIA HELENA NORONHA

1. Introduction

In [MM], Micallef and Moore proved a beautiful result which gives a topological classification of simply connected compact manifolds with positive curvature on totally isotropic 2-planes, namely that they are homeomorphic to the sphere. In this paper we want to consider the case of nonnegative curvature on totally isotropic 2-planes (see Definition 3.2) for 4-dimensional compact manifolds. Our first result is the following theorem.

Theorem 1. Let M be an irreducible, simply connected compact 4-manifold. If M has nonnegative curvature on totally isotropic 2-planes then M is either homeomorphic to the sphere S^4 or biholomorphic to the complex projective space \mathbb{CP}^2 .

Also in [MM, p. 222], the authors investigated some commonly used curvature conditions which imply the nonnegativity of the curvature on totally isotropic 2-planes. (For brevity we denote this by NNC.) For the case of dimension 4, some other conditions will give NNC. For instance, the results of Seaman in [S1] imply that compact, positively curved, real 4-dimensional Kähler manifolds have NNC. Conformally flat 4-manifolds with nonnegative scalar curvature have NNC.

In this paper we will investigate some conditions on a half-conformally flat manifold which will imply nonnegativity of the curvature on totally isotropic 2-planes. For example, although the nonnegativity of the scalar curvature is a necessary condition (Proposition 3.3), Theorem 1 and Theorem B in [Po] combined show that it cannot be sufficient even for positive scalar curvature. We will give in the next theorem a condition in terms of the sectional curvatures which will be a sufficient condition.

Theorem 2. Let M^4 be a half-conformally flat manifold with nonnegative scalar curvature. Then M has nonnegative curvature on totally isotropic 2-planes if and only if for any orthonormal basis $\{e_i, e_j, e_m, e_k\}$ of the

tangent plane $K_{ij} + K_{mk} \le S/3$, where K_{ij} denotes the sectional curvature of the plane spanned by e_i and e_i and e_i is the scalar curvature.

This theorem will be proved in Section 3. Also in this section, the proof of Proposition (3.6) implies that self-dual Kähler manifolds with nonnegative scalar curvature have NNC. Theorem 1 will be proved in the last section. In Section 2 we review the known result (stated as Proposition 2.4) which guarantees that a manifold is definite. This proposition combined with Proposition (2.5) will enable us to classify topologically compact half-conformally flat manifolds with nonnegative Ricci curvature. For these manifolds we prove the following theorem.

Theorem 3. Let M^4 be a compact half-conformally flat manifold with nonnegative Ricci curvature. Then one of the following holds.

- (a) M is an oriented conformally flat 4-manifold. In this case M is either conformally equivalent to S^4 or is a quotient of $S^3 \times \mathbf{R}$ or \mathbf{R}^4 by a group of fixed-point free isometries in the standard metrics.
- (b) M is not conformally flat; then the universal covering of M is either homeomorphic to $\mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2$ or diffeomorphic to a K3 surface. (A K3 surface is a complex surface with first Betti number $b_1 = 0$ and first Chern class $c_1 = 0$.)

2. Half-Conformally Flat Manifolds with Nonnegative Ricci Curvature

Let M be an oriented Riemannian manifold of dimension 4, and let Λ^2 denote the bundle of exterior 2-forms and $\Lambda^2 = \Lambda_+^2 \oplus \Lambda_-^2$ the eigenspace splitting for the Hodge *-operator.

The Riemann curvature tensor defines a symmetric operator $\Re: \Lambda^2 \to \Lambda^2$ given by

$$\Re(e_{ij}) = \frac{1}{2} \sum_{k,l} R_{ijlk} e_{kl},$$

where $\{e_i\}$ is a local orthonormal basis of 1-forms, e_{ij} denotes the 2-form $e_i \wedge e_j$, and $R_{ijlk} = \langle R(e_i, e_j)e_l, e_k \rangle$. The operator \Re can be decomposed as

$$\mathfrak{R}=\mathfrak{R}_+^++\mathfrak{R}_-^++\mathfrak{R}_+^-+\mathfrak{R}_-^-$$

with respect to the decomposition $\Lambda^2 = \Lambda_+^2 \oplus \Lambda_-^2$. This decomposition gives the irreducible components of \Re (see [ST]). They are $\operatorname{tr} \Re_+^+ = \operatorname{tr} \Re_-^- = S/4$, where S is the scalar curvature, the traceless Ricci tensor is \Re_-^+ , and the two components of the Weyl tensor W^+ and W^- are given by $W^+ = \Re_+^+ - S/12$ and $W^- = \Re_-^- - S/12$.

An oriented Riemannian manifold of dimension 4 is called *half-conformally flat* if either $W^+=0$ or $W^-=0$. An oriented Riemannian manifold is *self-dual* if $W^-=0$. It is clear that in a half-conformally flat manifold, self-duality is a property which depends on the orientation.

Let x be an arbitrary point of M and let $\{e_1, e_2, e_3, e_4\}$ be a positively oriented orthonormal basis of the tangent space T_xM . The 2-forms

$$\alpha_1 = \frac{\sqrt{2}}{2}(e_{12} + e_{34}), \quad \alpha_2 = \frac{\sqrt{2}}{2}(e_{13} - e_{24}), \quad \alpha_3 = \frac{\sqrt{2}}{2}(e_{14} + e_{23})$$

are in $\Lambda^2_+(T_xM)$ and are called self-dual; the 2-forms

$$\beta_1 = \frac{\sqrt{2}}{2}(e_{12} - e_{34}), \quad \beta_2 = \frac{\sqrt{2}}{2}(e_{13} + e_{24}), \quad \beta_3 = \frac{\sqrt{2}}{2}(e_{14} - e_{23})$$

are in $\Lambda^2_-(T_xM)$ and are called anti-self-dual. If $W^-=0$ then $\mathfrak{R}^-_-=S/12$; for $\bar{\beta}_i=\sqrt{2}\beta_i$ this implies $\langle \mathfrak{R}(\bar{\beta}_i), \bar{\beta}_i \rangle = S/6$. Therefore

$$K_{12} + K_{34} + 2R_{1234} = S/6,$$

 $K_{13} + K_{24} - 2R_{1324} = S/6,$ (2.1)
 $K_{14} + K_{23} + 2R_{1423} = S/6,$

where K_{ij} denotes the curvature of the plane $\{e_i, e_j\}$.

Let $F: \Lambda^2(T_xM) \to \Lambda^2(T_xM)$ be the Weitzenböck operator given by (see [S1])

$$\langle F(e_{ij}), e_{kl} \rangle = \operatorname{Ric}(e_i, e_k) \delta_{jl} + \operatorname{Ric}(e_j, e_l) \delta_{ik} - \operatorname{Ric}(e_i, e_l) \delta_{jk} - \operatorname{Ric}(e_j, e_k) \delta_{il} - 2R_{ijlk},$$

where Ric denotes the Ricci curvature. This operator satisfies the well-known Weitzenböck formula; that is, $\Delta \omega = -\text{div }\nabla \omega + F(\omega)$. Moreover, F is a symmetric operator and Λ_{+}^{2} and Λ_{-}^{2} are F-invariant (see [S2, Prop. 1]).

(2.2) Proposition. If M is a self-dual manifold then all eigenvalues of the operator $F^- = F: \Lambda^2_- \to \Lambda^2_-$ are equal to S/3.

Proof. Let $\{\beta_1, \beta_2, \beta_3\}$ be an orthonormal basis of eigenvectors of F^- . As in [S2, Prop. 2], we consider an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of T_xM such that

$$\beta_1 = \frac{\sqrt{2}}{2}(e_{12} - e_{34}), \quad \beta_2 = \frac{\sqrt{2}}{2}(e_{13} + e_{24}), \quad \beta_3 = \frac{\sqrt{2}}{2}(e_{14} - e_{23}).$$

From the definition of F we have:

$$\langle F(\beta_1), \beta_1 \rangle = \frac{1}{2} (\text{Ric}(e_1) + \text{Ric}(e_2) + \text{Ric}(e_3) + \text{Ric}(e_4) - 2k_{12} - 2k_{34} - 4R_{1234})$$

$$= K_{13} + K_{14} + K_{23} + K_{24} - 2R_{1234}. \tag{2.3}$$

Using the first Bianchi identity and (2.1), we conclude:

$$\langle F(\beta_1), \beta_1 \rangle = K_{13} + K_{24} - 2R_{1324} + K_{14} + K_{23} + 2R_{1423} = S/3.$$

Similarly, we obtain

$$\langle F(\beta_2), \beta_2 \rangle = K_{12} + K_{34} + K_{14} + K_{23} + 2R_{1324} = S/3,$$

 $\langle F(\beta_3), \beta_3 \rangle = K_{12} + K_{34} + K_{13} + K_{24} - 2R_{1423} = S/3.$

(2.4) Proposition. Let M be a half-conformally flat manifold with non-negative scalar curvature. If there is a point in M such that the scalar curvature is positive, then M is definite.

Proof. Integrating by parts, the Weitzenböck formula over M yields

$$(\Delta\omega,\omega) = (\nabla\omega,\nabla\omega) + \int_{M} \langle F(\omega),\omega\rangle dV,$$

where (,) is the inner product on $\Lambda^2(M)$ given by:

$$(\phi,\psi) = \int_{M} \langle \phi, \psi \rangle \, dV;$$

dV is the volume form of M, and \langle , \rangle is the naturally induced inner product on the space of 2-forms $\Lambda^2(T_xM)$. Let us suppose that the orientation was chosen so that M is self-dual. The hypothesis about the sign of the scalar curvature together with Proposition (2.2) implies that if ω is anti-self-dual then $(\Delta\omega,\omega)$ is positive. Therefore, if there are nonzero harmonic 2-forms then they must be self-dual, proving the proposition.

In order to prove Theorem 3 (stated in the introduction), we will study the universal covering of compact half-conformally flat manifolds with nonnegative Ricci curvature and prove the next proposition.

(2.5) Proposition. Let M^4 be a compact half-conformally flat manifold with nonnegative Ricci curvature. Then either the fundamental group $\pi_1(M)$ is finite or M is covered by \mathbb{R}^4 or $S^3 \times \mathbb{R}$ with their standard metrics.

Proof. It follows by a theorem of Cheeger and Gromoll [CG] that the universal covering \tilde{M} of M splits isometrically as $\bar{M} \times \mathbf{R}^k$, where \bar{M} is compact.

Let us suppose that M is self-dual and that $\{e_1, e_2, e_3, e_4\}$ is an orthonormal positively oriented basis of the tangent space of an arbitrary point of \tilde{M} . Consider the anti-self-dual forms defined by this basis. If k=1 let us suppose that e_1, e_2, e_3 are tangent to \bar{M} . Then we have $K_{14} = K_{24} = K_{34} = 0$ and $R_{1234} = R_{1324} = 0$ which implies $R_{1423} = 0$. It follows from (2.1) that $K_{12} = K_{13} = K_{23} = S/6$ and so $\bar{M} = S^3$.

If k=2 we consider $\{e_1, e_2, e_3, e_4\}$ such that e_1 and e_2 are tangent to \overline{M} . We have $K_{13}=K_{14}=K_{23}=K_{24}=0$ and $R_{1234}=0$. It follows from (2.3) that S=0. But $S=K_{12}$, contradicting that \overline{M} is compact and simply connected.

The cases k=0 and k=4 obviously imply $\pi_1(M)$ finite and $\tilde{M}=\mathbb{R}^4$, respectively, and the case k=3 cannot occur since it would contradict the simple connectivity of \tilde{M} .

(2.6) PROOF OF THEOREM 3. Notice that by definition a half-conformally flat manifold is oriented. Therefore, if M is conformally flat then the result will follow from the proof of Proposition (2.5).

If M is half-conformally flat but not a conformally flat manifold, we conclude from Proposition (2.5) that $\pi_1(M)$ is finite. Therefore the universal covering is still compact and we suppose, without losing generality, that M is simply connected. Moreover, a well-known formula for the signature of M^4 (see [AHS, p. 428]) implies that half-conformally flat manifolds which are not conformally flat have the second Betti number $b_2 > 0$. Therefore, if M is definite, it follows from [Do] and [Fr] that a definite, smooth, simply connected, compact 4-manifold with $b_2 > 0$ must be topologically $\mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2$. If M is not definite, again because $b_2 > 0$ there exists a (nonzero) harmonic 2-form ω which is anti-self-dual; otherwise, M would be definite. Then Proposition 2.4 implies that M is Ricci-flat (because M is not definite) with F a null operator over Λ^2 , implying that ω is parallel. Thus M is a Kähler manifold and the parallel 2-form ω is anti-self-dual. Reversing the orientation, M will be an anti-self-dual Kähler manifold and so diffeomorphic to a K3 surface (see [Hi] and [Ya]).

3. Self-Dual Manifolds with Nonnegative Curvature on Totally Isotropic 2-Planes

Let $T_xM\otimes C$ denote the complexified tangent space, and extend the Riemannian metric \langle , \rangle to a complex bilinear form (,). An element Z in $T_xM\otimes C$ is said to be *isotropic* if (Z,Z)=0. A 2-plane $\sigma\subseteq T_xM\otimes C$ is *totally* isotropic if (Z,Z)=0 for any Z in $T_xM\otimes C$. If σ is a totally isotropic 2-plane then there exists a basis $\{Z,W\}$ of σ such that

$$Z = e_i + \sqrt{-1}e_i$$
 and $W = e_m + \sqrt{-1}e_k$,

where $\{e_i, e_j, e_m, e_k\}$ is an orthonormal basis of $T_x M$.

(3.2) DEFINITION. A 4-manifold has nonnegative curvature on totally isotropic 2-planes if for Z and W as above we have

$$K_{ik} + K_{im} + K_{ik} + K_{im} - 2R_{ijkm} \ge 0.$$

The reader is referred to [MM, pp. 200–203] for the details about curvature on totally isotropic 2-planes.

(3.3) Proposition. If a half-conformally flat manifold has nonnegative curvature on totally isotropic 2-planes, then the Weitzenböck operator F is nonnegative. In particular, the scalar curvature of M is nonnegative. Conversely, if F is a nonnegative operator then M has nonnegative curvature on totally isotropic 2-planes.

Proof. Let ω be an eigenvector of F with corresponding eigenvalue r. As in [S2, Prop. 2], we can consider an orthonormal basis $\{e_i, e_j, e_k, e_m\}$ of $T_x M$ such that $\omega = (\sqrt{2}/2)(e_{ij} \pm e_{km})$. If we set

$$Z = e_i \pm \sqrt{-1} e_j$$
 and $W = e_k \pm \sqrt{-1} e_m$,

 $\{Z, W\}$ is a totally isotropic 2-plane whose curvature will be given by r, since by (2.3) we have

$$r = K_{ik} + K_{im} + K_{jk} + K_{jm} \pm 2R_{ijkm}$$
.

Now, supposing $W^-=0$, the nonnegativity of the scalar curvature follows from Proposition (2.2). To prove the converse we observe that, given a totally isotropic 2-plane $\sigma = \{Z, W\}$, there exists an orthonormal basis $\{e_i, e_j, e_k, e_m\}$ of the tangent space such that its curvature is equal to $\langle F(\omega), \omega \rangle$, where $\omega = (\sqrt{2}/2)(e_{ij} \pm e_{km})$.

(3.4) REMARK. From the proof of the above proposition and the Weitzenböck formula, it follows that for 4-manifolds the nonnegativity of the curvature on totally isotropic 2-planes implies that harmonic 2-forms are parallel.

As is observed in [MM, p. 201], on an oriented 4-manifold the nonnegativity of the curvature on totally isotropic 2-planes is equivalent to the inequality $-W+S/6 \ge 0$. Since W is trace-free, we can state the following result.

- (3.5) Proposition. Let M^4 be an oriented 4-manifold with nonnegative curvature on totally isotropic 2-planes. If the scalar curvature is identically zero then M is conformally flat.
- (3.6) Proposition. Let M^4 be a compact half-conformally flat manifold with nonnegative curvature on totally isotropic 2-planes. Then one of the following holds.
 - (a) M is conformally flat; then either the second Betti number $b_2 = 0$, or M is covered by the Euclidean space \mathbf{R}^4 or $S^2 \times \mathbf{H}^2$, where S^2 has constant sectional curvatures and \mathbf{H}^2 is the hyperbolic plane.
 - (b) M is a Kähler manifold and $b_2 = 1$.

Proof. If M is conformally flat, the result follows from Theorem 2 in [No]. If M is half-conformally flat but not conformally flat, then the first Pontrjagin number and the signature τ are nonzero (see [AHS, p. 428]). Since $\tau = b_2^+ - b_2^-$ and the second Betti number $b_2 = b_2^+ + b_2^-$ (where b_2^+ and b_2^- denote the dimensions of the subspaces of harmonic 2-forms which are selfdual and anti-self-dual, respectively), we conclude that b_2 is nonzero. Therefore, let ω be an harmonic 2-form. Since we can suppose that $W^-=0$, and since by Proposition (3.5) M has a point of positive scalar curvature, ω is a self-dual 2-form. It follows by (3.4) that ω is parallel and, because M is oriented, M is a Kähler manifold. Also, this implies that F has at least one null eigenvalue. We claim that the only harmonic 2-forms on M are of the type $c\omega$, $c \in \mathbb{R}$. In fact, since all harmonic 2-forms must be parallel and selfdual, all we need to prove is that—at the point where the scalar curvature S is nonnull—the operator F restricted to Λ_{+}^{2} has only one null eigenvalue. Then the same arguments used to prove Theorem 3 in [S1] will conclude the proposition. For that, consider an orthonormal basis $\{e_1, e_2, e_3, e_4\}$. The

2-forms e_{12} , e_{34} , $e_{13} + e_{24}$, $e_{14} - e_{23}$ span the unitary algebra u(2). Because M is a Kähler manifold, its holonomy group is a subgroup of the unitary group U(2), implying that the range of the curvature operator \Re lies inside the algebra u(2). Observe that u(2) contains all anti-self-dual 2-forms and the self-dual form $e_{12} + e_{34}$. Therefore the self-dual 2-forms orthogonal to $e_{12} + e_{34}$ are in the kernel of \Re , and thus we have

$$\langle \Re(e_{13} - e_{24}), e_{13} - e_{24} \rangle = K_{13} + K_{24} + 2R_{1324} = 0,$$

 $\langle \Re(e_{14} + e_{23}), e_{14} + e_{23} \rangle = K_{14} + K_{23} - 2R_{1423} = 0,$
(3.7)

which together with (2.1) imply

$$K_{13} + K_{24} = -2R_{1324} = K_{14} + K_{23} = 2R_{1423} = S/12$$

and hence $K_{12} + K_{34} = S/3$. Now, with the same notation used in Section 2, let α_1 be an eigenvector of F with corresponding eigenvalue 0. Using (3.7), for the other eigenvectors we obtain

$$\langle F(\alpha_2), \alpha_2 \rangle = K_{12} + K_{34} + K_{14} + K_{23} - 2R_{1324} = S/2,$$

 $\langle F(\alpha_3), \alpha_3 \rangle = K_{12} + K_{34} + K_{13} + K_{24} + 2R_{1423} = S/2,$

proving that they are nonnull.

We notice that the last part of the above proof implies that a self-dual Kähler manifold with nonnegative scalar curvature has nonnegative curvature on totally isotropic 2-planes. Since self-dual compact Kähler manifolds (with respect to the natural orientation) are locally symmetric spaces (see [De, Thm. 1]), they are manifolds with constant positive scalar curvature. It follows by [Bo, Prop. 9.3] that M is isometric to \mathbb{CP}^2 with its standard metric. Thus we conclude the following.

- (3.8) Proposition. The complex projective space \mathbb{CP}^2 with its standard metric is the only self-dual compact Kähler manifold which has nonnegative curvature on totally isotropic 2-planes.
- In [Po], Poon defined a Riemannian metric with positive scalar curvature and self-dual Weyl tensor on $\mathbb{CP}^2 \# \mathbb{CP}^2$. Therefore, on half-conformally flat manifolds, the nonnegativity of scalar curvature does not imply the nonnegativity of the curvature on totally isotropic 2-planes. We will finish this section by proving Theorem 2, which gives a sufficient condition in terms of sectional curvatures for such an implication.
- (3.9) PROOF OF THEOREM 2. We will prove first that our hypotheses imply that F is a nonnegative operator, which by Proposition (3.3) implies that M has nonnegative curvature on totally isotropic 2-planes. Proposition (2.2) implies that the operator F restricted to Λ^2 is nonnegative. Let r_1, r_2, r_3 be the eigenvalues of F^+ with corresponding eigenvectors $\alpha_1, \alpha_2, \alpha_3$. Consider an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of $T_x M$ such that

$$\alpha_1 = \frac{\sqrt{2}}{2}(e_{12} + e_{34}), \quad \alpha_2 = \frac{\sqrt{2}}{2}(e_{13} - e_{24}), \quad \alpha_3 = \frac{\sqrt{2}}{2}(e_{14} + e_{23}).$$

From the definition of F and the first Bianchi identity, we have

$$r_1 = K_{13} + K_{24} + 2R_{1324} + K_{14} + K_{23} - 2R_{1423}$$
.

But from (2.1) and again by the first Bianchi identity we get

$$K_{13} + K_{24} - 2R_{1423} = K_{14} + K_{23} + 2R_{1324} = S/6 + 2R_{1234}$$
.

Therefore $r_1 = 2(S/6 + 2R_{1234})$. Using (2.1) once more, we conclude that

$$r_1 = 2(S/3 - K_{12} - K_{34}).$$

Similarly, we obtain

$$r_2 = 2(S/3 - K_{13} - K_{24}),$$

$$r_3 = 2(S/3 - K_{14} - K_{23}).$$

Now the hypothesis about sectional curvatures implies that the eigenvalues are nonnegative. To prove the converse, consider an orthonormal basis $\{e_i, e_j, e_m e_k\}$ of $T_x M$ and a self-dual 2-form $\alpha = (\sqrt{2}/2)(e_{ij} + e_{mk})$. In a similar manner we can prove that the totally isotropic 2-plane $\sigma = \{Z, W\}$, where $Z = e_i + \sqrt{-1} e_j$ and $W = e_m + \sqrt{-1} e_k$, has curvature given by

$$\langle F(\alpha), \alpha \rangle = 2(S/3 - K_{ii} - K_{mk}),$$

implying that $K_{ij} + K_{mk} \leq S/3$.

The next corollary follows from (2.5), (2.6), (3.8), and Theorem 2.

- (3.10) COROLLARY. Let M^4 be a compact half-conformally flat manifold with nonnegative Ricci curvature. Suppose that for any orthonormal basis $\{e_i, e_j, e_m, e_k\}$ of the tangent plane we have $K_{ij} + K_{mk} \leq S/3$. Then one of the following holds.
 - (a) M is conformally flat, and is either conformally equivalent to S^4 or is a quotient of \mathbf{R}^4 or $S^3 \times \mathbf{R}$ by a group of fixed-point free isometries in the standard metrics.
 - (b) M is the complex projective space \mathbb{CP}^2 with its standard metric.

4. Proof of Theorem 1

Let G be the holonomy group of M. If M is irreducible then so is G. Recall that Berger [Be] proved that if for some $x \in M$, G acts irreducibly on $T_x M$, then either M is locally symmetric or G is one of the following standard subgroups of SO(4): SO(4), U(2), or SU(2).

If M is locally symmetric then M is an analytic Riemannian manifold (see [He, p. 187, Prop. 5.5]); then the fact that M is irreducible implies that M is locally irreducible. By Corollary 4 in [De] we have that M is half-conformally flat. Proposition (3.6) implies that M is either conformally flat or Kähler.

Irreducible locally symmetric spaces that are conformally flat have constant sectional curvatures, since they are Einstein. This and Proposition (3.8) imply that if M is locally symmetric then M is isometric either to the sphere S^4 or to the complex projective space \mathbb{CP}^2 with their standard metrics.

If G = SU(2), Berger also proved that M is Ricci-flat. By Proposition (3.5) M is conformally flat, and this together with the fact that it is Ricci-flat implies that the sectional curvatures vanish, which contradicts that M is simply connected.

We were left with two possibilities for G: SO(4) and U(2). As we already observed, the nonnegativity of the curvature on totally isotropic 2-planes implies that harmonic 2-forms are parallel (Remark 3.4). This implies, by the holonomy principle, that if G = SO(4) then M has the real cohomology of \mathbb{CP}^2 and is a Kähler manifold. In the former case the second Betti number $b_2 = 0$. Since M is simply connected, this fact implies that $H_2(M, \mathbb{Z}) = 0$. Now, the solution of the Poincaré conjecture for dimension 4 [Fr] implies that in this case M is homeomorphic to S^4 . In the latter case we have $b_2 = 1$ and $H_2(M, \mathbb{Z}) = \mathbb{Z}$ and, since the intersection form is ± 1 , by a result of Whitehead [Wh] M is homotopy equivalent to \mathbb{CP}^2 . A result of Yau [Ya] implies that a Kähler manifold homotopy equivalent to \mathbb{CP}^2 is biholomorphic to \mathbb{CP}^2 .

References

- [AHS] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461.
 - [Be] M. Berger, Sur les groupes d'holonomie homogene des variétés à connexion affine et des variétés Riemannienes, Bull. Soc. Math. France 83 (1955), 279-330.
 - [Bo] J. P. Bourguignon, Les variétés de dimension 4 a signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math. 63 (1981), 263-286.
 - [CG] J. Cheeger and D. Gromoll, *The splitting theorem for manifolds of nonnegative Ricci curvature*, J. Differential Geom. 6 (1971), 119–128.
 - [De] A. Derdzinski, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), 405-433.
 - [Do] S. K. Donaldson, An application of gauge theory to four dimensional topology, J. Differential Geom. 18 (1983), 279-315.
 - [Fr] M. Freedman, *The topology of four dimension manifolds*, J. Differential Geom. 17 (1982), 357-454.
 - [Hi] N. Hitchin, *Compact four dimensional Einstein manifolds*, J. Differential Geom. 9 (1974), 435–441.
- [MM] M. Micallef and J. D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), 199-227.
 - [No] M. H. Noronha, Some compact conformally flat manifolds with nonnegative scalar curvature, Geom. Dedicata 47 (1993), 255–268.

- [Po] Y. S. Poon, Compact self-dual manifolds with positive scalar curvature, J. Differential Geom. 24 (1986), 97-132.
- [S1] W. Seaman, *Two forms on four manifolds*, Proc. Amer. Math. Soc. 101 (1987), 353–357.
- [S2] ——, Some remarks on positively curved 4-manifolds, Michigan Math. J. 35 (1988), 179–183.
- [ST] I. M. Singer and J. A. Thorpe, *The curvature of 4-dimensional Einstein spaces*, 'Global analysis: papers in honor of K. Kodaira (D. C. Spencer, S. Iyanaga, eds.), pp. 355-365, Princeton Univ. Press, Princeton, NJ, 1969.
- [Wh] J. H. C. Whitehead, *On simply-connected 4-dimensional polyhedra*, Comment. Math. Helv. 22 (1949), 48–92.
- [Ya] S. T. Yau, Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1798–1799.

Department of Mathematics California State University – Northridge Northridge, CA 91330