Global Integrability of the Jacobian
and Quasiconformal Maps

SusaN G. STAPLES

1. Introduction

Here we present alternate proofs to certain results arrived at in Astala and
Koskela’s recent article, “Quasiconformal mappings and global integrability
of the derivative” [AK]. In addition, we examine how these new ideas shed
light on some of the questions raised therein on the geometry of Gehring
domains.

Denote the Jacobian matrix of f at x by F(x) and its determinant by
J(x, f). Define

|f'(x)|= sup |F(x)A|. 1.1
heR", |h|=1

Let D and D’ be domains in R”, n=2. A homeomorphism f: D — D’ is said
to be K-quasiconformal if feW,} ,(D) and

| f/(x)|"<KJ(x,f) a.e.inD. (1.2)

Local integrability results of the following type are well known for quasi-
conformal maps [Ge]. If f: D — D’ is K-quasiconformal and E is any com-
pact set in D, then there exists an exponent p = p(n, K) > 1 such that

S (J(x, F)P dm <M< oo (1.3)
E

Here M depends on E and f.
In order to understand corresponding global integrability results, we need
the following definitions.

DEeriNITION 1.4. The quasihyperbolic distance between x and y in D is
given by
1
ko (x, =infS _ g,
0N =10t 9, D)

where v is any rectifiable curve in D joining x to y. Here dD denotes the
boundary of D and d(z, dD) stands for the distance from z to the boundary
of D.
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DeriniTION 1.5.  Let D C R” be a proper subdomain. We say that D satisfies
a quasihyperbolic boundary condition if there are constants ¢; and ¢, such
that

d(xy,dD) c
d(x,0D) ' *

for some fixed point xyin D and all x in D.

kp(x,xg) <clog (1.6)

Astala and Koskela [AK] determined geometric properties of D and D’ which
characterize the higher integrability of J(x, f) or equivalently | f'(x)|". Their
results follow here.

THEOREM 1.7 [AK, Thm. 1.2]. Let D’'CR" be a domain satisfying a quasi-
hyperbolic boundary condition. If DCR" and f: D — D’ is K-quasiconfor-
mal, then

S | f(x)|Pdm < o
D
Jor some p= p(K, n) > n.

THEOREM 1.8 [AK, Thm. 1.3]. Let D C R" satisfy a quasihyperbolic bound-
ary condition and let f: D — D’ be quasiconformal. Then | f'(x)| € L?(D) for
some p > n if and only if D’ satisfies a quasihyperbolic boundary condition.

A crucial step in their argument [AK, Lemma 4.3, Thm. 4.4] involves es-
tablishing the equivalence of this problem with the local Lipschitz function
problem studied by Gehring and Martio [GM]. The above theorems then
follow from the results in [GM].

Here we present proofs of the above theorems which proceed using BMO
estimates on J(x, f) and take advantage of the integrability of e*p(*:Xo) gn
domains satisfying a quasihyperbolic boundary condition.

Astala and Koskela also defined a new class of domains, named Gehring
domains, which arise naturally in this global integrability problem. In this
paper we reformulate their definition and study the geometric properties
of these domains. In particular we extend their result that domains with a
quasihyperbolic boundary condition are Gehring domains, and provide ex-
amples of domains that are not Gehring domains.

2. Global Integrability Theorems

We begin with a list of notation, terminology, and preliminary lemmas.
Throughout this paper D and D’ denote domains in R” with n=2, and
B(x, r) stands for the ball of radius r centered at x.

Let u: D — R"” be a locally integrable function. We say that u is of bounded
mean oscillation in D, u e BMO(D), if ||ul|.« < oo, where

]| = sup|Bl_lS |4(x) — up| dx.
BcCcD B



Global Integrability of the Jacobian and Quasiconformal Maps 435

Here the supremum is taken over all open balls BC D, |B] is the Lebesgue
measure of B, and uy denotes the average of u# over B, namely

ug=|B|™" SB u(x) dx.

In order to obtain estimates on the integrability of the J acobian, we make
use of the average derivative ay, introduced in [AG], along with the rela-
tionship established between ar and J(x, f) in [AK].

DerINITION 2.1. Let f be a quasiconformal map in a proper subdomain
D CR”". Set B(x)=B(x,d(x,3D)/2). We define the average derivative a; as

af(x)=exp( log J(», ) dm(y)>, xeD.

BT
n|B(x)| Jp(x)

THEOREM 2.2 [AK, Thm. 3.4]. There exists an e =e(n, K) >0 such that,
whenever f is K-quasiconformal in D,

o | (@enrdm=| G rmamse, | @ 0yrdm
D D D

holds for all p such that —e < p/n<1+e¢. Here the constants ¢, and c, de-
pend only on n, K, and p.

Denote by D’ the image of D under the K-quasiconformal map f. Since the
geometry of D’ plays the decisive role in the integrability results, we calcu-
late the integrals in terms of D’ and f . By the change-of-variables formula
we have

S J(x, f)‘*"‘dm=§ Jx, fY " dm. 2.3)
D D’

Additionally, since Theorem 2.2 can be applied to £~ and D’, we need
only show that the integral

S ,(af-x(x))_"s dm< o for some value 6 =6(K),
with 0<é<en, (2.9

to establish the higher integrability of f.
For the ensuing estimates, we use the simpler notation {2 for our domain
in R” and g for our quasiconformal map, replacing D’ and f ! respectively.
We have the following lemma concerning a,(x).

LemmMma 2.5. Let g be a K-quasiconformal map defined on Q, let x, be a
Jixed point in Q, and let 6 > 0. Then the estimate

_ - cod
(24(x)) "% < b(ay(x))° exp(—n—kn(x, Xo))
holds for all x e). Here b and c depend only on K and n.

Proof. We set log J(x, g)= u(x) and B(x)=B(x,d(x,0D)/2). With this
notation we see
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ag(x) = ay(xy) exP(%(uB(x) - uB(xo)))~ (2.6)
Thus

(ag(x))°=< (a'g(-ffo))_‘S GXD(% |ttp(x) — Up(x,) l) (2.7)

By a well-known result of Reimann [Rm], u(x) =1log J(x, g) e BMO(Q).
We now utilize an estimate [S1, Lemma 2.11, with 7 =2] which exists for
comparing averages over balls of BMO functions. We have

|uB(x)—uB(x0)|Sc(kﬂ(xaxO)—I_l), C=C(K, n)- (2'8)

Using this in (2.7) completes the proof. O

Smith and Stegenga have established the following characterization of do-
mains with a quasihyperbolic boundary condition.

THEOREM 2.9 [SS, Thm. A). Let Q be a proper subdomain of R”, and let
Xxo €. The following are equivalent:

(2.10) Q satisfies a quasihyperbolic boundary condition.
(2.11) There is a > 0 such that

S exp(7kq(x, xg)) dm < oo,
Q

Lemma 2.5 and Theorem 2.9 lead to a direct proof of Theorem 1.7 in [AK],
restated here as follows.

THEOREM 2.12. Let D’ satisfy a quasihyperbolic boundary condition. If
DCR"and f: D— D’ is K-quasiconformal, then

S (J(x, T *dm<oo  forsome a=a(K,n)>0.
D .

Proof. Combining (2.3), (2.4), Lemma 2.5, and Theorem 2.9, we need only
choose any o < min(e, 7/c). Here ¢ is as in Theorem 2.2, ¢ arises from (2.8),
and 7 is as in Theorem 2.9. O

We now provide an alternative proof of Theorem 1.8.

THEOREM 2.13. Let D CR” satisfy a quasihyperbolic boundary condition,
and let f: D — D’ be quasiconformal. Then J(x, f) € L'*¢(D) for some e >0
if and only if D’ satisfies a quasihyperbolic boundary condition.

Proof. Assume J(x, f) e L'*¢(D). By Theorem 2.9, there exists a 7 > 0 such
that

S exp(7kp(x, xy)) dm < oo, (2.14)
D
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Gehring and Osgood [GO] provide the following useful distortion estimate
on the quasihyperbolic metric:

kp(y, yo) = c(kp(x, x0) +1), (2.15)

where y = f(x) and y, = f(xp).
Applying this estimate in conjunction with Hoélder’s inequality, we have

SD' exp(dkp(y, yo)) dm
- SD exp(dkp (f(x), f(Xo))) I (x, f) dm

sS exp(de(kp (X, xo) +1)) J(x, f) dm
D

e/(1+€) 1/(1+¢€)
s(g (exp(dc(kp(x,x0)+1)))“+f>’fdm) (S J(x, f)1+fdm) :
D D

The second integral is bounded by hypothesis. Moreover, if we take d <
7e/c(1+¢€), then condition (2.14) guarantees that the first integral will also
be bounded. Thus, by Theorem 2.9, D’ satisfies a quasihyperbolic boundary
condition. O

3. Gehring Domains

We begin with the definition of Gehring domains found in [AK] and imme-
diately follow with an equivalent definition which we use in this paper.

DEerINITION 3.1 [AK]. We say that a domain Q C R" is a Gehring domain
if, for all K =1, there is a number p = p(K) > n such that

S | f/(x)|Pdm <o
D
for each domain D and each K-quasiconformal map f: D — Q.

In order to focus on the role of © alone, we eliminate the domain D in our
reformulation. This involves only a change of variables as in (2.3).

ProrosITION 3.2. The domain Q CR" is a Gehring domain if and only if,
Jor all K =1, there exists a number a = «a(K) > 0 such that

S (Je(x) " *dm<oo
Q
Jor all K-quasiconformal maps g defined on .

Astala and Koskela’s proofs for Theorems 1.7 and 1.8 rely on estimating the
Minkowski dimension of the boundary of the image domain D’. In the case
where dim,,(8D’) < n, they establish the equivalence of the higher integra-
bility problem with the local Lipschitz problem examined by Gehring and
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Martio [GM]. (Note that Hanson and Koskela [HaK] have recently shown
that some such type of additional condition on @D’ is necessary in order
to guarantee this equivalence.) Furthermore, since dim,,(dD’) <n when-
ever D’ C R" satisfies a quasihyperbolic boundary condition [SS], Astala and
Koskela then apply the results in [GM].

In light of Theorem 1.7 or 2.12, it is an immediate consequence that do-
mains which satisfy a quasihyperbolic boundary condition are Gehring do-
mains. The sufficient conditions in [AK] describing Gehring domains €2 in-
clude the constraint that dim,,(3Q) < n. Astala and Koskela do however
provide examples [AK, (2.5)] of Gehring domains €2 with both the Hausdorff
dimension, dimg(dQ) = n, and dim,,(3Q) = n.

The following observations lead to a sufficient condition for Q2 to be a
Gehring domain. Note that certain sets £ when removed from a domain
may alter the Minkowski dimension; in other words, dim,,;(d(Q\E)) need
not equal dim,,(0Q). However, removal of these same sets £ may not affect
the question of higher integrability.

DEerINITION 3.3. Let D be a domain in R” and EC D a set closed relative
to D. We say that E is a removable set if every K-quasiconformal map f:
D\E —R" can be extended to a K’-quasiconformal map f: D — R"U (oo},
where K'= K'(K).

THEOREM 3.4. Let E be a removable set. If 2 satisfies a quasihyperbolic
boundary condition then Q\E is also a Gehring domain.

Proof. Let g be any K-quasiconformal map defined on Q\ E. Denote by &
the K’-quasiconformal extension of g to €. Suppose first that g: 3 - R",
and let o« = a(K’) be the constant for  given by 3.2. Then

S J(x, g»‘“dmss (J(x, 8) " dm < o
N\E Q

since € is a Gehring domain.
If §(z) = for some z €, we define B=B(z, 3d(z,3Q))=B(z,r). We
establish first that Q\ B also satisfies a quasihyperbolic boundary condition.
Let z, be a point on dB(z, 3r). Since Q satisfies a quasihyperbolic boundary
condition, there exist constants ¢ and b such that
d(Z(), 69)
d(y, Q)

for all points y in Q. Observe that for any point z; € 3B(z, 2r) we have

kq(zo, ¥)<alog +b 3.3)

ko(zo,21) <37 and kq\p(20,2;) <3m. (3.6)

Consider any point y in Q\ B. Suppose first that y e Q\ B(z, 3r). Let v be
the quasihyperbolic geodesic in @ joining z, and y. Denote by z; the last
intersection point of 4 and dB(z, 2r). Then
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ka\p(20, ¥) < ko\ (20, 21) + ka\ (21, ¥)- 3.7
Note also that
d(w, 3(Q\B)) <d(w, Q) < 7d(w,d(Q\B)) forany weQ\B(z,3ir),
so that

ka\p(z1, ) = Tka(z1, ¥). (3.8)
The triangle inequality in (2 states that
ka(z1, ¥) < kqa(20, ¥) + ka(zg, 21)- (3.9)

Combining all of the above inequalities, we see that there exist constants a,
and b, such that

d(z9, 9(Q\B))
Sd(,0@\B) "

For any point y € (Q\B)NB(z, 3r), we can use a path vy from z, to z,
along d(B(z, 3r)) followed by the radial path from z; to y. Here z; is that
point on d(B(z, 3r)) which lies on the ray from z through y. Direct compu-
tation then yields

kos(zg, ¥)<alo

d(z9, 3(Q\ B))
d(y,0(0\B))

We conclude that Q\ B satisfies a quasihyperbolic boundary condition,

d(z9, d(N\ B))
d(y,d(Q\B))

with A = A(a, b) and B= B(a, b). We let 3; = 3,(K’) be the constant for Q\ B
given by (3.2).

Astala and Koskela proved that B—{z} is a Gehring domain. Let 8, =
B2(K’) be the associated constant for B—{z}. Finally, set = min(8, 3,).
We then have

ko\p(z0, y)<a,log

ko\p(zg,y) < Alog

S (J(x,g))—ﬁdmsg (J(x,g>)-ﬁdm=s (J(x,8)~F dm
ON\E Q Q—{z}

=g (J(x,g>)—6dm+g J(x,8) Pdm<o. O
O\R B—(z}

Numerous necessary and sufficient conditions exist to describe removable
sets. Here we list a few examples and mention the further references of [As],
[AS], [HeK], [ V1], and [V2]. Vdisdld showed that if the (# —1)-dimensional
Hausdorff measure of E is zero then E is removable, and if F is removable
then the topological dimension of E satisfies dim E < n—2. Aseev [As] gen-
erated examples of Cantor sets with positive (7 —1)-dimensional Hausdorff
measure which are removable, and presented capacity estimates for remov-
able sets. More recently, Herron and Koskela [HeK] determined various
relationships between capacity domains, extension domains, and uniform
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domains, thereby producing further examples of removable sets. Example
(2.5) of [AK] provides a model for generating removable sets of Hausdorff
dimension n.

The proof of Lemma 2.5 leads to further information on the geometric
aspects of Gehring domains. In particular, Lemma 2.5 provides insight into
which types of quasiconformal test maps prove useful in determining if Q is
a Gehring domain.

THEOREM 3.10. Consider any domain Q C R” which can essentially be writ-
ten as a union of cubes. That is, Q=\J(Q;UB;), i=1,2,..., where each
cube Q; is.open, 0Q;N3Q; 1+ 9 for all i, and we let B;=(30Q;N3Q;,)"°.
Furthermore these cubes are pairwise disjoint, and each cube Q; is centered
at y; on the x,-axis and has sides parallel to the coordinate axes. There exists
a K-quasiconformal map g, K > 1, satisfying

K "< J(x,g)<K(+Dn (3.11)
Jorall xe Q;.

We make the following remarks to motivate this result before proceeding
with the construction. First observe that if there exist constants ¢, and ¢,
such that ¢; < /I(Q))/I(Q; 1) <cyfori=1,2,3,..., then

c3iskg(y1,y,-)504i, 1=2,3,....
In that case our map g will satisfy
Up(y) —Up(y=Cska(r, ¥1), =1,2,3,...,

where u(x)=1og J(x, g). This is the desired property of the map g in the
following examples: to force the estimate in (2.8) to be sharp on the set of
centers {y;}. Also note that we obtain the following simple criterion from
Proposition 3.2.

CorOLLARY 3.12. Let QCR” be as in Theorem 3.10. If
S K"m(Q;) =0 forall o>0,

then Q is not a Gehring domain.

Proof of Theorem 3.10. Let each cube Q; be centered at y; = (¢;, 0,0, ..., 0).
Here we provide the precise details for the construction of g in the case
n=2. Note that with appropriate dimensional adjustments this map g can
be constructed for any n=2.

We modify the construction in [S2] to produce our map g. Decompose
each cube Q; into four regions 7; ;, T; 5, T; 3 and T; 4. Here

Ta={x=(x,x2) € Qi x1= ¢},
TI",Z= {X: (xI,X2) € Qi: X1=¢; and x22cj_x1},

T 3={x=(x1,X) € Q;: x; < ¢; and X, < x; — ¢;},
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4
7},1=Qi\( U Ti,j)-

Jj=2

and

Define g in a piecewise manner on each cube Q; as a radial stretching map
with respect to y; followed by a suitable translation. On Q,, let g(y;) =y,
and let the radial stretching factor be 1in 77 ; (i.e., g(x) =x in T ), and let
the radial stretching factor be K ~!in T1 4. Note that any pointin 77 isona
ray emanating from y, of the form x;+ bx, = ¢, for some b €[0,1]. Let the
radial stretching factor along this ray be (b(K —1)+1)/K. Similarly, each
point in 7} 3 is on a ray with equation x;—bx,=c¢;, be[0,1]. We let the
stretching factor along this ray be (b(K—1)+1)/K.

We continue to define g inductively. Assume that g has been defined on
01,03, ..., Q;_;. Define g on Q; as follows. On T; ; let g be that radial
stretching map with constant stretching factor K ~¢~Y followed by a suit-
able translation such that g(d7; ) = g(37;_, 4) on d7; ;N37T;_, 4. Note that
this umquely determines g(y;). Now in T; 4 let the radlal stretching factor be
K7';inT; , and T; ; we let the radial stretchlng factor be K /(b(K—1)+1),
where bis deﬁned in a way analogous to that above. This completes the con-
struction of g, and one can readily verify that g is K-quasiconformal. [l

This construction enables us to prove that certain domains are Gehring do-
mains if and only if they satisfy a quasihyperbolic boundary condition.
Lemma 3.13 and Theorem 3.19 provide one such scenario.

LeMMa 3.13. Let Q CR" be a domain as in Theorem 3.10, with the addition-
al constraint that there exists a constant c such that 1/c <I1(Q;)/1(Q; 1) <c,
i=1,2,3,.... The following two conditions are equivalent:

(3.14) Q satisfies a quasihyperbolic boundary condition. .
(3.15) There exist constants r,s > 0 such that 1(Q;) <rl(Q))e™ " for
i=2,3,....

Proof. For this domain Q we have the estimate
CliSkQ(yl,yf)SCZi, i=2,3,..., (3.16)

with ¢, =1/Vn and ¢, =2+logc. If we assume (3.14) then, for some con-
stants @ and b,

d(y,, 0Q1)
d(yi: aﬂ)
Combining this with (3.16) yields (3.15) with r =e?? and s = c/a.

For the other implication we note first that (3.16) together with (3.15) yields
d(yy,3Q)
d(y;, Q)

for a=c,/s and b= (c,logr)/s. Moreover, for any point z € Q;, we can
compute that

ko(yy, y;)<alog +b, i=2,3,....

ko(yi, yi)=cyi<alog +b, i=2,3,..., (3.17)
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d(y;, 09)
— o T4
d(z,09)
where p and g depend only on # and c. Estimate (3.18) follows from Lemma
3.11 in [GM], since each of the domains Q;UB,UQ, and Q; _;UB;_,UQ;U
B;UQ;,, for i>1 are John domains with constants independent of /i and

depending only on n and c.
Finally, (3.17) and (3.18) together yield that for any point z €,

d(y,0Q) +
d(z,0Q)
with @¢; = max(a, p) and b;=b+q. U

ko(yi,z)<plog (3.18)

ko(yy,z)<ajlog

THEOREM 3.19. Let QCR”" be a domain as in Lemma 3.13. Then Q is a
Gehring domain if and only if Q satisfies a quasihyperbolic boundary con-
dition.

Proof. We need only show that if Q does not satisfy a quasihyperbolic bound-
ary condition then  is not a Gehring domain. This follows directly from
Lemma 3.13 and Corollary 3.12. |

REMARK 3.20. Lemma 3.13 and Theorem 3.19 can be generalized to char-
acterize certain domains constructed by adjoining consecutive rectangular
box regions. For example, suppose @ = U (R;UB;), where each open box R;
is centered at y;=(c;,0,...,0), these boxes are pairwise disjoint, and B;=
(0R;NAR;, )’ #0. Here R; is of the form (c;—(/;/2), ¢;+(I;/2)) X Q;, with
Q; an (n—1)-dimensional cube centered at the origin and /(Q;) = A;. In addi-
tion, we assume for some constant ¢ that 1/c<h;/h; ;<c for i=1,2,...
and that /;/h; =1 and is nondecreasing. Under these conditions, {2 satisfiesa
quasihyperbolic boundary condition if and only if condition (3.15) holds
and there exists a constant M such that /;/h; <M for all i. Moreover, by
chopping up each R; into essentially /;/h; cubes and using the ideas of Theo-
rem 3.10, we can show that Q is a Gehring domain if and only if it satisfies a
quasihyperbolic boundary condition.

Example 3.21 presents the computations for a specific non-Gehring do-
main. Note that Definition 3.1 directly implies that 2 must satisfy |2| < o in
order to be a Gehring domain. We also check this condition to verify that
Example 3.21 is not trivial.

ExampLE 3.21. Let @ = U Q; C R”, where each Q; is centered at y; =
(c;,0,0,...,0). Fix any constant p > 1, set ¢;=1/2, and let
( ,-)—p/n i—1

+ X ()7
2 j=1
Furthermore, let the side length of Q; be I(Q;) = (i)™?/". Thus

> 1
Q)= — <o,
m()gl.poo

G
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Moreover, if we consider the map g from Theorem 3.10, we see that

a(i—1n

| s am= St — =,
Q 1 !
since K > 1. Thus @ is not a Gehring domain. L]

Note that a modification of the map g in Theorem 3.10 also rules out the
possibility of certain outward directed spires in Gehring domains. We con-
clude with the following corollary.

COROLLARY 3.22. Let S be the infinite spire of revolution in R" given by

n
S= {(xl, X5 -ees Xn)t 2 (X1)? < 8(x1)%, 0= Xy <°°z,
2
where g(x) =0 and g’(x) <0 for 0 < x < oo. Suppose that m(S) < oo; that is,
suppose

S g(x)"ldx < oo.
0

If there exists a constant K > 0 such that

S K¥g(x)" dx=o0
0

Jorall >0, then S cannot be part of a Gehring domain.
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