The Genus of SL,(F;)

SHU-NAN VooN

1. Introduction

Hurwitz showed that the group of (conformal) automorphisms of a com-
pact Riemann surface has order less than or equal to 84(g —1), provided that
g =2. More generally, Greenberg [7] showed that given any nontrivial finite
group G and any closed Riemann surface S, there exists a closed Riemann
surface T and a normal branched covering T of S, whose group of covering
transformations is isomorphic to G, and is the full group Aut(7") of confor-
mal automorphisms of 7. This opens up a related question: Given a finite
group, what is the minimum genus of a surface for which this is a group of
automorphisms? This has been solved completely for the following series of
groups: cyclic [8], abelian [14], PSL,(q) [4; 5], and alternating [1]. More re-
cently, Conder, Wilson, and Woldar [2] have computed the minimum gen-
era of the sporadic simple groups, except the Fischer Fi,;, the Monster M,
and the Baby Monster B. Here we take up the unimodular linear group
SL,(q) over a finite field of g elements, where g = p”. Moreover, we also
compute the corresponding group Aut(S,), where S, is any Riemann surface
of least genus on which SL,(q) acts. By definition, the (strong symmetric)
genus of a finite group G is the least integer g so that G acts, as a group of
homeomorphisms, effectively and orientably on the closed orientable sur-
face S,. According to the positive solution of the Nielsen realization prob-
lem [9], the surface S, may be given a Riemann structure such that G acts on
the Riemann surface S, conformally. In other words, we may assume that G
acts effectively on a closed Riemann surface S, as a group of (conformal)
automorphisms of S,.

Let D be the upper half-plane, {z € C: Im(z) > 0}. Any conformal auto-
morphism of D is a Mobius transformation of the form

e az+b
T cz+d’
where a, b, c,deR with ad—bc=1. Thus, the group of conformal auto-

morphisms of D can be identified with the Lie group PSL,(R). A discrete
subgroup I' of PSL,(R) is called a Fuchsian group. We will be concerned
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only with those Fuchsian groups for which the orbit spaces D/I" are com-
pact. Such a group is called a cocompact Fuchsian group, and is known to
have the following presentation.

Generators: ay, by, ay, by, ..., ay, by, €y, C2y ..., Cs.
Relations: [ay, by]las, b,]:--[ay, bplcicy:-cs=ci"=ci2=--- =cls=1.

Here, [a, b]=aba~'b~!. In particular, if T is torsion-free then I' is iso-
morphic to the fundamental group of a compact orientable surface of genus
h. Thus, a torsion-free Fuchsian group is a surface group. Another impor-
tant type of Fuchsian group occurs when the orbit genus /# = 0 and the num-
ber of branched points s = 3. These are known as friangle groups and will be
denoted by T'(r, s, t), where r, s, t are the periods.

Using results of MacBeath [13], we show that SL,(g) can be generated
by an (r, s, t)-triple, as defined below, and hence SL,(q) acts on some com-
pact Riemann surface of genus g, with S2 as the orbit space and 2g—2=
ISLo(q)|(1—1/r—1/s—1/t). Next we show that if g is the genus of SL,(g)
then there is a regular branched covering S, = S? with three branch points,
and as a consequence we obtain the following genus formula

2(genus(SLy(q))—1) =|SL,(g)| min, 5, n1—1/r—1/s—1/1),

where the minimum is taken over all triples of integers (r, s, ¢) for which
SL,(q) admits a generating (r, s, ¢)-triple.
Before we state our main results, we will need a couple of definitions.

DeriNITION 1.1. Given a triple (r, s, ¢) of integers, an (r,s, t)-triple of a
group G is a triple (A, B, C) of elements of G of respective orders (r, s, f)
such that ABC =1.

DEerINITION 1.2. Given a prime power p”, d =d, denotes the smallest inte-
ger satisfying the following conditions:
(i) d|p"—1lord|p"+1;
(ii) dy¥p™£1for all m|n, m#n;
(iii) d#2,3,4,6.

Since SL,(2") = PSL,(2"), and since the genus of PSL,(2") has been deter-
mined by Glover and Sjerve [5], in what follows we will restrict ourselves to
the odd characteristic p.

TERMINOLOGY. The genus of a finite group G is said to be determined by
an (r, s, t)-triple if there exists a generating (r, s, ¢)-triple for G satisfying
2(genus(G) —1)=|G|1—1/r—1/s—1/¢).

THEOREM 1.3. The genus of SL,(p) is determined by the following triple:
(i) (3,3,4) when p=3;
(ii) (3,4, 5) when p=15;
(iii) (3,3,d) when p=1.
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TueoreM 1.4. The genus of SL,(p®) is determined by a (3,5, 7)-triple if
d =105, and by a (3, 3, d)-triple if d <105.

REMARK. In Voon [16], Warren Sinnott shows that there are infinitely
many primes p such that if d is the smallest integer with the properties

(i) d|p®—1ord|pS+1and
(i) d¥p*x1,dfp*+l,

then d > 105. Similarly, there are infinitely many primes for which d < 105.

THEOREM 1.5. The genus of SL,(p"), 2 <n+6, is determined by a (3,3, d)-
triple.

Finally, we compute the full group Aut(S,) of automorphisms of the Rie-
mann surface S;, where g = genus(SL,(p")). It should be kept in mind that
the Riemann structure on S, is given by a short exact sequence of groups
A—T(r,s,t)5 SL,(p™), where 6 is period-preserving and g is determined
by an (7, s, t)-triple of the group SL,(p"). Thus, the Riemann structure on
S, is the unique structure which makes the map S, =D/ASD/T(r,s,t)=
CP1 analytic. With this understanding, the results are summarized in the
following theorem.

THEOREM 1.6. (@) Let g =genus(SL,(p")). If g is determined by a (3, 3, d)-
triple, then Aut(S,) is isomorphic to a subgroup of GL( p>") which is a 2-
fold extension of SLy(p"™). Indeed, Aut(S,) = SL,(p"): Z,, a semidirect
product. Moreover, ford|p"—1,

Aut(Sg) = SL3(p")
({Ae GL,(F))|det(A) = x1}) if and only if 2d|p"—1; for d|p"+1,
Aut(S,) = SL5(p™)

if and only if 2d ¥ p" +1.

(b) If g =genus(SLy(3)), then Aut(S,) = SL3(3).

(c) If g =genus(SL,(5), then Aut(Sg) = SL,(5).

(d) Let g=genus(SL,(p%). If d <105 then Aut(S,) = SLy(p®):Z,. If
d>105 then Aut(S,) = SL,(p°®).

In contrast, we would like to mention the following conjecture proposed by
Glover.

CoNJECTURE (Glover). Let G be a finite simple group and let S be a sur-
face of least genus on which G acts. Then S/G =S 2, S — S/G is a three-point
branched covering, and S can be chosen as a Riemann surface such that
Aut(S) =G



530 SHU-NAN VoON

2. Preliminary Results

In this section, we collect the background material concerning the subgroup
structure of PSL,(p”") as outlined in [5]. This is followed by the methods of
determination of various subgroups of PSL,(p"), as developed in [13]. We
begin with an elementary lemma which will be useful in our later investiga-
tions of generators of SL,(p").

LemMA 2.1. Let |A| denote the order of an element A of SL,(p"), and let
a=trA.

(@) |[A|=3 e a=-1.

(b) |A|=4¢)a=0.

©) |A|=5ea’+a—1=0.

(d) |[A|=6e a=1.

) |[A|=7e & +a®*—2a—1=0.

(f) |[A|=8 e a?=2.

(g) |A]=9 e a®—3a%+1=0.

(h) |[4|=10 & a®>—a—1=0.

(i) [A|l=11 e o’ +a*—4a’—3a’+3a+1=0.
(j) |[A|=pe A#1and a=2.

These are easily established by the following observation: Given A €
SL,(p™), the characteristic polynomial of A4 is x?>—ax+1. Therefore, 4> =
aA—1. Define recursively the polynomials S, (x) over F, as follows: S;(x) =
1, S,(x) = x, and S,,(x) = xS,_1(x) — S,_>(x). Thus, 4% = S,(a)A — S(x),
and, by induction, A" =S, (a)A — S, _;(a), of which the following lemma is
an immediate consequence (cf. [11]).

LEMMA 2.2. Let Ae SL,(p"), A+ *1, and tr A= «a. Then:

(@) A’=1e S,(a)=0and S,,_(a) =—1;
(b) A’=—-16S,(a)=0and S,,_1(a) =1.

Proof of Lemma 2.1. (a)-(i) All of these may be easily verified by the above
lemma and the following list of the polynomials S,(x):

(@) S3(x)=x%—1;

(b) Sy(x)=x(x*—2);

© Ss(x)=(x*+x—1)(x*—x—1);

(d) Se(x) =x(x*—1)(x>—3);

) S;(x)=((x3+x2-2x—1)(x3—x2=2x+1);

(f) Sg(x) =x(x2=2)(x*—4x2+2);

(8) So(x)=(x*=1)(x*—=3x—1)(x>—3x+1);

(h) Spp(x)=x(x2=x—=1)(x*+x—-1)(x*—5x2+5);

(1) Sy(x) =" —x*—4x343x2 4+ 3x =D +x*—4x3 - 3x2+3x+1).

(j) A p-Sylow subgroup Q consists of matrices of the form
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1 0
X“(A 1)’

where A€ Fj,». If A has order p, then A€ BOB ~! for some Be SL,(p"). Thus
A=BXB™! for some XeQ, X#1. Therefore, trA=tr X=2, as desired.
Next, if tr4=2 then A>=2A4—1, and hence by induction A"=nA+1—n
for any integer n. In particular, A?=pA+1—p=1. C

Subgroups of PSL,(p") are classified by Dickson [3]. We will follow the
presentation of Glover and Sjerve [5]; see also MacBeath [13]. There are
three types of subgroups of PSL,(p"), as outlined below.

Type I (projective subgroups): If m|n then F,~ is a subfield of F,» and
therefore PSL,(p™) is a subgroup of PSL,(p"). If also 2m|n and p > 2
then PGL,(p™) is a subgroup of PSL,(p"). Any subgroup conjugate within
PSL,(p”") toeither PSL,(p™) or PGL,(p™) is called a projective subgroup.

Type II (affine subgroups): Consider the subgroups of PSL,(p") which
have one of the following forms: either

0 n
{l:g ab—ljliaeﬁ;;*n,belivn} or {[3 X:I:/\EF'P*Z"’AP +1=1}.

Then any subgroup of PSL,(p") conjugate to a subgroup of one of the
above is called an gffine subgroup.

Type III (exceptional subgroups): The finite noncyclic triangle groups
are: .

T(2,2, t) =the dihedral group D,, of order 2¢, t = 2;

T(2, 3, 3) =the tetrahedral group = Ay;

T(2, 3, 4) =the octahedral group = S,;

T(2, 3, 5) = the icosahedral group = A;.
Subgroups of PSL,(p") isomorpic to one of these are called exceptional
subgroups.

REMARK. Every subgroup of PSL,(p") falls into one of these three types.
However, the types of subgroups are not exclusive. For example, type I and
type III may intersect, as well as type II and type III. On the other hand,
type I and type II do not intersect, a fact which will be used later on.

DEFINITION 2.3. A triple (o, 8,y) of F,» is called singular if the following
ternary quadratic form,

Q(x, 9, 2) =x2+y2+ 22+ ayz+Bzx+vxy,
splits into a product of two linear factors over the extension field F,.

DEFINITION 2.4. A triple (c, B, v) of F, is called irregular if the subfield «
generated by «, 3, v is a quadratic extension of another subfield «y, and if
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one of the elements of the triple lies in x4 while the other two are both square
roots in x of nonsquares in kg, Or zero.

DEerINITION 2.5. Let A, B, C e SL,(p") with ABC =1, and let a, b,ce
PSL,(p™) be the corresponding images of A4, B, C under the canonical ho-
momorphism of SL,(p") onto PSL,(p"). Such a triple (4, B, C) of SL,(p™)
is called

(a) exceptional if {a, b, c) is an exceptional subgroup of PSL,(p");

(b) singular if the triple (tr A, tr B, tr C) of traces is singular;

(c) irregular if the triple (tr A, tr B, tr C) of traces is irregular.

LEMMA 2.6 [5]. Given a, B,y € Fyn, {a, B, v} # {£2}, the triple (a,(,7%) is
singular if and only ifa2+62+'yz—oe6'y =4,

THEOREM 2.7 {13]. (a) A triple (A, B, C) of SLo(p") is singular if and only
if it generates an affine subgroup {a, b, ¢) of PSL,(p").

(b) A triple (A, B, C) of SL,(p") which is neither singular nor exceptional
generates a projective subgroup {a, b, c) of PSL,(p").

(c) A triple (A, B, C) of SL,(p") which is neither exceptional, singular,
nor irregular generates in PSL,(p") a projective subgroup {a, b, ¢) isomor-
phic to PSL,(x), where « is the subfield generated by tr A, tr B, tr C over the
ground field F,.

3. Generators of SL,(p")

In this section we show that SL,(p") can be generated by an (r, s, t)-triple,
where (r,s,t)= (3,4, p), (3,3,d), or (3,5,7), depending on the values of p
and n. As far as the genus of SL,(p") is concerned, this is the most efficient
way of generating the group SL,(p”").

LemMA 3.1. If —3€F; is not a square, then SL,(p) does not admit any
(3, 3, p)-triple.

Proof. 1t suffices to show that AB=1whenevertrA=trB=—1landtr AB=

2. Let
A=<a b) and B=<x y)’
c d z t

wherea+d=x+t=—1and ax+bz+cy+dt=2.1f bc=0then1=det(A) =
ad —bc=a(—a—1), so that a>+a+1=0, which has no solution in F,; hence
A¢ SL,(p), a contradiction. Therefore, bc # 0, and similarly yz # 0. Now
a(—a—1)—bc=1, so c=—(1+a+a?)/b, and similarly z=—(1+x+x%/y.
Hence, ax—b(+x+x%)/y—y(1+a+a?)/b+1+a)(1+x)=2. Putting A=
y/b, we obtain x2+x(1 —A —2a)) + A2(1 + a+a*) +A(1 —a) +1 = 0, which
has discriminant —3(1+\)2. Therefore, we must have A= —1; that is, y =
—b. Similarly, z=—c. Hence O0=ax+bz+cy+dt—2=_2a+1)(x+a+1).
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(a) Case 2a+1+#0. Then x=—1—a=d, so that

o3 )-(% D)
z t —Cc a
that is, AB=1.

(b) Case 2a+1=0. Then d = —1 —a = a and 4a?® = —2a = 1. Therefore,
bc+1=ad = a? and 1= det(B) = x(—1—x) —yz = x(—1—x) — (—=b)(—c) =
—x2—x —bc; that is, 0 = x2+ x+ a?. Equivalently, 0 = 4x% + 4x +4a® =
4x%+4x+1= (2x+1)% Thus 2x+1 =0, and hence x = a. Therefore x =
t = a = d, which, together with y = —b and z = —c, implies as before that
AB=1. O

Lemma 3.2. Let d be any divisor of p—1or p+1,d+2,3,4,6. Then any
(3, 3, d)-triple generates SL,(p).

REMARK. A (3,3, 2)-triple does not exist in SL,(p). A (3, 3, 3)-triple is sin-
gular, and hence does not generate SL,(p). Any (3, 3, 4)-triple or (3, 3, 6)-
triple generates a subgroup (= SL,(3)) of order 24, as may be easily verified
by an elementary argument. This explains why d # 2, 3, 4, 6.

Proof of Lemma 3.2. Let (A, B, C) be a (3, 3,d)-triple, and let tr C=A.
By Lemma 2.6, (A, B, C) is singular if and only if A=2 or A= —1. Thus
(A, B, C) is singular if and only if d = 3 or d = p. Since d does not equal 3 or
D, it follows that (A4, B, C) is nonsingular.

Let (a, b, c) be the corresponding triple in PSL,(p). If we can show that
(A, B, C) is not an exceptional triple, then {a, b, ¢) is a projective subgroup
of PSL,(p) and hence {a, b, c)= PSL,(p), since PSL,(p) is the only pro-
jective subgroup of itself. It would then follow that {A4, B, C)= SL,(p).

(1) Case d + 5. Suppose d # 8,10. Then (a, b,c) is a (3, 3, dy)-triple in
PSL,(p) where dy> 5. Thus (a, b, c) is not an exceptional subgroup of
PSL,(p). Whend =38, (a, b, c) is a (3, 3, 4)-triple in PSL,(p). It is clear that
{a, b, ¢) is neither cyclic nor dihedral; {a, b, c) % Ay, As, since both A, and
As do not have 4 torsion, and {a, b, c) % S,, since S; does not admit any
(3, 3, 4)-triple. Therefore, (A, B, C) is not an exceptional triple. When d =
10, we note that (—A)® = B3 = (—C)!*=(—A4)(B)(—C) =1, and that (A4, By =
(—A,B). Let X=—A,Y=B, and Z=—C. Then (X,Y, Z) is a (6, 3, 10)-
triple and (A, B)=(X, Y). Since Y3 =1, we have

trY2X=(trY)(trX)—tr¥X=—1—+,

where v2—~y—1=0. It is easily verified, by Lemma 2.1, that |Y2X|+#2, 3, 4,
5, 6, 8, or 10. Therefore, the image y2x € PSL,(p) of Y2X is an element of
order = 7. Thus (A, B, C) is not an exceptional triple.

(i1) Case d=5. Here (a, b, c¢) is a (3, 3, 5)-triple of PSL,(p). Again, it is
clear that {a, b, ¢) is neither cyclic nor dihedral. {a, b, ¢) # A4, S4, since both
A4 and S, do not have 5 torsion. We claim that {a, b, c) # As. Suppose, to
the contrary, that {a, b, c) = As. Let As;=(A, B, C). Then |45|=23-3.5. By
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[15, Thm. 6.17] we must have /15 = SL,(5), which is a contradiction since
SL,(5) does not admit any (3, 3, 5)-triple (by Lemma 3.1). Thus (A4, B, C)
is not an exceptional triple. L]

LemMA 3.3. Any (3,4, p)-triple generates SL,(p).

Proof. This is proved by the same argument as in the preceding lemma, and
is therefore omitted.

THeEOREM 3.4. Let (A, B, C) be a (3, 3, d)-triple of SL,(p"), n=2. If
(A,B,C)Y=SL,(p") then

(i) eitherd|p"—1ord|p"+1; and
(i) d¥p™x1 forall m|\n, m+n.

Proof. (i) The torsion of SL,(p") is p, 2p, or divisors of p”+1. Thus it is
enough to show that d # p, 2p. Suppose d = p or 2p; then tr C= +2. Hence
the smallest subfield « of F,» containing —1, —1, +2 is F,. By Theorem 2.7,
we have {a, b, ¢) = PSL,(k). Since{a, b, c) = PSL,(F,~), it follows that F,, =
x =F,, and hence n=1, which is a contradiction.

(ii) Suppose d|p™ +1 for some m|n. We will show that m=n. Let « be
the smallest subfield of F,~ containing tr C=+. As before, we have k= F,x.
Since |C|+ p,2p we have y=» + »~1 where v € Fj,2x is of order d; here », 1
are the roots of the characteristic equation x2—vyx+1=0o0of C. If d|p™ -1
then »?"~!=1, so that »»" =» and hence » € F,n. Thus y=v+» '€ Fpm. If
d|p™+1 then »?"+!1=1, so that »*"=»~! and hence v*" = (v +1/v)?" =
pP"+(1/v)P" =p 14 p=+. Thus v € F,=. Therefore, in either case we have
v € F,» and hence F,n 2 k = F,». Therefore n|m, and hence m=n, as de-
sired. ]

ReMArRK. Theorem 3.4 is valid for any generating (r, s, ¢)-triple (4, B, C)
of SLy(p"), where tr A, tr Be F,,.

THEOREM 3.5. Let (A, B, C) be any (3, 3, d)-triple of SL,(p™), n=2. Sup-
pose d satisfies the following conditions:

(i) d|p”"—1ord|p"+1; and

(i) d ¥ p™ 1 for all m|n, m+#n.

Then {(A,B,C)=SL,(p").

Proof. (p,p)=Q2p,p)=p and (p"x1, p)=1, so that condition (i) implies
that d # p, 2p. Also, condition (ii) implies that d # 2, 3, 4, 6 since, for p =35,
p+1 always contains the factors 2, 3, 4, and 6; for p=3, d + 3, 6, because
d|3"+1. Also, p+1=2,4, so that d # 2, 4.

As in the proof of Lemma 3.2, any such (3, 3, d)-triple is nonexceptional.
On the other hand, it is easily verified that any (3, 3, d)-triple is neither sin-
gular nor irregular. Thus (A4, B, C)= SL,(x), where « is the smallest subfield
of Fj,» containing —1, —1, y =tr C. We claim that x = F,». By condition (i),
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we have y=r+1/», where » is an element of Fy2q of order d; here v and 1/»
are roots of the characteristic equatlon X —-'yx+1 = 0. Now, K= Fym for
some m|n Since vy € F,», we have yP" = 7, that is, »?" + 1/»)?" v+ 1/v.
Thus »?” is also a root of the equation x2—+yx+1=0. Hence »*"=» or
»P" =1/v. Therefore, v?"*!=1, and hence d|p™+1. By condition (ii), we
conclude that m = n. Thus k = F»= F,», and hence (A, B, C)=SL,(p").

O]
LemMma 3.6. Let (A,B,C) bean (r,s,t)-triple of SL,(p"), n=2, such that

(1) (As B’ C) = SLZ(pn) and

(ii) 1/r+1/s+1/t>1/3+1/3+1/d. We say that (r,s,t) “beats” (3,3, d),
where d is the smallest integer with respect to the following properties:
(a) d|p"—1lord|p"+1;
(b) d¥p™ 1 forall m|n, m+n.

Then (r,s,t)=(3,5,7) and d > 105.

Proof. Without loss of generality, we may assume that r<s<¢. If r=35,
then 1/r+1/s+1/t <3/5<1/3+1/3+1/d, contradicting (ii). Thus r=3 or
4, and hence we have the following possibilities:

(i) (r,s,t)=(3,3,1), where 3 <t <d,
(ii) (r,s,t)=(3,4,1), where4 <t <1l1;
(iii) (r,s,t)=(@3,5,¢), where St =<7,
@iv) (r,s,t)=(4,4,t), where4 <t =<35.

We claim that all the above triples can be eliminated, except possibly (3, 5, 7).
Case (i) SL,(p") is generated by an (r, s, t)-triple. By Theorem 3.4, ¢ sat-
isfies the same properties as d does. By the choice of d, we cannot have f <d.
Case (ii) First consider the case where t =4, 5, 6, 8, or 10. Here {a, b, ¢) =
PSL,(p™) and (a, b, ¢) is an (/, m, n)-triple, where

(I,m,n)e{(3,2,2),(3,2,3),3,2,4), 3,2, 5)}.

The corresponding triangle group 7'(/, m, n) = Dg, A4, S4, or As. Evidently,
for n=2, PSL,(p") cannot be a homomorphic image of any of these tri-
angle groups (cf. [4]).

Next, consider the case where f =7, 9, or 11. By the remark after Theo-
rem 3.4, ¢ satisfies the same properties as d does. Therefore # = d, and hence
1/3+1/44+1/t <1/3+1/3+1/d, contradicting the choice of .

Case (iii) We will show that the triples (3, 5, 5) and (3, 5, 6) can be replaced
by a (3, 3, 5)-triple which beats both triples. Let v =tr B. Then

(trA’ trB’ tr C) = ('—1) Y ’Y) or (_la Y 1)~
Let k be the smallest subfield of F,» containing . Then
SLy(p")=(A, B, C)=SL;(x),

so that k=F,~. By Lemma 2.1, we must have n=2, and hence p# 5 and
p# *1 (mod 5), as the polynomial x2+x —1 over F, has a root in F, if and
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only if p=5 or p=+1 (mod 5). Now 5 is a torsion of SL,(p?) and p#5.
Therefore, either 5| p2—1or 5| p2+1 (in fact, 5| p2+1). Therefore, we have
5|p%2—1or5|p?+1and 5} p=+1. Therefore, SL,(p?) can be generated by a
(3, 3, 5)-triple, by Theorem 3.5. Furthermore, (3, 3, 5) beats both (3, 5, 5) and
(3,5, 6).

Case (iv) It suffices to remark that (2,2,2) and (2, 2, 5) are both spheri-
cal triples, and hence the corresponding triple (a, b, ¢) cannot generate

PSL,(p").
Therefore, the only remaining triple is (3, 5, 7), which beats (3, 3, d) if
and only if d > 105. O

LeMMA 3.7. Let (A,B,C) bea (3,5, 7)-triple of SL,(p"). Then {A,B, C)=
SL,(k), where « is the smallest subfield of F,» containing tr B and tr C.

Proof. Let B=trB and v =tr C. Then 8, vy satisfy the respective equations
B2+B—1=0and v3+y%2—2y—1=0. By Lemma 2.6, (4, B, C) is not sin-
gular. Since (a, b, c) is a (3, 5, 7)-triple, (A, B, C) is not exceptional. We will
show that (A, B, C) is not irregular case by case.

Case (i) Fp(B) = F, # F,(y). In this case, k = F,(y) = F,s and hence « is not
a quadratic extension of any subfield. Thus, (A, B, C) is not irregular.

Case (i) F,(y) = F, # F,(B3). In this case, x=F,(8) =F,2 and « is a quad-
ratic extension of ko= F,. However, —1, v € k¢, and so the «-triple (—1, 8, )
is not irregular.

Case (iii) F,(B) # F,, and F,(y) # F,. Here k = F,(8,v) =Fps and « is a
quadratic extension of ko = F},(y) = F,3. Again, —1, vy € k¢, so that the «-triple
(—1, B, ) is not irregular.

Case (iv) F(B) = F,(y) = F,. The conclusion here is immediate, as x =F,.

Therefore, in all cases, the triple (A4, B, C) is neither singular, exceptional,
nor irregular. Hence, (A4, B, C)= SL,(x), by Theorem 2.7. L1

CoROLLARY 3.8. SL,(p") can be generated by an (r, s, t)-triple, where 1/r +
1/s+1/t>2/3.

Proof. SL,(3) (resp. SL,(5)) can be generated by a (3, 3, 4)-triple (resp. a
(3, 4, 5)-triple). For p=17, SL,(p) can be generated by a (3, 3, d)-triple. For
n=2,SL,(p") can be generated by a (3, 3, d)-triple or a (3, 5, 7)-triple. Thus
SL,(p") can be generated by an (r, s, f)-triple, where 1/r+1/s+1/t > 2/3.
1

4. Genus of SL,(p")

In this section, we show that the genus of SL,(p”") is determined by an
(r, s, t)-triple, where (r,s,t)=(3,4,5), (3,3,d), or (3,5,7), depending on
the various values of p and n. We begin with the following fundamental
lemma.

LeEMMA 4.1.  If S, is a Riemann surface of least genus on which G = SL,(p")
acts as a group of automorphisms, then the regular branched covering
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S8, /G
has zero orbit genus with three branch points.

Proof. Let S, =S,/G. By the Riemann-Hurwitz formula, we have

b
2g—2=|G|[2h—2+E(I—I/mj)], 1)
j=1
where (h; my, m,, ..., my) is the branching data of the covering. We are to
show that #=0 and that b=3. From Corollary 3.8, G is generated by an
(r, s, t)-triple, where 1/r+1/s+1/t >2/3. According to [8, Thm. 3], there
exists a short exact sequence of groups A — T(r, s, t) 2 G, where A is a tor-
sion-free subgroup of the triangle group 7(r,s,t). Therefore, we have a
commutative diagram of topological spaces:

D/A=S
/! N\
D l S/G
pV Y =
D/T=S2.

Here S denotes the compact Riemann surface D/A, and S 2 is the 2-sphere
D/T, where T=T(r,s, t). Thus, 2 genus(S)—2=|G|(1—-1/r—1/s—1/t). By
assumption, g < genus(S); that is,

b
2h—2+ X (1-1/my)) <1—(1/r+1/s+1/t). (2)
j=1

Hence, 2h—2<1—(1/r+1/s+1/t), from which it follows that A=0o0r h=1.
Suppose £ =1. Then 3%_;(1—-1/m;) = 1—(1/r+1/s+1/t). If b=1 then,
since m; =2, we have 1/2<b/2<1—(1/r+1/s+1/t). Therefore, 1/r+1/s+
1/t =1/2<2/3, a contradiction. If b=0, then S, — S, is a regular un-
branched covering of the torus S; with G as the group of covering transfor-
mations, which is impossible, as G is not abelian. Therefore, we must have

h =0, and hence inequality (2) reduces to

b
—2+ X A=1/my) <1—1/r+1/s+1/t),
j=1
which implies & < 4. While it is clear that b+ 0, 1, we consider the following
cases.

(a) Suppose b=2. Then 2g—2=|G|[—2+ (1 —1/m;)+(1—1/m;)] <0, so
that g=0, and hence, from equation (1), 2 =|G|/m,;+|G|/m,. Therefore,
|G| = m;=m,. Thus, the number of fixed points is equal to the number of
branch points. Let y;, y, be the fixed points, and let x;, x, be the respective
branch points. Then

S2\{y1, ¥2} = S\ {x1, x5}
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is a regular unbranched covering with G as a group of covering transfor-
mations, and hence we have a short exact sequence of groups, Z—>Z — G.
Therefore, G is abelian, a contradiction.

(b) Suppose b=4. Without loss of generality, we may assume that m; <
m, < my < my. From inequality (2), we have

4
=2+ X (1-1/mj)<1-1/r+1/s+1/t)<1/3,
i=1

that is, 5/3 < X7_,(1/m;), the only solution of which is (2, 2, 2, n) with n=2.
By the Riemann existence theorem, we have G ={z;, 2,, 23, 24), Where z?=
22 =23=2}=2,2,2324=1. Since G has a unique element of order 2, z;=
Z, =23, so that z,=2z; and hence G = Z,, which again is a contradiction.

Therefore, we are left with the only alternative—namely, b = 3. The proof
is now complete. 0

As an immediate consequence, we have the following genus formula.

COROLLARY 4.2.
2(genus(SLy(p”™))—1) =|SLy(p")|min, s n(1—1/r—1/s—1/t),

where the minimum is taken over all triples (r, s, t) such that SL,(p") can
be generated by an (r, s, t)-triple.

THEOREM 4.3. The genus of SL,(p), p=1, is determined by a (3, 3,d)-
triple, where d is the smallest divisor of p—1or p+1,d+2,3,4,6.

Proof. Case (i) p= *+1 (mod 5). Here d =5, and by Corollary 4.2 it is clear
that the genus of SL,(p) is determined by a (3, 3, 5)-triple.

Case (ii) p # +1 (mod 5). Here d =7, and SL,(p) does not have 5 torsion.
Consider a generating (r, s, £)-triple (A4, B, C) of SL,(p), where3<r<s<t
and 1/3+1/3+1/d<1/r+1/s+1/t. We distinguish the following two sub-
cases.

@) (r,s)=3,4)and4=<t¢. Then2/3<1/3+1/3+1/d<1/3+1/4+1/t,so
that 7 <11. Since SL,(p) does not have 5 torsion, ¢ # 5,10. Thus, for 1 =7,
we have 7 = d, by the definition of d. Thus 1/3+1/4+1/t<1/3+1/3+1/t<
1/3+41/3+41/d, contradicting the choice of (r, s, ) =(3, 4, t). Therefore, t=
4 or 6.

(b) r=4. A similar computation shows that s=4 and f =4 or 5.

It is clear that r < 5. Thus, if (r, s, ¢) beats (3, 3, d) then

(r,s,2)€{(3,4,4),(3,4,6),(4,4,4),(4,4,5)}.

The corresponding triples in PSL,(p) are (3, 2, 2), (3, 2, 3), (2,2, 2), (2,2, 5),
which are all spherical triples. Since p=7, PSL,(p) cannot be generated
by such spherical triples (cf. [{4]). Thus, for any (r, s, t)-triple (A, B, C) of
SL,(p) where (r, s, t) beats (3, 3,d), we have (A4, B, C)# SL,(p). O
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CoRrOLLARY 4.4. If g is the genus of SL,(p), p=17, then g=1 (mod p).

Proof. We have
g—1=|SL,(p)|1/3—-1/d)/2=p(p—1)(p+1)(d—3)/2-3-d.
Sinced|p—1ord|p+1, and p# 2, 3, the conclusion follows at once. [l

ReMARK. Kulkarni [10] shows that if a group G acts on S, then g=1 (mod
N), where N is the integer which measures the cyclic deficiency of the group
G. It turns out that N=1 for SL,(p), and hence the congruence g=1 (mod
N) becomes trivial. Corollary 4.4 says a bit more about genus(SL,(p)).

For completeness, we include the following theorem, the proof of which is
analogous and therefore omitted.

THEOREM 4.5. The genus of SL,(3) is determined by a (3, 3, 4)-triple, and
that of SL,(5) by a (3, 4, 5)-triple.

THEOREM 4.6. The genus of SL,(5") is determined by a (3, 3, d)-triple,
where d is the smallest integer such that:

(i) d|5"—1o0rd|5"+1; and

(ii) d ¥ 5" x1 for all m|n, m+n.

Proof. We note that x2+x—1=(x—2)?, and distinguish the following cases.

Case (i) n=3. We have 7|53+1and 7 4 5+1. By Theorem 3.5, SL,(5%) is
generated by a (3, 3, 7)-triple, and (3, 3, 7) beats (3, 5, 7). Therefore, the ge-
nus of SL,(5°) is determined by a (3, 3, 7)-triple.

Case (ii) n+ 3. Let (A, B, C) be any (3, 5, 7)-triple of SL,(5"), a=trA,
B=trB,and y=trC. Thena=—1, =2, and 'y3+'yz—2'y—1 =0. Let k be
the smallest subfield of Fs~ containing +y. Since y3++v2—2y—1=0 has no
solutions in Fj, it follows that x = F5(y) = Fs3, and hence

(A, B, CYy=SL,(x) = SL,(5%).
Thus, for n+# 3, SL,(5") cannot be generated by any (3, 5, 7)-triple. The con-
clusion now follows, by Lemma 3.6. Ol

THEOREM 4.7. The genus of SL,(7") is determined by a (3,3, d)-triple,
where d is the smallest integer such that:

(i) d|7"—1ord|7"+1; and

(ii) dx7" 1 for all m|n, m#n.

Proof. The same argument is used as in the proof of Theorem 4.6, modulo
the following observations:

Y 4Hyi-2y—1=(y=2)},

and the equation 8?48 —1=0 has no solutions within F,, so that F;(y) =
F,c F,(B) = Fq. O
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THEOREM 4.8. (a) The genus of SL,(p"), 2 <n+ 6, is determined by a
(3,3, d)-triple, where d is the smallest integer such that:

(i) d|p"—1ord|p"+1;

(ii) d¥p™ 1 forall m|n, m+n.

(b) The genus of SL,(p®) is either determined by a (3, 3, d)-triple as above
when d <105, or a (3, 5, 7)-triple when d > 105.

Proof. Let (A, B, C) be any generating (3, 5, 7)-triple of SL,(p"). As be-
fore, (tr A, tr B, tr C) = (-1, 8, v), where 8+ 3 —1=0and v3 +y2—2y—1=
0. By Theorems 4.6 and 4.7, we may assume that p#5or 7. As{A4,B,C)=
SL,(p") and n=2, we cannot have F,(8) = F, = F,(y). Therefore, we are
left with the following cases.

Case (i) F,(B) = F, S F,(y) = Fp3. From F,(B) = F,, we have p= +1 (mod
5). From F,(y) = F,3, we have p3= +1 (mod 7) and p # +1 (mod 7). Thus,
SL,(p?) is generated by a (3, 3, 7)-triple, and (3, 3, 7) beats (3, 5, 7).

Case (ii) Fy(y) = F, € F,(8) = F,2. From F,(y) = F,, we obtain p = *1
(mod 7). From F,(B) = F,2, we obtain p?>= +1 (mod 5) and p # *1 (mod 5).
Thus, SL,(p?) is generated by a (3, 3, 5)-triple, and (3, 3, 5) beats (3, 5, 7).

Case (iii) F,(8)=F)2 and F,(y) = F,s. From F,(83) = Fj,:, we obtain p=
+2 (mod 5). From F,(y) =F),3, we obtain p=+2 and p= +3 (mod 7). In
this case, F,(8, v) = F,¢. Thus, the genus of SL( p®) is either determined by
a (3, 5, 7)-triple or a (3, 3, d)-triple as stated. For n + 6, the genus is deter-
mined by a (3, 3, d)-triple. O

COROLLARY 4.9. If g is the genus of SL,(p™), then g=1 (mod p").

Proof. Same as for Corollary 4.4. ]

5. Automorphism Group of Genus Surfaces

In this section we compute the full group Aut(S,) of automorphisms of a
Riemann surface S,, where g is the genus of SL( p™). From Section 1 we re-
call that the underlying Riemann structure of S, comes from the homeo-
morphism S, = D/T(r, s, t) and the homomorphism T(r,s, ) = SLy(p"),
where the genus g is determined by an (r, s, ¢)-triple of SL,(p"). In order to
compute Aut(S,), we give a basic lemma which exhibits a (3, 3, d )-triple ex-
plicitly and also shows a particular property of any such (3, 3, d)-triple. Here
d is assumed to be nonparabolic; that is, either d|p”—1 (hyperbolic case),
or d|p"+1 (elliptic case). If d satisfies the conditions of Theorem 3.5, then
we have a generating (3, 3, d)-triple of SL,(p").

LemMA 5.1 (elliptic case). - For each divisor d of q+1, there is a (3, 3,d)-
triple (A, B, C) of SL,(q). Moreover, for each such (3, 3, d)-triple, there is
a De GL,(q?) such that det D=—1, D?>=1, and DAD=B; D¢ SL3(q) if
and only if 2d ¥ q+1.
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Proof. Pick an element £ € F> of order d, and let

_ E 0 [« B
C‘(o sq)’ A‘(—ﬂq oﬂ)’

and B = (CA)™!, where « = —B97Y/(1+ &) and B9t = (1 + £+ £H)/(1 + £)2
Clearly, C € SU,(q) is an element of order d. Since trCA=trA=a+a?=
a(l+£)=—1, we have |CA|=|A|=3. Therefore (4, B, C) is a (3, 3, d)-triple
of SU,(q). To find the matrix D, we note that £ is a square in Fq*z, say £2=¢

for some §; € Fj2. Let
D=< o LB )
BUE, —&a/
It is now a routine matter to verify that det D= —1, D?>=1, and DA = BD.
Finally, let o) = £ and B, = £, 8. Then of = £/*'a and B = £{39. There-
fore, D'D= —1if and only if £7%!=—1.

Write ds = g +1 for some integer s. Since £ = —1, we have 21‘7“ =(tf)s=
(—1)°. Therefore, Ef’“ = —1if and only if s is odd, that is, 2d f g+1. Thus,
D'D=—1if and only if 2d J g+1. Since the two groups SL,(g) and SU,(q)
are conjugate within GL,(g?), we may assume that everything takes place
in SL,(q). The proof is now complete. O

REMARK. In [16] it is shown that there exists a Q € GL,(g?) such that

(i) OSLy(@)Q ' =SUy(g)and
(i) OSLi(q)Q '={DeGL,(q*:D'D=+1}.

LeEMMA 5.2 (hyperbolic case). Let § e I} be an element of order d. Let

(& O (e f
A‘(o s—‘)’ B‘(g h)’

and C=(AB)™!, where e= —1/(1+£), h=e¢, fs=eh—1, and fg# —1. For
each divisor d of q—1, there exists a (3, 3,d)-triple (A, B, C) of SLy(q).
Moreover, for each such (3, 3, d)-triple there exists a D e GL,(q?) such that
det D=—1, D*=1, and DAD = B; De SL%(q) if and only if 2d|q—1.

Proof. Pick an element £ € F; or order d. Let e=—1/(1+&) and h = e¢, and
choose any f, g € F, such that fg+# —1 and fg=eh—1. Let

(& O (e f
C"(o s-‘>’ A"<g h)’

and B = (CA)7!. As in the proof of Lemma 5.1, it is easily verified that
(A, B, C) is a (3, 3,d)-triple. Finally, choose &; € Fj2 such that £2=¢, and let

p=( % J8)

—g/E, —ek

Then det D=—1, D*=1, and DAD=B; £ is a square in F, if and only if
2d|q—1. Thus, &, € F,; that is, De SL3(q) if and only if 2d|g—1. Ol
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The following is an immediate consequence of the preceding lemmas.

COROLLARY 5.3. Let G=SL,(q), H={(D)< GLy(q?), and G = GH. Then:

(i) G is a subgroup of GL,(g?);
(ii) [G: G]=2;
(iii) G =(D, AY, where D*>= A3 =(DA)*?=1; that is, G is generated by a
(2, 3,2d)-triple; and
(iv) G=G:Z,, a semidirect product.

In what follows, we will continue with the use of the preceding notation.

THEOREM 5.4. Suppose S, is a Riemann surface of least genus on which
SL,(q) acts conformally and eﬁ”q_ctively. If g is determined by a (3, 3, d)-
triple of SL,(q), then Aut(S,)=G.

Proof. We first show that there is a commutative diagram with short exact
TrOWS: -

A->T12,3,2d) > G

I I 1

A—- T@3,3,d) - G,

where the vertical homomorphisms are either the identity or inclusions, and
G=SL,(q).

Let T(2,3,2d)={t,y|t?=y3=(ty)*?=1), and let x=tyt=1¢"'yt. Then
|x|=3 and xy = (¢yt)t = (£y)?, so that |[xy|=d. Thus T(3,3,d) ={x, y| x> =
y3 = (xy)?=1). The homomorphism § is determined by (¢) =D and §(y) =
A; 0 is well-defined, since D?= 43 = (DA)*?=1. We note that

6(x)=0(tyt)=0(+)8(y)0(¢t) = DAD=B.

Hence, § induces the natural homomorphism 7'(3, 3, d) % G. Clearly, both §
and @ are torsion-preserving, so that the respective kernels are torsion-free
subgroups of the corresponding groups. We claim that ker § = ker 6. Let A=
ker 6. Since @ is a restriction of 8, we have A< ker. Let We T(3, 3, d) and
suppose that §(Wt)=1.Then 1 =8(Wt) =0(W)6(¢t) = wD, where w = (W) =
0(W)e G. Thus D=w~le G, a contradiction; therefore, W¢¢ ker . Since
T(2,3,2d)=T(3,3,d)UT(3,3,d)t, it follows that ker § = ker § = A. There-
fore, we have the commutative diagram with exact rows:

A—TQ2,3,2d) - G

1 1 I

A - T@3,3,d) - G.

Let g = genus(G). Since g is determined by a (3, 3, d)-triple, the short ex-
act sequence A— 7(3,3,d) - G implies thait A = m(S,, *). The short exact
sequence A —» T(2, 3,2d) — G implies that G is isomorphic to a subgroup of
Aut(S,). From the theory of covering spaces, we know that Aut(S,) = N/A,
where N is the normalizer of A in PSL,(R). Since A is a discrete subgroup
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of PSL,(R), so is its normalizer [12]. Because A <I~T(2, 3,2d), we see that
T(2,3,2d) < N. Therefore, denoting 7(2, 3, 2d) by T, we have the following
commutative diagram:

N — Aut(S,)
t 1

T K=G
(I

A - 1.

Since Aut(S,) is a finite group, it follows that [N: T'(2, 3, 2d)] is finite. By
[6, Thm. 3B], T(2, 3, 2d) is finitely maximal; that is, 7(2, 3, 2d) is not a sub-
group of finite index of any Fuchsian subgroup of PSL,(R). Therefore, we
must have N =T(2, 3,2d), and hence Aut(S,) = N/A=T(2,3,2d)/A= G,
as desired. ]

COROLLARY 5.5.

(i) (elliptic case) Aut(S,)=SL3(q) if and only if 2d ¥ q+1.
(ii) (hyperbolic case) Aut(S,)=SL5(q) if and only if 2d|q—1.

Proof. These are immediate consequences of Lemmas 5.1 and 5.2. O

For the sake of cdmpleteness, we include the following theorem. The proof
is entirely analogous to that of Theorem 5.4, modulo these facts: The tri-
angle groups 7°(3, 4, 5) and 7'(3, 5, 7) are finitely maximal in PSL,(R).

THEOREM 5.6.

(i) Aut(S,) =SL,(5), where g = genus(SL,(5)).
(ii) Let g=genus(SL,(p®). If g is determined by a (3, 5, 7)-triple then
Aut(S,) = SLy(p°).
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