On the Dirichlet Problem for the
Complex Monge-Ampere Operator

NORMAN LEVENBERG & MAsSAMI OKADA

1. Introduction

Let D be a bounded domain in C”. Given fe C(D) with f=0 and given
¢ € C(dD), we study the nonlinear Dirichlet problem:

u is plurisubharmonic (psh) in D, i.e., u e P(D),
(ddu)"=f"dVin D, and 1.1)
u=d¢ ondD

where (dd€(-))" is the complex Monge-Ampeére operator studied extensively
by Bedford and Taylor. For D strictly pseudoconvex, existence and unique-
ness of the solution # were shown in [BT1]. The same result holds more gen-
erally for the class of B-regular domains introduced by Sibony [Si] (for the
definition of B-regular, see Section 2). For further results when fe L%(D)
we refer the reader to [CP].

In Section 2 we outline an iterative balayage-type procedure for construct-
ing u which uses only classical potential theory in R?". The idea is motivated
by the fact that for u in P(D)NC?(D),

2 1/n
[det( O°u )} =Linf(A,u:ae A,
aZ,'aZj n

where
A={aeGL(n,C): aispositive definite and Hermitian with deta=1} (1.2)

and
Aau=2a,-jaz—u=a—Laplacian of u. (1.3)
az,- 0z j -
Our construction may be considered as a potential-theoretic interpretation
of Gaveau’s approach to (1.1) in [G1]. For a different approach to the homo-
geneous equation (f=0), see Poletsky [Po] and Bedford [Be]. We should
also call attention to Bremermann’s work [Br].
In Section 3 we study (1.1) for the bidisc U in C2. This domain is not B-
regular. However, the homogeneous Monge-Ampére equation for U was
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previously studied by Sadullaev [Sa]. For the general case, we use a modifi-
cation of Gaveau’s Kdhler control method (cf. [G1]) to construct a plurisub-
harmonic u satisfying (1.1) for certain allowable ¢ in C(dU). This technique
enables us to solve (1.1) for certain unbounded f in C(U)NLY(U).

This research was conducted during the spring/summer of 1991 while the
authors were visiting Indiana University. We would like to thank the depart-
ment of mathematics for its hospitality. Special thanks are due to Eric Bed-
ford for many valuable conversations.

2. A Potential-Theoretic Approach to (1.1)

We first introduce some notation which will be used throughout. Given a in
A and a bounded domain © in C”, we let gd(-, z’) =0 be the Green function
with respect to A,=2 a,-j(az/az,-azj) for Q with pole at z’ in Q, and we let
hi(-, £) be the Poisson kernel for a2 where £ € 9Q2. Thus, given fe C(Q) with
f=0and given ¢ € C(dQ2), we have that

Un(z) = —Sﬂ g&(z,2') f(z") V(") +§ hé(z, £)$(£) do(®)

an
=(Ga.f)(z) +(Hi)(2) (2.1)
is the solution of the a-Dirichlet problem
AU,=f inQ and U,=¢ ondQl
if 0Q is regular for the a-Dirichlet problem.

REMARK 2.1. We canreplace f by a positive Borel measure x on {2 such that
G8u(z) = o g8(z,2’) du(z’) converges for z in Q. Then A,U,=p as mea-
sures. If ¢ is only required to be upper semicontinuous (usc) on 32, we can
choose a sequence {¢;} in C(9Q) with ¢; ¢ on d€2. Then Hio; N Hie¢ and
lim,_,; Uy(z) = ¢(£) for £ Q.

For a = I = n X n identity matrix, we write A,= A, g§ = gq, and so on. Then
U(z) =(Gq f)(z)+ (Hq¢)(z) is the solution of the usual Dirichlet problem

AU=f inQ and U=¢ ondQ (2.2)
if 0Q is regular. Recall that if d =3+ 0 and d€=i(0 —3) on C", then dd“u=
2i3du. Thus, if u e C*(Q),

2
(dd°w)"=ddun---nddu=4"n! det[ u
1\ J

aZ,'aZj

Jav.

n times
We have the following relationships between the a-Laplacian operators
A, for a in A and (dd“u)” for u in P(Q)NC*(Q).

ProposiTIiON 2.2 [Gl]. Letu eP(Q) NC?(Q) and let ac A. Then

32u \I'"" 1 )
t <—A Q 2.3
[de <az,-az,-)} p Bt @3)
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and
a2u \"" . (1
[det(32f32j>] = 1nf{;Aau: a EA} . (2.4)
Proof. For each positive semidefinite Hermitian matrix b,
inf{trace(ab): a € A} = n(det b)/" (2.5)
[G1, Lemma 1]. Apply this to b= (3%u/3z,9%). O

To relate our candidate for a solution to (1.1) with the upper envelopes con-
structed in [BT1], we need to modify Proposition 2.2 for locally bounded wu.

COROLLARY 2.3. Let ue P(Q)NL5(Q) and let 3*u/0z;0z; = u;;dV+ds;;
be the Lebesgue decomposition of the Borel measure azu/az,-az,-. Define

d(u)=c,gdV where c,=4n)"" and g= (detu;;)'". (2.6)
Then
(i) g=inf{(1/n)X a;ju;;: a € A}, and
(ii) c,g=<f, where (dd‘u)" = f"dV+ds is the Lebesgue decomposition
of (ddu)".

Proof. This is essentially a restatement of Theorem 5.8 in [BT1]. Property
(i) follows from (2.5). L]

We mention the following useful criterion for determining whether a locally
integrable function is, up to regularization, plurisubharmonic.

PROPOSITION 2.4. Let ue L}, .(Q) and suppose that A,u=0 for each a in
A; that is, A,u is a positive measure. Then u*(z) = limg_, , u({) is plurisub-
harmonic in Q.

With these preliminaries, we are ready to construct a solution « for (1.1).
For now, we assume only that D is a bounded domain in C” which is regular
for the usual Dirichlet problem (2.2), where fe C(D) with f=0 and ¢ €
C(dD) are given. Let

uo(z) = (Gp f)(2)+ (Hp¢)(z)

be the solution to (2.2) with @ = D. This will be our Oth approximation to
a solution u of (1.1). Clearly uy = u if u exists with equality precisely when u
is pluriharmonic in D. Note that f = 0 in this (trivial!) case.

Given z in D, we define

uy(z) =inf((G§ f)(2) + (Hjup)(z): a€ A, B=B(z,r) C D}

= ing[(Gﬁf )(2) + (Hgug)(2)],

where B(z,r)={£eC": |£—z|<r}. This will be our first approximation to
u. Note the following properties.
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(1) u; is uscin D. For since f e C(D), each function (G& f)(z) + (Hfuy)(z)
is continuous in B = B(z, r). Fixing z in D and given € > 0, we can find a and
B with u,(z) + €= (G§ f)(z) + (Hfuy)(z). By the continuity of f and u,, for
z’ in D sufficiently close to z we can translate B= B(z,r) to B’=B(z’,r) and
conclude that

(G f)(z")+ (Hg up)(z') <(Gp.f)(2)+ (Hzup)(z) +e.

By the definition of #;(z’) we thus obtain u,(z’) <u;(z)+2e. This implies
that u, is usc. Note that we really only required u, to be usc in the proof.

(2) u1(z) = uy(z) for all z in D. For if we take a=1 and z in D, by the
continuity of f and the harmonicity of #, we have

lirg}r(GB(z,r)f)(Z)=0 and  (Hp, Uo)(2) = up(z).

Hence
u(z) < lifofi[(GB(z, nINZ) + (Hpy, 1y o) (2)] = to(2).

(3) If uy(z) =inf, g[(GE.f)(z)+ (Hgu,)(z)], then u; € P(D). This follows
from the next proposition.

PROPOSITION 2.5. Let w be usc in D. If there is an f in L} .(D) with f=0
in D and w(z) =inf, gl(Gg f)(z) +(HEw)(2)], then w € P(D). Furthermore,
Joreachain A, X a;;w;;= f a.e. in D.

Proof. To show we P(D), by Proposition 2.4 it suffices to show that for
each a in A we have A,w=0 in D. Since f=0, for each pair ¢ and B we
have Gg f<0in B. Thus
w(z) < inf(Hgw)(z) < (Hgw)(2), (2.7)
a,B

so that w is a-subharmonic in B. Since A,w =0 in B for each ball B= B(z,r)
inD, A,w=0in D.

For the second part of the proposition we need a lemma about Green
potentials of Borel measures. For p a Borel measure in D, we let pup denote
the restriction of p to BC D.

LEMMA 2.6. Let p be a Borel measure in D and let p= gdV +vg be the
Lebesgue decomposition of n. If there exists an a in A with Ggpg<0inB
Jor each ball B=B(z,r)CD, then g=0 a.e. in D.

Proof. This is Theorem 5 in [G1]. O

We now finish with the proof of Proposition 2.5. For each @ in A and B=
B(z,r)CD,
w(z) <(GEf)(z)+ (HEw)(z) forzinB. (2.8)

On the other hand, by the Riesz decomposition theorem
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w(z) =(GE(A ,wW))(z)+ (HEw)(z) forzinB.

Thus G§(A,w) < Gg f in B, so that X a;;w;;= f a.e. in D by Lemma 2.6.

1
Thus u; is a better approximation to the solution # of (1.1) than is u,. We’ll
see in what follows that if u, satisfies (3) then (ddu))" = ((c,,/n) f)"dV =
(f)*dV in D. If not, we proceed to “push down” u,. Since u, is usc in D, by
Remark 2.1 we can define

Uy(z) = in;[(Ggf)(Z)+(ngl)(Z)]-

In analogy with properties (1)-(3) of u;, we have the following.

(I’) uy is usc in D. As remarked in the proof of (1), only the upper semi-
continuity of #y was used to obtain the upper semicontinuity of u;.

(2") u,(z) <uy(z) for all z in D. For if we take a=1 and z in D, by
the upper semicontinuity of #, we have lim, vo+(Hp(z, ryt41)(2) < uy(z). Also,
Gpz,rf =0, so that uy(z) < lim, o+(Hp(, » #1)(2) = u1(2).

(3) If uy(z)=inf, s[(GEf)(2)+(Hfu)(2)], then u, € P(D). This fol-
lows from Proposition 2.5.

Continuing this process recursively, having constructed u,,_; we define

un(z) =inf[(G5 f)(z) + (Hgu,_1)(2)]. (2.9)
a,B
The functions {u,} are usc in D and form a decreasing sequence. Since D
is regular for the standard Dirichlet problem,

lim uy(z) =@ (&) foralléindD
z—¢
and L
lim u,(z) <¢(&) foralléindD, n=0,1,2,.... (2.10)

z—¢

We are now ready for the main result of this section.

THEOREM 2.7. Let D be a bounded domain in C" which is regular for the
standard Dirichlet problem. Let fe C(DYNL™(D) with f=0, and let ¢ €
C(aD). With {u,} defined in (2.9), let

v(z)= lim u,(z) forallzinD. (2.11)
n— oo
Then
(i) ve P(D)NLi,(D), and for each a in A, 3 a;jv;;= f a.e. in D.
(i) v(z)=supfw(z): we P(D)N Liy(D), ®(w)=(c,/n)fdV= fdv and
lim,_, . w(z) < ¢(§) for all § in D).

Proof. First note that v is usc in D, since each u, is usc in D and the se-
quence {u,} is decreasing. Thus, to prove (i) it suffices, by Proposition 2.5,
to show

v(z) =inf[(GE ) (z)+ (Hfv)(z)] forall zin D. (2.12)
a,B
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To prove (2.12), note that for each @ in A and each ball B= B(z,r) C D,
v(z) <(Gf)(2)+(Hfu,)(z) for n=0,1,2,...
by (2.9). By the monotone convergence theorem,

lim (Hfu,)(z)=(Hv)(z) forzin B.

H— 400
Hence

v(z) =(GE f)(z) + (HEv)(z)
so that
v(z) < in; [(GE ) (z)+ (HEv)(2)].

For the reverse inequality, note that for each n,

u,(z) = inli; (GES)(z)+ (Hpu,_1)(2)]
= in; [(GES)(2)+ (HEv)(2)]

by (2.9) and the fact that v <u,,_;. Thus
v(z)= lim u,(z) = inf[(G4f)(z) + (HEv)(2)].
a,B

n— 4o
Note that fe C(D)NL™(D) implies that v € L{; (D).
To prove (ii), following Bedford and Taylor, we let
®(¢, f)={weP(D)NLL.(D): ®(w)= fdV and
Ii_mz_,g w(z)=<¢({)onaD}. (2.13)
We show that for each w in (¢, f), w<v in D. Fix we ®(¢, f). By Corol-
lary 2.3(i), since A,w = a;;w;; as measures, ®(w) > fdV implies A,w=f
as measures for each @ in A. Thus for each ball B= B(z,r) C D,
G f=Gj(A,w) inB.

Hence

w=Ga(A,w)+Hgw=<Ggf+Hgw inB. (2.14)

Clearly w <uy in D, since lim,_,; w(z) < uy(£) for each £ in aD and u, is
harmonic in D. Thus
w=Gjf+Hju, in B.

This inequality holds for each @ in A and each ball B= B(z,r) C D. Hence
w(z) <inf[(G f)(z) + (HFug)(z)]=u(z) forall zin D.
a,B

Using (2.14) and w < u,;, we obtain
w=<Gjf+Hgu, in B,

which yields w < u, in D. By induction, it follows that w(z) < u,(z) for n=
1,2,... and for all z in D. Hence w(z) < v(z) in D. Since w was an arbitrary
element of ®(¢, f),
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sup{w(z): we®(¢, f)}<v(z) forall zinD.

On the other hand, since X a;;v;;= f a.e., from Corollary 2.3(i) we have
®(v) = fdV. From (2.10),

limv(z) <¢(¢) forall{inaD, (2.15)
z—¢
so that v e ®(¢, f) and equality holds in (ii). ]

REMARK. The theorem is true for general bounded domains. We only re-
quire our initial function 1, to be continuous and superharmonic with re-
spect to A in D, and to satisfy lim,_, ; uo(z) < ¢(£) for all £ in 4D.

We next show that our v coincides with an upper envelope defined using
the complex Monge-Ampeére operator. Let

F(p, f)={we P(D)NLS.(D): (dd*w)" = f"dV in D and
lim,_; w(z) < ¢(£) for all £ in 4D}.

THEOREM 2.8. Let D be a bounded pseudoconvex domain in C". Let f €
C(D)NLZ(D) with f=0, and let $ € C(dD). Set

v(z) = sup{w(z): we B(¢, 1)}

as in Theorem 2.7, and let

U(z) = sup(w(z): w € 5(o, /).

Then v="U in D. Furthermore, v e P(D)N Li,.(D) and v satisfies (dd ‘v)y'=
f"dVin D, ®(v)=fdV in D, and lim__,; v(z) < ¢(£) for all £ in dD.

Proof. Write D=\ D,,, D,,C D,,,,, where the D,, are strictly pseudo-
convex domains with C? boundary. Using the Dirichlet data /" = f|, on
D,, and ¢'"™ = (Hp¢) lap,,» the restriction to dD,, of the harmonic extension
of ¢ to D, we denote the corresponding envelope functions in D,, by v¢™
and U™, By results of [BTI1], v\ =U" in D,,. Moreover, by Theorem
6.2 of [BT1], v'™ e P(D,,) NC(D,,) and v™ satisfies

(dd v = (fY"NnqV = f"dV in D,,,
®(v")=f"gV=fdV inD,, and
v =¢\" = H ¢ ondD,,.
1) v = v"*D in D,,. Since v""*Y < Hp¢ in Dy,iq, " <6 on
aD,,. Also (ddv'™)" = (dd v\ V)" = f*dV in D,,, so that (1) follows by

the domination principle [BT2, Cor. 4.5].
Thus, for each z in D, z e D,, for m=m(z) and

lim v™(z)= inf v"(z)=ii(z)
n— +4oo m=m(z)
d~ef1nes a function i in P(D)NLS,.(D). This function satisfies (ddi1)” =
f"dV and ®(it) = fdV in D, since these relations hold on any ball B in
D. Since ¢ =(Hp)|ap,, we clearly have lim,_,; ii(z) < ¢(£) for all £ in
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dD. Thus it remains to show that # = v = U. Note that &, v, and U are ele-
ments of L}.(D) by the assumptions that f € L*(D) and D is bounded. For
example, max;¢,plo(€)|=U(z) > A|z|>*—B for sufficiently large constants
A and B.

(2) i<v and #<U in D. This follows from the previous paragraph,
which shows that it € B(¢, f) NF(, f).

(3) #=v in D. Since D, CD, Gp " =Gpf on D,,. By definition,
"™ = Hp¢ on D,,. Thus, for each m, u(’") > uyin D,,. Using the definitions
of u{™ and u, and the fact that D,, C D, we have u('"’ > u, in D,,. By induc-
tion, u{™ =u, in D,, for n=0,1,2,.... Hence v(’")> v in D,, for each m,
and we obtain (3). _

(4) #1=U in D. Let weF(¢, f). We show that for each m, w=<v™ in
D,,, which proves (4). Since weF(¢, f), hmz_,fw(z) = ¢(§) on dD. Thus
w= Hp¢ in D and hence in D,,. Furthermore, (dd°w)"= f"dV in D and
hence in D,,. Since v™ satisfies v(’") = Hpé on 8D, and (ddv"™)" = f"dv
on D,,, by the domination principle of Bedford and Taylor, w < v'™ in D,,.

O
Thus our potential-theoretic approach (v) to the Dirichlet problem (1.1) co-
incides with the Perron-Bremermann upper envelope (U). The stumbling
block to solvability of (1.1) is the boundary behavior of U. For a bounded
domain D in C”, we get solvability if the domain is B-regular. Recall that a
bounded domain D is hAyperconvex if D admits a bounded psh exhaustion
function—that is, if there exists a function p in P(D) with D ={z: p(z) < 0}
and D.={zeD:p(z)<c}CCD forallc<O.

DEFINITION 2.9. Let D be a bounded hyperconvex domain. D is B-regular
if for each £ in D there exists Y € P(D)NC(D) with Y(£)=0 and ¥ <0
on D —{£}. Equivalently, for each ¢ in C(dD) there exists u € P(D)NC(D)
with u = ¢ on aD (cf. [Si, Thm. 2.3]).

COROLLARY 2.10. Let D be a B—regul_c_zr domain with smooth~boundary.
Then v =U satisfies (1.1) for a given fe C(D)NL"(D), with f =0 and a
given ¢ € C(aD).

Proof. 1t suffices to show that U= ¢ on aD, that is, that lim,_,; U(z) exists

and equals ¢(£) for all £ in aD. From Theorem 2.4 in [Si], given 0< 5 <1,

there is a defining function r of D such that p=—(—r)" is a bounded psh
exhaustion function which is strictly psh in D and satisfies

3%p

p> -

aziazj

for all z in D and all ¢ in C” for some m > 0. Given f and ¢, from Definition

2.9 we can find we P(D)NC(D) with w=¢ on dD. Then, for sufficiently
large C > 0, the function

(Z)t,'i;' = m|l‘|2

w=w+Cp eF(¢, f).
For £ in dD we have
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¢ (£) = lim w(z) < lim U(z) < ¢ (£),

2% z—
so that lim,_,; U(z) exists and equals ¢(£). 0

3. Dirichlet Problem for the Bidisc

Let U={(z;, z,) € C?:|z;|<1and |z,| <1} be the open unit bidisc in C?, and
let U denote the topological boundary of U. Let

T={(z1,22): |z1| =|z2| =1

be the distinguished boundary of U. We are interested in Dirichlet-type prob-
Iems of the form (1.1) for D =U. Following Bremermann [Br], it is perhaps
more natural to consider ¢ specified only on 7. We first discuss some results
in this direction. Given f € C(U) with f =0 and given ¢ € C(T), we consider
the Bremermann Dirichlet problem

(ddu)®>=f2dV inU and u=¢ onT. (3.1)

Problem (3.1) need not admit unique solutions. For example, if we let f=0
and ¢ =1 then u(z;, 2,) =|z1|*/|z,|** satisfies (3.1) for any nonnegative inte-
gers j and k. However, u(z,, 2,) =1 (j = k= 0) clearly gives the largest solu-
tion. Gaveau [G2] has shown that under certain hypotheses on f, such as f
having compact support in U, there exists a largest solution #,, to (3.1). Thus
if u is any other solution to (3.1), u <u,,. This solution u,, is harmonic on
each complex disc in dU. We will outline Gaveau’s method shortly.

In general, if a solution u to (3.1) is continuous in U, then u is subhar-
monic on each disc in dU. For example, if |z9|=1, the subharmonic func-
tions u(z;, rz3) = v,(z;) converge uniformly as r — 1 to u(z;, z3) = v,(z;) on
|z1| <1. Thus, if we try to specify boundary values ¢ on all of dU, a neces-
sary condition for the existence of a solution # to

(dd‘u)®>=f2dV inU and wu=¢ ondU, (3.2)

for a given f in C(U) with f=0 and a given ¢ in C(dU), is that ¢ be sub-
harmonic on eacl} complex disc in dU. In the notation of Sadullaev [Sa], we
require that ¢ = ¢, where

$(z) = sup{y(z): ¥ € C(dU), y < ¢, and
¥ is subharmonic on each disc in dU}. (3.3)
In [Sa], Sadullaev shows that if ¢ = ¢ and f =0 (the homogeneous case),
then a solution # to (3.2) exists and is unique. In the previous example, if

S=0and ¢ =1o0n dU, then clearly ¥ =1 is a solution to (3.2). We generalize
Sadullaev’s result to the nonhomogeneous case.

THEOREM 3.1. Let f e C(U) satisfy

c

If(ZIsZZ)IS (1—|Zl|2)‘6(1—[22]2)‘8

3.4
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Jor (z1,2,) in U and for constants c>0 and 0<fp<1. Let ¢ = be C(oU).
Then there exists a unique solution u to (3.2) and u € P(UYNC(U).

ReMARK 3.2. Condition (3.4) implies that we can solve (3.2) even if f is
mildly unbounded. Note that if f satisfies (3.4) then fe L(U).

Before we prove the theorem, we give a brief sketch of Gaveau’s proba-
bilistic approach to (1.1) and the modifications necessary to get a solution
to (3.1). Let C(W, V) denote the continuous V-valued functions on W. We
consider the space H of non-anticipating Kdhler controls ¢ = (o;;) where
o =o(s, w) is a positive Hermitian matrix-valued function on C” for each
(s, w) eR*xC(R*, C"), det(oo*)=1, and o(-,w) is continuous for each
w in C(R", C") = Q. We refer the reader to [Du] or [Kr] for definitions of
any unfamiliar terms (e.g., non-anticipating). These will not be essential for
understanding the ideas involved.

If we let b= (b, ..., b,) denote the standard Brownian motion on C”, for
each o in H we can consider the stochastic process

X;I,Z(W) — (Xt(o, Z)], ey Xt(a, Z)n)

given by the stochastic integrals
t
X o= zj+S oi(s, w)dbi(s), j=1,...,n. (3.5)
0 k

We will omit the subscript j in using vector notation. Given a bounded do-
main D in C”, fin C(D) with f=0, and ¢ in C(dD), we set

Wy (2) EE[—S X3 ds+¢(X;"z] for zin D, (3.6)
0 .
where 7= 7,p is the first hitting time of X% on dD; we consider the lower
envelope

u(z)=inf{w,(z): c e H}. (3.7)

In [G1], Gaveau shows this u satisfies (1.1) for f when D is strictly pseudo-
convex by showing that:

(1) u is continuous in D;

(2) ueP(D); and _ _

(3) u(z) =Uc(z) =sup{w(z): we B9, f)}, where B.(¢, ) =
&(¢, f)NC(D).

The proof of continuity of u in D essentially follows from the fact that
each w,(z) is continuous with the same modulus of continuity. This follows
from properties of b and continuity of o(-, w) for each w in Q. Continuity
up to 8D requires the existence of a strictly psh defining function in a neigh-
borhood of D. For our purposes, continuity up to U of our proposed solu-
tion # in Theorem 3.1 is most difficult; the rest will follow in a fashion simi-
lar to that of Gaveau.
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Gaveau’s approach to (3.1) was to define a certain class of stochastic pro-
cesses X7 = (X, X/2) in U all starting at the origin; that is, X7 =X/ in
(3.5). Here we define

We(2) EE[—S;(f°gz)(X;)|Jz(X:)| ds+ (¢°gz)(XT°)] ; (3.8)

where

£2(5) = (g, (8, £0,(52)) E( ath oth >

1+218 " 1+ 2,6
Note g,(0) =z. Here 7 = 7,y is the first hitting time of X/ at dU and

1—|’4'1|2 )( 1—|Z2|2 )
J =
| Z(E)' (|1+21£1]2 |1+22£2|2

is the Jacobian determinant of g,(£). Then

u,(z)=inf{w,(z): 0 € H, 1=1717} (3.9)

gives the largest solution to (3.1). Note that the automorphism group Aut(U)
of the bidisc is transitive, so for each ¢ in H there exists ¢ in H with w, = w;.

Thus (3.9) is essentially equivalent to (3.7) except for the fact that we re-
quire 7 = 74 in (3.9). This gives an idea why (3.9) yields the /argest solution
to (3.1): given ¢ € C(T), there exist many continuous extensions é in C(3U)
with ¢ =¢ on T and ¢ = ¢. Gaveau’s u,, in (3.9) corresponds to ¢, which is
harmonic on each disc in dU.

In Theorem 3.1, we modify (3.9). Our solution # will be given by

u(zy=inf{w,(z): 0 e H}, (3.10)

so that we allow X/ to exit U through any point in dU. We show that « in
(3.10) satisfies (3.2).

For the convenience of the reader, and also to indicate the relationship
between the probabilistic approach in this section and the potential-theoretic
discussion in Section 2, we sketch the proofs that # defined in (3.7) is psh in
D and (dd u)"= f"dV in D. The proofs for u in (3.10) all require a minor
modification.

LeMMA 3.3 (Principle of Bellman). Lef w, and u be as in (3.6) and (3.7).
Suppose that u e C(D). Let D’ be a subdomain of D. Then, for each t >0,

u(z) = inf E[——&Mtf(Xs"’z) ds+u(X,",;§] (3.1
ceH 0

Jor z in D', where 1= 13p and At =min(7, t).

Assuming the lemma, which we will not prove here, the plurisubharmonicity
of u is established as follows. Fix D’= B and let f - +o0in (3.11). Since f =0
and 7Af — 7, we obtain

u(z) < inf E[u(X2*)] for zin B.

73R
ceH
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If we take o0* = @, a constant matrix in A, then this is essentially the state-
ment that A,u=0 in B, that is, u is a-subharmonic (cf. (2.7) in Proposi-
tion 2.5). Since this is true for each @ in 4 and B in D, by Proposition 2.4
u € P(D). The proof that (ddu)” = f" dV also follows from the lemma. In-
deed, again fixing D’ = B, fixing o6*=a in A, and letting ¢ — +o0, we obtain

73B

u(z) SE[—S:Bf(XS"’Z) ds+u(X>* ]

=(G2f)(z)+ (HBu)(z) forzinB

since g0* = a. Thus X a;;u;;= f a.e. by Proposition 2.5 (cf.~ (2.8)). Since u e
P(D)YNC(D), it follows from Corollary 2.3 that ®(u) = fdV. Again from
Corollary 2.3(ii), (dd‘u)" = f"dV in D.

REMARK 3.4. As mentioned in [G1], the continuity of # in D is not essen-
tial in Lemma 3.3. Indeed, the upper semicontinuity of # and the regularity
at D, in the sense that lim,_,; u(z) = ¢(£) for each £ in 4D, are all that is re-
quired for the conclusion. This fact will be used in the proof of Theorem 3.1.

To show that (dd“u)" = f"dV in D, we prove more generally that the upper
envelopes v(z) = sup{w(z): w e B(¢, f)} and U(z) =sup{w(z): w eF (¢, )}
agree with u#(z) when D is pseudoconvex and bounded. We first state a ver-
sion of 1t6’s formula which we need.

LeEmMMA 3.5 (It6’s formula in C"). Let X% be a stochastic process asso-
ciated with a non-anticipating Kéihler control ¢ = (0;;), and let a= oo*. Let
g€ CZ(C", R). Then for each t >0,
n t n ag t n ag _
X, )=g(2)+ X2 [S ) Uij'é‘_(X;'z) db;(s) +S 2 0 a—_(Xso’z) dbi(S)]
i=11Y0 j=1 Zj 0j=1 Zj
¢ a2g
.S (X972 ds.
+ go E @i 6z,-32,- ( * ) ds

If we set = 7= 7,p and take expectations, we obtain

g(z)=E[—STEQ--a—2g—(X“’Z) dS+g(X°’z)] (3.12)
0 v aZiaZj s 4 ) )

THEOREM 3.6. Let D be a bounded pseudoconvex domain in C". Let fe
C(D)NL™(D) with f=0, and let ¢ € C(dD). Let u(z)=inf{w,(z):c € H}
be defined as in (3.7), and let v(z)=sup{w(z): we®(¢, f)} and U(z)=
sup{w(z): weF (¢, f)}. Then v(z) =U(z) =u(z) for all z in D. In particu-
lar, u(z) satisfies (ddu)" = f"dV in D and lim, _,; u(z) < ¢ (&) for each § in
oD.

Proof. Asinthe proof of Theorem 2.8, we write D = U D,,, with D,,, C D,,;,
and each D,, being a strictly pseudoconvex domain with C? boundary. Let
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™ U™ and u" be the envelope functions in D,, corresponding to the
Dirichlet data /" = f|, and ¢ = (Hp¢)|sp, . From [BTI] and [G1] it
follows that v =U™ =4 in D,,, u" e P(D,,)NC(D,,), (dd u'™)" =
f"dv in D,,, ®u'™) = fdV, and u™ = ¢ = H,¢ on dD,,. Again, let
f=Hm,,_, . u™. Clearly u <u'™ in D,, so that u < i@ in D. Thus it suffices
to prove that i <u in D.

Note that ®(u"™) = fdV in D,,, ®(ii) = fdV in D, and, if x, is a standard
smoothing kernel,

D(ii*x )= P(a)*x.=fdV*x,
{BT1, Thm. 5.7].

We introduce the temporary notation ®(w) = ®,, dV; thus Piay, = f*x..
Fix a control ¢ and let a = o0* Given e and x, we choose m and D,, so that
il,=i1%x, is defined in D,,. We can apply (3.12) to the process X% and
the function g =i, for z in D,, on the domain D,,, so that 7=17,p =7,
to obtain

Tm 0%
ii(z)=E —S i (X %) ds+ il (X2 F
i1(z) . Ea’faz,.azj( s ) ds+ (X7 )]

<E —S "L, (X0 ds+ aE(X:'Z)]
o ©n "

by Corollary 2.3(i). Since ¢; = F*xe

i.(z) SE[—S m(f* Xe)(X{"F) dS+ﬂe(Xf,;z)}-
0
Since f*x,— f and iI, » @ in D, letting ¢! 0 yields

u(z) sEl—S mf(Xs‘”z) ds+ ﬁ(X,‘f;Z)J for each ¢ in H. (3.13)
0
Thus

i1(z) < inf E[—S mf(XS"'z) ds+ ii(X,’f;z)] for zin D,,.
ceH 0
We want to let m T +o0 in the above inequality. To be precise, fix z in D.
Then z € D,, for m=m(z). Fix one such domain D,,. Given e >0, choose
o, =o0,(€, 2) in H so that

u(z)=inf{w,(z): c e H} = w, (z) —e.
In other words,

T

u(Z)+EZE{'—S J(XJr%) ds+¢(XT"1'z)1, (3.14)

0
where 7= 7;p. From (3.13), for this choice of ay,

i(z) sE[—S;m F(Xor?) ds+ a(X;j;Z)] (3.13)

for m=m(z).
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Now for each path w in C(R*, C"), by continuity of w, 7,, = 7,,(w) = 7=
7(w) and X7""%(w) — X7 *(w) as m — +oo. Letting m — +oo in (3.13"),

d(z)=< lim E[—Srmf(X;“Z) dS+ﬁ(X,‘f;’z)]

m— +oo 0

=E _STf(X;’hz)ds+ lim E[iZ(X;j;’z)]]

0 m-— +4oo

<E ——S(:f(X;’l’z)ds+E[ lim a(X;j;Z)H.

n— +oo

In the last inequality we have used Fatou’s lemma. This is valid because
by subtracting a constant, we may assume # < 0. Since X bt X edD as
m— +oo, and we know from Theorem 2.8 that lim, _,, #i(z) < ¢ (&) for all £
in D, we see from (3.14) that

a(z)=kE —S;f(Xs""z) dS] +E[¢(XT°"")]}

=F —S(:f(Xs"l’z) ds+qS(X;’1'z)] <u(z)+te.

Since € > 0 was arbitrary, #(z) < u(z). O

REMARK 3.7. In Theorem 3.6, as well as in Theorem 2.8, we required our
Dirichlet data f to be in L*(D). This was only used to ensure that the enve-
lopes U, v, and i@ belonged to L (D). If we know a priori that ®(¢, f)
or F(¢, f) is nonempty, then: U, v, and i belong to L. (D); U=v=ii=u
in D with (ddu)" = f"dv; and hT-nz_,E u(z) < ¢(§¢) for each £ in dD; so that
the conclusions of the theorems are still valid. This fact will also be used in
the proof of Theorem 3.1.

Proof of Theorem 3.1. We can write U= U U,,,, where U,, C U, and each
U,, is strictly pseudoconvex. Then

u(z)= lim [ in E[—S;'"<fogz)(Xs“)lJz(Xs°)| ds+<¢ogz)(X;’,,,>H

m-— 4| ceH

= lim v,(2),
m— +oo

where 7,, = 75y, . By Gaveau’s work we have v,, € C(U,,). Since v,,, <v,,in
D,,, u is usc in U. We next verify the boundary regularity of u.

Fix £ in dU and assume for simplicity that ¢(£) =0. If we write 7=y
and w,(z) = wl(z) + w2(z), where

W(}(Z) = E[—SO (f°gz)(Xsa)|Jz(X_g)| dS]
and
w2(z) = E[(¢°g,)(X)],



On the Dirichlet Problem for the Complex Monge-Ampére Operator 521

then we will first show that

limwl(z)=0 forall oeH. (3.15)
z—¢
Equation (3.15) follows from the estimate of f in (3.4) if we prove that
" 1 1-|zy* 1-|zf ]
E S _ - ds| (3.16)
[ o [1—]g(XIP1P 11— | g, (X711 4+ 2, X7 [1+2, X2

tends to 0 as z — £. Using the elementary identity

N+ aBP=a+B2+1—|a>1-|B]Y, (3.17)
which is valid for any complex numbers « and 3, and using the definition of
g, 1n (3.8), the integrand in (3.16) becomes

(1-]z )1~z
(1—|XaP)B(1—|X222)B|1+2, X [20=B) |1+ Z, X22[20-8)"

(3.18)

To estimate (3.16), we need the following lemma.

LeEMMA 3.8. For each (8 satisfying 3 < 8 <1and each (z,, z5) in U, the func-

tions
1—|wy[? )( 1—|w,[* )T_B
Wi, Wy) = — — ~
Q,G( 1 2) I:(|1+21W1|2 |1+22W2|2

are plurisubharmonic in U and satisfy
(dd°qg)® = (1—B)2 2B = D1+ Z;wy |*C~V|1 4z, w,|*E—D
X (1=|w|H) 7280 —|w,|>) 2B aV. (3.19)

For each o € H and each t satisfying 0 <t <7=r1,,

t

Elgs(X?)] = 450, 0) +E[S

Ay g(XE) ds] . (3.20)
0

REMARK. Note that gg(w) = —]J,.,(z)|1“8 (cf. (3.8)). Thus g is really an
auxillary function introduced to show how, in a vague sense, the behavior
of J,(X{) as z — & compensates for the behavior of (f-g,)(X{) as z—&.

Proof of Lemma 3.8. The inequality (3.19) follows from direct computation
and use of (3.17). Formula (3.20) is a consequence of It6’s formula (3.12)
applied to the function gg(Xy) = gg( X", X;?). U

Returning to the proof of (3.16), from (3.20) and Corollary 2.3 we obtain

Elqs(X?)—qp(0,0)] = EHO Ao+ g5(X3) ds]

>2F HO [det( 3z.35 % ))] ds.
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Here we are writing gz = gg(Z,, Z,). By (3.19) and (3.18) the integrand in
(3.14) is majorized by

[(1_|21|2)(1—|z2]2)]1“5[ (32% 0>]1/2 ,
(1-B)V28-1 det 0Z;0Z; (X)) - (3.21)

Since X7 = (X1, X72) € dU, either | X|=1 or | X2|=1 (or both). Thus,
for each (z;,2,) in U,

1-| X272 \/ 1-| X2 \]'~*
X)) =— =0.
96(X7) KIH@X;’IP)(|1+22X;’2|2)

In addition, gg(0, 0) =1, so that
[(1 -]z, 2 (1 —|22|)]) " PE[gg(X?) — qp(0,0)] - 0
as (21, 22) — £ in dU. Hence '
[(1—]z: )1 —]za[)1' 77 [ [ ( d%gs a)]‘/z ]a
e e v AR I

as (z1,22) — £ in AU for 3 < B < 1. This yields (3.16).
We now show that

inf w?(z) >0 as z—&. (3.22)
ceH
We first claim that

lim w2(z) = lim E[(¢°g,)(X’)]=0 foreach ¢in H. (3.23)

z—§ 2§
To see this, fix ¢ in H. Since X7 € dU, g,(X;)€dU. Fix £ in JU. We may
assume that £ = (&, £,) = (e, £,) with |£;| < 1. Then

. o S+ X2
1 X% = 10’ T
im 206 = (. T 57

From the definition of X/ in terms of ¢ and b (3.5), it follows that

w S2+X72 N (L (> (,-,, £2+re"“> }
E[d’(e ’1+£2X:2)]“S0[27r J, o Trgrem) o] o

for some probability measure du = du(r) on [0, 1]. Thus, by subharmonicity

of ¢(e’, -),
. + X0 .
E[¢(e"’, fi—&'?)] = p(e’, &,). (3.25)

From (3.24) and the continuity of ¢ on dU,
lim ¢(g,(X7)) = d(e”, g, (X72)).

z—¢
Since ¢ is bounded, we can apply the bounded convergence theorem to con-
clude that

) = (e, g,(X?2). (3.24)

lim E[(¢°8)(X7)] =Elp(e”, g,(X7)]. (3.26)

z—¢
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Thus

E[(¢°8)(X7) —$(8)]
= El(¢°8.)(X7) (e, £2)] | |
= E[(¢°8.)(X7) —(e", gr,( X7 N+ Elp(e”, g,(X7) —d (", £)] = 0

by (3.25) and (3.26). This gives (3.23). To complete the proof of boundary
regularity it suffices to show that for each fixed £ in 4U and each € > 0, there
exists a ¢ in H so that
im E[(¢=g.)(X?)] <e. (3.27)
z—¢
We see that we need to construct o so that the inequality (3.25) is very nearly
an equality. Equivalently, we must find a ¢ in H so that du(r) approximates:
a unit mass at r =0. Thus we require that E[| X?2|] should be small If we
define o by specifying the matrix entries

0'11=1/6, 0'31:0'12:0, and 032—"——'6,

then it can be shown that the corresponding measures p® converge to the
unit mass at r =0. Given ¢ >0, we can then choose 6 > 0 sufficiently small
so that (3.27) holds for o = o?®.
We can now apply the argument following Bellman’s principle (Lemma
3.3) to conclude from Remark 3.4 that u € P(U) and (dd‘u)*= f?dV in U.
Next, if we recall the proof of the statement

limwl(z)=0 forall ¢in H, (3.15)
z—¢
we see that we actually proved that this limit is uniform in z and o. Precisely,
given e > 0, there exists an mg such that for each m > m,, ]w}(z)| <e for z
in U—-U,,. Thus

inf w!=u, e L3.(U) and
oeH

inf wl=u,e L. (U) since ¢ € C(AU).

ceH
Therefore u € L3, (U). We conclude that u € F(¢, f). In particular, F(¢, f) #
@. From Remark 3.7, U=v=ii=u in U and (dd‘u)?>= f?dV in U. Thus u
satisfies (3.2).

It remains to prove that ¥ € C(U). The uniqueness of the solution u will
then follow from the comparison theorems of Bedford and Taylor in [BT1]
and [BT?2]. To verify continuity of # on U we use the facts (already proved)
that u satisfies

(1) ue P(U)N Ly (U);

(2) (ddu)*=f*dV in U; and

(3) u=¢ on aUl.

This shows that u solves the Dirichlet problem (3.2) with the continuous
boundary values ¢; thus the proof below that u € C(U) is a J. B. Walsh-type
theorem for the bidisc U. It is a version of Theorem 6.2 of [BT1] showing
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that solvability of (3.2) plus boundary regularity of the solution yields inner
regularity of the solution.

We continue to write U=U U, with U,,CU,,,, and each U,, being a
strictly pseudoconvex domain. Recall that u(z) =inf{Ww,(z): 0 € H}. We fix
m and fix ¢ in H and write

Wo(2) = E[— Som(f°gz)(X£’)|Jz(Xs")I ds+ (¢°gz)(Xf)]

+E[—§ (Fog) (X L(XO)] ds]. (3.28)

We first show that i
inf EH (fogz)(X:)lJz(Xs")Ids] -0 (3.29)

ceH Tm

as m — +oo locally uniformly for z in U. Let z € U,,,, and define
W (2)=E [—-S (fog)(X)|J(XT)] dS]-

Then, by renormalizing, we can find a ¢’ in H such that

W(z) = EH SX) ds] (3.30)

Tm

(cf. (3.6) and (3.8)). Note that the process X" starts at z. In other words,
by setting s = 0 we obtain X§"* = z. Taking copditional expectations in (3.30)
and using the strong Markov property for Xy % (cf. [G2]), we obtain

T
wry= |~ 702 ds| 2w
0
for some z’ in dU,,. Again, after renormalizing,

wl(2)=wll(z')=E [— SOT FIXZ?) ds]

=E[—S (fo£e ) (XS AXT) dS] (3.31)
0
for some ¢” in H. But

wiey= it (| (o (X (X s

o"eH 0

satisfies (dd“w)" = f"dV in U and lim,._,; w(z’) = 0 for each £ in dU. To be
precise, we have shown in the proof of (3.15) that given e > 0, there exists
an my such that for each m’>my, |w(z’)|<e for all z’ in U—-U,,.. Hence
SUpregu, W(z') > 0 as m — . From (3.31) we conclude that

inf w'(z) =w(z’)< sup w(z’) forallzinU,,.
seH z'€dl,,

Thus inf, c g w,'(z2) = 0 as m — +oo locally uniformly in U. This is (3.29).
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We now show that there exists a constant M < 4+ such that

El7,(0)]<M forall oin H. (3.32)
To prove (3.32), it suffices to prove that
El1,(0,2)]<M forall ¢in H, (3.33)

where X,‘”Z=z+jf)adb (see (3.5)). By renormalization, for each ¢ in H
there exists a ¢ in H with w, = w; (cf. (3.6) and (3.8)). Fix 0 in H and let a =
oo*. Then deta=1. By the arithmetic-geometric mean inequality, tr(q) =
Y a;=2. Let g(z)=|z|* and apply It6’s formula (3.12) with g and 7, to
obtain
2>|g(z) ~ g(X27)| = |E§T”Ea..ﬁ(xa’2) dsl
Tm = 0 ij aziazj s
=2E([7p(0,2)]

for any z in U. This gives (3.33) with M =1.
Fix z, in U and fix a neighborhood V' C U of z,. Given € > 0, by (3.29) we
can find an m large so that

<e forallzinV. (3.34)

inf E[—ST(f°gz)(X§’)|Jz(X§’)|dS]
geH Tm

By the uniform continuity of ¢ on dU and the continuity of g, in z, there
exists a 6 > 0 such that
|pog,, (§) —dog (§)<e forall £indU if |z—z¢|<8. (3.35)

We next choose a (perhaps) smaller neighborhood V' of zy with V’'C
VN{z:|z—2zo| < 8} such that

[(fog) M (m)|—(fog) (M| T ()| <e (3.36)
if n€ ULy 8.(D,,). For this m, if ze V",

ing E [— SOTm(f 8 NXS) (XS ds+ (dog ) (X )]

~int E[— [ e ] ds (¢ogZ0)(X;’)]

= SugE[Som I S8 (X (XY)| _f°gzo(X;)|Jzo(X:)|| ds
+I(¢°gz)(X:)_(¢°gz0)(X:)|:l
<eM+e

from (3.35) and (3.36). Combined with (3.34), we have shown using (3.28)
that given e > 0, there exists a neighborhood V'’ of z, such that

| inf W,(z) — inf W,(z)| < (M+2)e forall zin V"
ceH ceH

Thus u(z) =inf, c g W,;(z) is continuous at z,. O
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