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1. Introduction

In [MM], Micallef and Moore proved a beautiful result which gives a topo-
logical classification of simply connected compact manifolds with positive
curvature on totally isotropic 2-planes, namely that they are homeomorphic
to the sphere. In this paper we want to consider the case of nonnegative
curvature on totally isotropic 2-planes (see Definition 3.2) for 4-dimensional
compact manifolds. Our first result is the following theorem.

THEOREM 1. Let M be an irreducible, simply connected compact 4-mani-
fold. If M has nonnegative curvature on totally isotropic 2-planes then M
is either homeomorphic to the sphere S* or biholomorphic to the complex
projective space CP2.

Also in [MM, p. 222], the authors investigated some commonly used cur-
vature conditions which imply the nonnegativity of the curvature on totally
isotropic 2-planes. (For brevity we denote this by NNC.) For the case of
dimension 4, some other conditions will give NNC. For instance, the results
of Seaman in [S1] imply that compact, positively curved, real 4-dimensional
Kahler manifolds have NNC. Conformally flat 4-manifolds with nonnega-
tive scalar curvature have NNC.

In this paper we will investigate some conditions on a half-conformally
flat manifold which will imply nonnegativity of the curvature on totally iso-
tropic 2-planes. For example, although the nonnegativity of the scalar cur-
vature is a necessary condition (Proposition 3.3), Theorem 1 and Theorem B
in [Po] combined show that it cannot be sufficient even for positive scalar
curvature. We will give in the next theorem a condition in terms of the sec-
tional curvatures which will be a sufficient condition.

THEOREM 2. Let M* be a half-conformally flat manifold with nonnega-
tive scalar curvature. Then M has nonnegative curvature on totally isotrop-
ic 2-planes if and only if for any orthonormal basis {e;, e;, e, e;} of the
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tangent plane K;; + K, = S/3, where K;; denotes the sectional curvature of
the plane spanned by e; and e; and S is the scalar curvature.

This theorem will be proved in Section 3. Also in this section, the proof of
Proposition (3.6) implies that self-dual Kédhler manifolds with nonnegative
scalar curvature have NNC. Theorem 1 will be proved in the last section. In
Section 2 we review the known result (stated as Proposition 2.4) which guar-
antees that a manifold is definite. This proposition combined with Proposi-
tion (2.5) will enable us to classify topologically compact half-conformally
flat manifolds with nonnegative Ricci curvature. For these manifolds we
prove the following theorem.

THEOREM 3. Let M* be a compact half-conformally flat manifold with
nonnegative Ricci curvature. Then one of the following holds.

(@) M is an oriented conformally flat 4-manifold. In this case M is either
conformally equivalent to S* or is a quotient of S> x R or R* by a
group of fixed-point free isometries in the standard metrics.

(b) M is not conformally flat; then the universal covering of M is either
homeomorphic to CP?# ... # CP? or diffeomorphic to a K3 surface.
(A K3 surface is a complex surface with first Betti number b, =0 and
first Chern class ¢; =0.)

2. Half-Conformally Flat Manifolds with
Nonnegative Ricci Curvature

Let M be an oriented Riemannian manifold of dimension 4, and let A? de-
note the bundle of exterior 2-forms and A2 = A% @ A% the eigenspace split-
ting for the Hodge *-operator.

The Riemann curvature tensor defines a symmetric operator 9: A — A’
given by

1
J(e;;) = 3 kEI Rijnexrs

where {e;} is a local orthonormal basis of 1-forms, e;; denotes the 2-form
e; nej, and Ry = (R(e;, ej)e;, e;). The operator #t can be decomposed as

R=REI+RT+RI+RZ

with respect to the decomposition A>= A% @ A%. This decomposition gives
the irreducible components of $ (see [ST]). They are tr RT =tr RZ=S5/4,
where S is the scalar curvature, the traceless Ricci tensor is 7, and the two
components of the Weyl tensor W+ and W~ are given by WH=R1-5/12
and W~ =R_—-S/12.

An oriented Riemannian manifold of dimension 4 is called half-confor-
mally flat if either W =0 or W~ =0. An oriented Riemannian manifold is
self-dual if W~ =0. It is clear that in a half-conformally flat manifold, self-
duality is a property which depends on the orientation.
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Let x be an arbitrary point of M and let {e,, e,, €3, e4} be a positively ori-
ented orthonormal basis of the tangent space 7, M. The 2-forms

V2 2
ay=——(epp+ey), ay=—(e3—ey) oaz=-—-(ey+ey)
2 2 2
are in A% (T, M) and are called self-dual; the 2-forms
V2 V2

2
B,= 7(312—334), B,= ‘2—(313‘*'924), B3= 7(914—923)

are in A% (T, M) and are called anti-self-dual. If W~ =0 then RZ =S/12;
for 3; = V2B, this implies {R(B;), B;) = S/6. Therefore

KIZ +K34+ 2R1234 = S/6,
K3+ K34 —2Ry34 = S/6, (2.1)
K14+K23 +2R1423 - S/6,

where K;; denotes the curvature of the plane {e;, e;}.
Let F: A2(T, M) — A*(T, M) be the Weitzenbdck operator given by (see
[S1])
(F(e;j), ex) = Ric(e;, e;)d;; + Ric(e;, €))djx

—Ric(e;, )6 — RiC(ej, )0y — 2Rk

where Ric denotes the Ricci curvature. This operator satisfies the well-known
Weitzenbock formula; that is, Aw = —div Vw+ F(w). Moreover, F is a sym-
metric operator and A% and A% are F-invariant (see [S2, Prop. 1]).

(2.2) ProposiTioN. If M is a self~-dual manifold then all eigenvalues of the
operator F~=F: A~ — A% are equal to S/3.

Proof. Let {B,, 35, 83} be an orthonormal basis of eigenvectors of F~. Asin
[S2, Prop. 2], we consider an orthonormal basis {ey, e,, e3, e4} of T, M such
that

) 2
By = 7(912—334), Ba= 7(313 +e5), B3= '2_(314_923)'

From the definition of ' we have:
(F(B)), 8;) = 5(Ric(e;) + Ric(e,) + Ric(es) + Ric(ey) —2kj» — 2k34—4Ry53.)
= K13+ Kya+Kp3+ Ky — 2Ry 3. (2.3)
Using the first Bianchi identity and (2.1), we conclude:
(F(By), B =Ki3+Kra—2R 304+ Kig+Kr3+2R403 = S/3.

Similarly, we obtain

(F(B2),B2) =Kip+ K34+ Kyg + Kp3+2Ry34 = §/3,

(F(B3), B3) = K2+ K34+ K3+ Kps —2Ry453 = S/3. U
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(2.4) ProrposiTiON. Let M be a half-conformally flat manifold with non-
negative scalar curvature. If there is a point in M such that the scalar curva-
ture is positive, then M is definite.

Proof. Integrating by parts, the Weitzenbdck formula over M yields

(Aw, w) = (Vw, Vw) +S (F(w), w)dV,
M

where (, ) is the inner product on A*(M) given by:

(6, ¥) = SM<¢>, %

dV is the volume form of M, and ¢, ) is the naturally induced inner product
on the space of 2-forms A*(T, M). Let us suppose that the orientation was
chosen so that M is self-dual. The hypothesis about the sign of the scalar
curvature together with Proposition (2.2) implies that if w is anti-self-dual
then (Aw, w) is positive. Therefore, if there are nonzero harmonic 2-forms
then they must be self-dual, proving the proposition. W]

In order to prove Theorem 3 (stated in the introduction), we will study the
universal covering of compact half-conformally flat manifolds with nonneg-
ative Ricci curvature and prove the next proposition.

(2.5) ProposITION. Let M* be a compact half-conformally flat manifold
with nonnegative Ricci curvature. Then either the fundamental group w (M)
is finite or M is covered by R* or S x R with their standard metrics.

Proof. It follows by a theorem of Cheeger and Gromoll [CG] that the uni-
versal covering M of M splits isometrically as M x R, where M is compact.

Let us suppose that M is self-dual and that {e,, e,, e3, e4} is an orthonor-
mal positively oriented basis of the tangent space of an arbitrary point of
M. Consider the anti-self-dual forms defined by this basis. If k=1 let us
suppose that e;, e,, e; are tangent to M. Then we have K;y=K,,=K3,=0
and Rj,34 = Ry354 = 0 which implies R 4,3 =0. It follows from (2.1) that K}, =
K;3=K,3;=5/6 and so M= S>.

If k =2 we consider {e|, e,, e3, ¢4} such that e, and e, are tangent to M. We
have K3 = K4 = K53 = K,4=0and Ry534 =0. It follows from (2.3) that S=0.
But S =K, contradicting that M is compact and simply connected.

The cases k=0 and k=4 obviously imply m;(M) finite and M =R?, re-
spectively, and the case kK = 3 cannot occur since it would contradict the sim-
ple connectivity of M. C

(2.6) Proor oF THEOREM 3. Notice that by definition a half-conformally
flat manifold is oriented. Therefore, if M is conformally flat then the result
will follow from the proof of Proposition (2.5).



Self-duality and 4-Manifolds with Nonnegative Curvature 7

If M is half-conformally flat but not a conformally flat manifold, we con-
clude from Proposition (2.5) that n;(M) is finite. Therefore the universal
covering is still compact and we suppose, without losing generality, that M is
simply connected. Moreover, a well-known formula for the signature of M*
(see [AHS, p. 428]) implies that half-conformally flat manifolds which are
not conformally flat have the second Betti number b, > 0. Therefore, if M is
definite, it follows from [Do] and [Fr] that a definite, smooth, simply con-
nected, compact 4-manifold with b, > 0 must be topologically CP2# - # CP2.
If M is not definite, again because b, > 0 there exists a (nonzero) harmon-
ic 2-form w which is anti-self-dual; otherwise, M would be definite. Then
Proposition 2.4 implies that M is Ricci-flat (because M is not definite) with
F a null operator over A%, implying that w is parallel. Thus M is a Kéahler
manifold and the parallel 2-form w is anti-self-dual. Reversing the orienta-
tion, M will be an anti-self-dual Kidhler manifold and so diffeomorphic to
a K3 surface (see [Hi] and [Ya]).

3. Self-Dual Manifolds with Nonnegative Curvature
on Totally Isotropic 2-Planes

Let 7, M® C denote the complexified tangent space, and extend the Riemann-
ian metric ¢, ) to a complex bilinear form (, ). An element Z in T, MK C is
said to be isotropic if (Z,Z)=0. A 2-plane 6 € T, MK C is totally isotropic
if (Z,Z)=0 for any Z in T M@C. If ¢ is a totally isotropic 2-plane then
there exists a basis {Z, W} of ¢ such that

Z=ei+~N—le; and W=e,+V—le,
where {¢;, e;, €,,, e;} is an orthonormal basis of T, M.

(3.2) DerFINITION. A 4-manifold has nonnegative curvature on totally iso-
tropic 2-planes if for Z and W as above we have

Kik+Kim+Kjk +K}'m-2Rijka 0.

The reader is referred to [MM, pp. 200-203] for the details about curvature
on totally isotropic 2-planes.

(3.3) ProposiTioN. If a half-conformally flat manifold has nonnegative
curvature on totally isotropic 2-planes, then the Weitzenbock operator Fis
nonnegative. In particular, the scalar curvature of M is nonnegative. Con-

versely, if F is a nonnegative operator then M has nonnegative curvature on
totally isotropic 2-planes.

Proof. Let w be an eigenvector of F with corresponding eigenvalue r. Asin
[S2, Prop. 2], we can consider an orthonormal basis {e;, e;, e, e,,} of T, M
such that w = (V2/2)(e;; + ey,,). If we set

Z=e;xV—le; and W=¢ tvV—1le,,
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{Z, W} is a totally isotropic 2-plane whose curvature will be given by r, sincz
by (2.3) we have

r=Ky+Ki,+Kj,+Kj,,, £ 2R,

Now, supposing W~ =0, the nonnegativity of the scalar curvature follows
from Proposition (2.2). To prove the converse we observe that, given a to-
tally isotropic 2-plane ¢ = {Z, W}, there exists an orthonormal basis {e;, e;,
ey, €,;} of the tangent space such that its curvature is equal to {(F(w), w),
where w = (V2/2)(e;; £ €xm)- a

(3.4) REMARK. From 'the proof of the above proposition and the Weitzen-
bock formula, it follows that for 4-manifolds the nonnegativity of the curva-
ture on totally isotropic 2-planes implies that harmonic 2-forms are parallel.

As is observed in [MM, p. 201], on an oriented 4-manifold the nonnegativity
of the curvature on totally isotropic 2-planes is equivalent to the inequality
—W+S8/6=0. Since W is trace-free, we can state the following result.

(3.5) ProposiTION. Let M* be an oriented 4-manifold with nonnegative
curvature on totally isotropic 2-planes. If the scalar curvature is identically
zero then M is conformally flat.

(3.6) ProposiTION. Let M* be a compact half-conformally flat manifold
with nonnegative curvature on totally isotropic 2-planes. Then one of the
Jollowing holds.

(a) M is conformally flat; then either the second Betti number b, =0, or
M is covered by the Euclidean space R* or S* x H2, where S? has con-
stant sectional curvatures and H? is the hyperbolic plane.

(b) M is a Kéihler manifold and b, = 1.

Proof. 1If M is conformally flat, the result follows from Theorem 2 in [No].

If M is half-conformally flat but not conformally flat, then the first Pon-
trjagin number and the signature 7 are nonzero (see [AHS, p. 428]). Since
7= b5 — b5 and the second Betti number b, = by + b5 (where b5 and b5 de-
note the dimensions of the subspaces of harmonic 2-forms which are self-
dual and anti-self-dual, respectively), we conclude that b, is nonzero. There-
fore, let w be an harmonic 2-form. Since we can suppose that W~ =0, and
since by Proposition (3.5) M has a point of positive scalar curvature, w is &
self-dual 2-form. It follows by (3.4) that w is parallel and, because M is
oriented, M is a Kahler manifold. Also, this implies that F has at least one
null eigenvalue. We claim that the only harmonic 2-forms on M are of the
type cw, c € R. In fact, since all harmonic 2-forms must be parallel and self-
dual, all we need to prove is that—at the point where the scalar curvature S
is nonnull—the operator F restricted to A% has only one null eigenvalue.
Then the same arguments used to prove Theorem 3 in [S1] will conclude
the proposition. For that, consider an orthonormal basis {e;, e,, €3, e4}. The
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2-forms ey,, €34, €13+ €44, €14 — €23 span the unitary algebra u(2). Because
M is a Kahler manifold, its holonomy group is a subgroup of the unitary
group U(2), implying that the range of the curvature operator 9t lies inside
the algebra u#(2). Observe that #(2) contains all anti-self-dual 2-forms and
the self-dual form ey, + e34. Therefore the self-dual 2-forms orthogonal to
e1x+ ez, are in the kernel of %, and thus we have

(R(ez—en),ei3—ex) =Kj3+ Ky +2R34=0,

3.7)
(R(es+ez3), ey tens) = Kiy+ K3 —2R1453=0,

which together with (2.1) imply
K3+ Ky, =—2R324 = K4+ K33 =2R 453 = S/12

and hence K, + K34 =S/3. Now, with the same notation used in Section 2,
let «; be an eigenvector of F with corresponding eigenvalue 0. Using (3.7),
for the other eigenvectors we obtain

(F(az), a2) =Kjp+ K3+ Kiy + Ko3— 2R304 =5/2,
(F(a3), a3) = Kjp+ K3+ K13+ Koy +2Ryg23 = S/2,

proving that they are nonnull. - O

We notice that the last part of the above proof implies that a self-dual Kadhler
manifold with nonnegative scalar curvature has nonnegative curvature on
totally isotropic 2-planes. Since self-dual compact Kédhler manifolds (with
respect to the natural orientation) are locally symmetric spaces (see [De,
Thm. 1}), they are manifolds with constant positive scalar curvature. It fol-
lows by [Bo, Prop. 9.3] that M is isometric to CP? with its standard metric.

Thus we conclude the following.

(3.8) ProposiTION. The complex projective space CP? with its standard
metric is the only self-dual compact Kdhler manifold which has nonnegative
curvature on totally isotropic 2-planes.

In [Po], Poon defined a Riemannian metric with positive scalar curvature
and self-dual Weyl tensor on CP? # CP2. Therefore, on half-conformally flat
manifolds, the nonnegativity of scalar curvature does not imply the nonneg-
ativity of the curvature on totally isotropic 2-planes. We will finish this sec-
tion by proving Theorem 2, which gives a sufficient condition in terms of
sectional curvatures for such an 1mphcat10n

(3.9) PROOF OF THEOREM 2. We will prove first that our hypotheses imply
that F is a nonnegative operator, which by Proposition (3.3) implies that M
has nonnegative curvature on totally isotropic 2-planes. Proposition (2.2)
implies that the operator F restricted to A% is nonnegative. Let ry, r,, 73 be
the eigenvalues of F'* with corresponding eigenvectors «;, a5, 3. Consider
an orthonormal-basis {e;, e,, €3, e4} of 7, M such that
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2
o= 7(912'*‘334), 0y = 7(313 —€);, 3= 7(314"‘623)'

From the definition of F and the first Bianchi identity, we have
r =K+ K4 +2R34+ Ky + K23 —2Ry433.
But from (2.1) and again by the first Bianchi identity we get
K3+ K24 —2Ry403 = Kia+Ky3+ 2R304 = S/6 + 2R 334.
Therefore ri =2(S/6+2R;,34). Using (2.1) once more, we conclude that

r= 2(S/3 —Klz—K34).
Similarly, we obtain
r,=2(8/3—-K;3—Ky,),

ry= 2(S/3 —K14’-K23).

Now the hypothesis about sectional curvatures implies that the eigenvalues
are nonnegative. To prove the converse, consider an orthonormal basis {e;,
e, em ey} of T, M and a self-dual 2-form o = (V2/2)(e;;+e,y). In a similar
manner we can prove that the totally isotropic 2-plane o= {Z, W}, where
Z=e;+V—1le; and W=e,,+V—1¢, has curvature given by

(F(a), ) =2(S/3—K;j — Kyni),

The next corollary follows from (2.5), (2.6), (3.8), and Theorem 2.

(3.10) CoroLLARY. Let M* be a compact half-conformally flat manifold
with nonnegative Ricci curvature. Suppose that for any orthonormal basis
{ei, e, e, ex} of the tangent plane we have K;; + K, < S/3. Then one of the
JSollowing holds.

(a) M is conformally flat, and is either conformally equivalent to S* or is
a quotient of R* or S3X R by a group of fixed-point free isometries
in the standard metrics.

(b) M is the complex projective space CP? with its standard metric.

4. Proof of Theorem 1

Let G be the holonomy group of M. If M is irreducible then so is G. Recall
that Berger [Be] proved that if for some x € M, G acts irreducibly on T, M,
then either M is locally symmetric or G is one of the following standard sub-
groups of SO(4): SO4), U(2), or SU(2).

If M is locally symmetric then M is an analytic Riemannian manifold (see
[He, p. 187, Prop. 5.5]); then the fact that M is irreducible implies that M is
lIocally irreducible. By Corollary 4 in [De] we have that M is half-conformally
flat. Proposition (3.6) implies that M is either conformally flat or Kéhler.
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Irreducible locally symmetric spaces that are conformally flat have constant
sectional curvatures, since they are Einstein. This and Proposition (3.8) im-
ply that if M is locally symmetric then M is isometric either to the sphere S*
or to the complex projective space CP? with their standard metrics.

If G=SU(2), Berger also proved that M is Ricci-flat. By Proposition (3.5)
M is conformally flat, and this together with the fact that it is Ricci-flat im-
plies that the sectional curvatures vanish, which contradicts that M is sim-
ply connected.

We were left with two possibilities for G: SO(4) and U(2). As we already
observed, the nonnegativity of the curvature on totally isotropic 2-planes
implies that harmonic 2-forms are parallel (Remark 3.4). This implies, by
the holonomy principle, that if G=S0O(4) then M has the real cohomol-
ogy of S*, and if G = U(2) then M has the real cohomology of CP? and is a
Kihler manifold. In the former case the second Betti number b, = 0. Since
M is simply connected, this fact implies that H,(M, Z) =0. Now, the solu-
tion of the Poincaré conjecture for dimension 4 [Fr] implies that in this case
M is homeomorphic to S*. In the latter case we have b, =1 and H,(M,Z) =
Z and, since the intersection form is *+1, by a result of Whitehead [Wh] M
is homotopy equivalent to CP2. A result of Yau [Ya] implies that a Kéhler
manifold homotopy equivalent to CP? is biholomorphic to CP2. O
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